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Project Overview

NEESWood: Development of a Performance-Based Seismic Design 
Philosophy for Mid-Rise Woodframe Construction

While woodframe structures have historically performed well with regard to life safety in regions 
of moderate to high seismicity, these types of low-rise structures have sustained signifi cant struc-
tural and nonstructural damage in recent earthquakes. To date, the height of woodframe con-
struction has been limited to approximately four stories, mainly due to a lack of understanding of 
the dynamic response of taller (mid-rise) woodframe construction, nonstructural limitations such 
as material fi re requirements, and potential damage considerations for nonstructural fi nishes. 
Current building code requirements for engineered wood construction around the world are not 
based on a global seismic design philosophy. Rather, wood elements are designed independently 
of each other without considering the infl uence of their stiffness and strength on the other struc-
tural components of the structural system. Furthermore, load paths in woodframe construction 
arising during earthquake shaking are not well understood. These factors, rather than economic 
considerations, have limited the use of wood to low-rise construction and, thereby, have reduced 
the economical competitiveness of the wood industry in the U.S. and abroad relative to the steel 
and concrete industry. This project sought to take on the challenge of developing a direct displace-
ment based seismic design philosophy that provides the necessary mechanisms to safely increase 
the height of woodframe structures in active seismic zones of the U.S. as well as mitigating dam-
age to low-rise woodframe structures. This was accomplished through the development of a new 
seismic design philosophy that will make mid-rise woodframe construction a competitive option 
in regions of moderate to high seismicity. Such a design philosophy falls under the umbrella of 
the performance-based design paradigm.

In Year 1 of the NEESWood Project, a full-scale seismic benchmark test of a two-story woodframe 
townhouse unit that required the simultaneous use of the two three-dimensional shake tables at 
the University of Buffalo’s NEES node was performed. As the largest full-scale three-dimensional 
shake table test ever performed in the U.S., the results of this series of shake table tests on the 
townhouse serve as a benchmark for both woodframe performance and nonlinear models for 
seismic analysis of woodframe structures. These effi cient analysis tools provide a platform upon 
which to build the direct displacement based design (DDBD) philosophy. The DDBD method-
ology relies on the development of key performance requirements such as limiting inter-story 
deformations. The method incorporates the use of economical seismic protection systems such as 
supplemental dampers and base isolation systems in order to further increase energy dissipation 
capacity and/or increase the natural period of the woodframe buildings. 

The societal impacts of this new DDBD procedure, aimed at increasing the height of woodframe 
structures equipped with economical seismic protection systems, is also investigated within 
the scope of this NEESWood project. Following the development of the DDBD philosophy for 
mid-rise (and all) woodframe structures, it was applied to the seismic design of a mid-rise (six-
story) multi-family residential woodframe condominium/apartment building. This mid-rise 
woodframe structure was constructed and tested at full-scale in a series of shake table tests on 
the E-Defense (Miki) shake table in Japan. The use of the E-Defense shake table, the largest 3-D 
shake table in the world, was necessary to accommodate the height and payload of the mid-rise 
building. 
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This report presents a simplifi ed direct displacement design (DDD) procedure which was used to design 
the shear walls for a six-story woodframe structure. This structure, referred to as the NEESWood Cap-
stone Building, was designed to meet four performance expectations: damage limitation, life-safety, far-
fi eld collapse prevention, and near-fault collapse prevention. A series of nonlinear time history analyses 
were performed using suites of both far-fi eld and near-fault ground motion records to verify that design 
requirements were met. The distributions of inter-story drifts obtained from these time history analyses 
confi rmed that the building met all four performance expectations, thereby validating the DDD proce-
dure. Additionally, collapse analysis in accordance with the Applied Technology Council project 63 (ATC-
63) methodology was performed. The results of incremental dynamic analyses confi rmed that the building 
had an adequate capacity or margin against collapse, as dictated by the ATC-63 methodology. 
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ABSTRACT 

This report presents a simplified direct displacement design (DDD) procedure which was 

used to design the shear walls for a six-story woodframe structure. The building will be tested in 

the final phase of a Network for Earthquake Engineering Simulation (NEES) project. 

Specifically, NEESWood Capstone Building was designed to meet four performance 

expectations: damage limitation, life-safety, far-field collapse prevention, and near-fault collapse 

prevention. The performance expectations are defined in terms of combinations of inter-story 

drift limits and prescribed seismic hazard levels associated with predefined non-exceedance 

probabilities. To verify that design requirements were met, a series of nonlinear time-history 

analyses (NLTHA) were performed using suites of both far-field and near-fault ground motion 

records. The distributions of inter-story drifts obtained from the NLTHA confirm that the 

Capstone Building designed using DDD meets all four target performance expectations, thereby 

validating the DDD procedure. Additionally, collapse analysis in accordance with the recently 

proposed Applied Technology Council project 63 (ATC-63) methodology was performed. The 

results of incremental dynamic analyses confirmed that the Capstone Building designed using the 

DDD procedure has adequate capacity or margin against collapse, as dictated by the ATC-63 

methodology.  
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1. INTRODUCTION 

In the United States (US), multi-story residential and commercial structures such as 

multi-family apartments, condominiums and hotels/motels are often light-frame wood (also 

known as woodframe) construction. For multi-story construction, if woodframe is selected over 

other structural systems it is because of its fast construction speed and low construction cost 

(Cheung 2008).  Although woodframe construction provides an economical alternative for multi-

story buildings, the current US building codes make it difficult to exceed five stories (ICC 2006) 

in general, and even four stories in some jurisdictions. The height limitation reflects the lack of 
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knowledge of the dynamic response of taller wood buildings under lateral loadings (e.g., wind 

and earthquake loads), as well as fire safety considerations and other local district land use 

regulations. Such height restrictions have limited the use of wood for multi-story construction in 

the US. Nevertheless, many other industrialized countries permit the construction of taller wood 

buildings (i.e., more than five stories). For example, New Zealand does not have building height 

restrictions for wood construction. Canada and England have recently revised their building 

codes to allow the construction of wood buildings of up to six and eight stories, respectively 

(Craig 2008). In the US, the timber engineering design and research communities are in the 

process of developing new design guidelines and procedures that will enable building taller 

woodframe structures, including those in seismic regions such as the Pacific Northwest where 

wood has a strong industry hold. One such effort is the NEESWood project which focuses on the 

development of a performance-based seismic design (PBSD) procedure for mid-rise woodframe 

construction in regions of moderate to high seismicity (van de Lindt et al. 2008).  

As part of the NEESWood project, a series of full-scale seismic tests of a two-story 

Benchmark Woodframe Building were conducted at the University at Buffalo (UB) Network for 

Earthquake Engineering Simulation (NEES) site (Christovasilis et al. 2007). The Benchmark 

Building was designed in accordance with the Uniform Building Code (ICBO 1988). The test 

building was representative of a typical townhouse structure built in the 1980’s and located in the 

Western US. In order to establish the relationship between the fundamental period (or lateral 

stiffness) and the contribution of the non-structural elements, shake table tests were conducted at 

different stages of construction (e.g., wood structural elements only, wood structural elements 

and gypsum wall board, and the complete structure including the exterior stucco). The test data 

collected in the Benchmark Building test included (1) force and deformation measurements of 

the shear walls and non-load bearing walls, (2) tension force and uplift measurements of the 
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anchor bolts and hold-downs, (3) sill plate slippage, and (4) absolute acceleration measurements. 

In addition, damage to the structural and non-structural components, such as the gypsum wall 

boards (GWB) and exterior stucco, were visually inspected and documented at the end of each 

stage of testing. The Benchmark test results and findings were used to develop numerical tools 

and validate a preliminary version of a new direct displacement design (DDD) procedure for 

PBSD of multi-story woodframe buildings (Pang and Rosowsky 2009). The DDD procedure was 

then used to design the shear walls of a six-story woodframe building, which will be constructed 

and tested at full-scale in the final phase of the NEESWood project. 

1.1 Description of the Six-story NEESWood Capstone Building 

The architectural layout (Figures 1 to 4) and building design parameters (e.g., the location 

of bearing walls) determined based on the 2006 International Building Code (ICC 2006) served 

as the starting point for the displacement-based seismic design of the six-story NEESWood 

Capstone Building. The plan dimensions of the building are approximately 18.1 m (59.5 ft) in the 

longitudinal direction and 12.1 m (39.8 ft) in the transverse direction. The height of the building 

from the base to the top of the roof parapet is approximately 17.5 m (57.5 ft), with a story clear 

height of 2.74 m (9 ft) for the 1st story and a story clear height of 2.44m (8 ft) for 2nd to 6th stories 

(Figure 1-4). The thickness of the floor system is approximately 25.4 cm (10 in) and the roof 

diaphragm thickness is 38.1 cm (15 in). The total living space of the test building is 

approximately 1350 m2 (14500 ft2). There are 23 living units with four apartment units on each 

floor except for the 6th floor which contains a large luxury penthouse and two regular apartment 

units (Figures 1 to 3). The total seismic weight of the as-designed building was estimated to be 

2734 kN (615 kips). A series of full-scale shake table tests of the NEESWood Capstone building 

are scheduled to be conducted on the E-defense (Miki City) shake table in Japan in July 2009. 



 
  Figure 1-1: Plan view of the six-story NEESWood Capstone Building for 1st floor. 
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Figure 1-2: Plan view of the six-story NEESWood Capstone Building for 2nd to 5th floors. 

  
Figure 1-3: Plan view of the six-story NEESWood Capstone Building for 6th floor.   
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Figure 1-4: Elevation views of the six-story NEESWood Capstone Building, (a) south elevation 
and (b) west elevation. 
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2. PERFORMANCE EXPECTATIONS 

The six-story Capstone Building was designed to meet the four performance 

requirements listed in Table 2-1. Each performance requirement is specified by a probability of 

non-exceedance of an inter-story drift limit at a specified level of seismic hazard. The 

performance requirement is given by the following expression: 

 lim( | )NE tP H NEθ θ< ≥  (1) 
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where θ and θlim are the inter-story drift and target drift limit, respectively. The term PNE(.) is the 

non-exceedance probability of the inter-story drift at a prescribed hazard level (seismic intensity, 

H) and NEt is the target/design non-exceedance probability. ASCE/SEI-41, Seismic 

Rehabilitation of Existing Buildings (ASCE 2006), provides guidelines for design and retrofit of 

structures by specifying three performance levels namely immediate occupancy (IO), life safety 

(LS), and collapse prevention (CP). The IO, LS, and CP definitions correspond to the 

performance expectations for Levels 1 to 3 (Table 2-1) and the hazard levels are associated with 

earthquakes having 50%, 10% and 2% exceedance probabilities in 50 years, respectively. The 

performance levels/expectations selected by the NEESWood project team and used for designing 

the Capstone Building are based on the ASCE/SEI-41 guidelines with some modifications. 

According to ASCI/SEI-41, the inter-story drift limits for wood shear walls for the IO, LS, and 

CP limit states are 1%, 2% and 3%, respectively. The non-exceedance probabilities for the 

aforementioned drift limits are assumed to be 50% (median) since the NE probabilities are not 

explicitly defined in ASCE/SEI-41.  

 

Table 2-1: Performance expectations for NEESWood Capstone Building. 
 

 

 

 

 

 

Based on observations made during the NEESWood Benchmark test, non-structural 

damage such as cracking of stucco and GWB occurred at inter-story drifts between 0.5% and 

1%, and possible life-safety related failures such as total splitting of sill plates, buckling of GWB 

Performance  
Level 

Seismic  
Hazard 

Performance Expectations 
Inter-story Drift 

Limit 
Non-exceedance 

Probability 
Level 1 50%/50yr 1% 50% 
Level 2 10%/50yr 2% 50% 
Level 3 2%/50yr 4% 80% 
Level 4 Near-Fault 7% 50% 
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at door/window openings and separation of GWB from the ceiling were reported at drifts greater 

than 2% (Christovasilis et al. 2007). Hence, the 1% and 2% drift limits for the IO and LS limit 

states, respectively, were adopted for the Levels 1 and 2 performance expectations without any 

modifications. It should be noted that while a 1% drift limit with a 50% NE probability was 

considered to be an “acceptable” drift limit in terms of limiting financial loss, a lower drift limit 

(e.g., 0.5%) combined with a higher NE probability (e.g. 80%) may be specified in the proposed 

DDD approach if it is determined that a more stringent damage limitation limit state should be 

considered. 

At Level 3 (2%/50yr hazard), a drift limit of 4% combined with an 80% NE probability 

was used as the design performance expectation. The 4% drift limit was based on the Benchmark 

test results for a ground motion representative of 2%/50yr hazard level where a maximum inter-

story drift of 3.5% was recorded under a ground motion representative of 2%/50yr hazard level. 

At 3.5% drift, the test structure retained about 75% of its lateral initial stiffness and did not 

exhibit any visible sign of incipient collapse. Hence, the 4% drift limit was selected for Level 3. 

In the proposed NEESWood performance expectations, buildings located near fault lines are 

required to meet the Level 4 performance requirement, namely a 7% drift limit with a 50% NE 

probability, when subjected to a suite of near-fault ground motions with strong velocity pulses. 

The 7% drift limit was based on the collapse analysis of woodframe buildings (Christovasilis et 

al. 2009) using incremental dynamic analysis (IDA) (Vamvatsikos and Cornell 2002) and has 

been used in the ATC-63 project to evaluate the collapse probability of wood buildings (ATC 

2008). 
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2.1 Design Spectra 

The Capstone Building is assumed to be located in Southern California and founded on 

stiff soil (Site Class D). The design 5% damping spectral acceleration values for seismic hazard 

Levels 1 to 3 are shown in Table 2-2 and the horizontal acceleration design spectra determined in 

accordance with ASCE/SEI-41 (2006) are shown in Figure 2-1. The determination of the design 

spectral acceleration parameters for the 50%/50yr earthquake is given in Appendix A. These far-

field response spectra (for sites located > 10 km from fault rupture) were used in the simplified 

DDD procedure to design the Capstone Building. Note that the near-fault response spectrum was 

not specifically determined or used in the design process. However, a suite of un-scaled near-

fault ground motions (Krawinkler et al. 2003) were used in the NLTHA to verify the design of 

the Capstone Building at Level 4. 

 

  Table 2-2: Design spectral acceleration values for 5% damping. 

   
 

Hazard Level 
Intensity 

(% of DBE)
Exceedance 
Probability 

Spectral Acceleration   
Short-period

SXS
(a) (g) 

1-second 
SX1

(a) (g) 
T0

(b) 
(s) 

TS
(c)

 

(s) 
Short Return Period Earthquake (SRE) 44% 50%/50yr 0.44 0.26 0.12 0.59
Design Basis Earthquake (DBE) 100% 10%/50yr 1.00 0.60 0.12 0.60
Maximum Credible Earthquake (MCE) 150% 2%/50yr 1.50 0.90 0.12 0.60

(a) X = M = Maximum Credible Earthquake  
           D = Design Basis Earthquake 
           S = Short Return Period Earthquake 
(b) T0 = 0.2 SXS/SX1 
(c) TS = SXS/SX1 
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Figure 2-1: Design acceleration response spectra for 5% damping. 
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3. STANDARD AND MIDPLY SHEAR WALLS 

The Capstone Building is constructed with North American style engineered light-frame 

wood shear walls with tie-down systems to restrain uplift forces caused by the overturning 

moments. The shear walls are built with nominal 51 mm × 152 mm (2 in. × 6 in.) Douglas Fir 

and Spruce Pine Fir studs spaced at 406 mm (16 in.) on-center and 10d common nails (3.76 mm 

in diameter (0.148 in.)) are used to fasten the 11.9 mm (15/32 in.) thick Oriented Strand Board 

(OSB) to the framing members. The Capstone Building is built almost entirely using 

conventional North American style stud wall systems (referred as standard walls in this paper), 

except for an interior wall line parallel to the longitudinal direction in which very high shear 
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capacity is required (see Figures 1 and 2) along which a new system known as midply 

construction is used (Varoglu et al. 2007). The midply wall system consists of standard shear 

wall components but the sheathing is sandwiched between studs that are rotated 90 degrees with 

respect to those in standard walls and the sheathing is attached to the wide faces of the studs (see 

Figure 3-1). The sheathing nails in midply walls are driven through studs at one side of the 

sheathing panel and into studs on the opposite side of the panel resulting in fasteners working in 

double-shear.  

 
Figure 3-1: Cross-section of standard and midply walls. 

 
The complete shear wall backbone curve is required in the simplified DDD procedure. 

Both standard and midply shear walls were modeled using the M-CASHEW program, a Matlab 

version of the CASHEW (Cyclic Analysis of Wood SHEar Walls) program (Folz and Filiatrault 

2001a). The M-CASHEW program can be used to predict the load-displacement response at the 

top of the wall by modeling the relative movements of the shear wall components (panels and 

framing members) and the individual load-slip response of nails. The backbone response of a 

wood shear wall is given by the following five-parameter equation which consists of a nonlinear 

logarithmic ascending branch and a linear descending (softening) branch: 
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The backbone parameters are depicted graphically in Figure 3-2.  
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Figure 3-2: Shear wall backbone parameters. 

3.1 Connector Parameters 

In the M-CASHEW model, the nails are modeled using a modified Stewart hysteretic 

model (Stewart 1987) which includes hysteresis pinching, strength and stiffness degradation ( 

Figure 3-3). The hysteretic parameters for the sheathing nails and dry wall screws are 

shown in Table 3-1. Note that the hysteretic parameters for 8d box (2.87 mm in diameter) and 

10d common (3.76 mm in diameter) nails were determined by fitting actual cyclic nail test data. 

The double-shear connector parameters, however, were calibrated by modifying the single-shear 

nail parameters to match the midply wall test results by Varoglu et. al (2007). 



  
Figure 3-3: Modified Stewart hysteretic model (nonlinear spring). 

 
 
 
 
 
Table 3-1: Connector parameters for nails in single- and double-shear. 

Shear 
Mode 

Ko r1 r2 r3 r4 
Fo Fi Δu α β 

(kN/mm) (kN) (kN) (mm) 
8d box nail (2.87 mm dia.) and 9.5 mm OSB 

Single(a) 0.85 0.035 -0.049 1.40 0.015 0.801 0.187 12.19 0.8 1.1 
Double 1.71 0.035 -0.0392 1.40 0.015 1.601 0.187 9.75 0.8 1.1 

10d common nail (3.76 mm dia.) and 11.9 mm OSB 
Single(b) 1.55 0.0289 -0.0268 1.04 0.0094 0.979 0.133 8.64 0.73 1.4 
Double 3.11 0.0289 -0.0214 1.04 0.0094 1.957 0.133 6.91 0.73 1.4 

#6 bugle head dry wall screw (3.61 mm dia. × 31.75 mm long) and 12.7 mm GWB 
Single(c) 2.63 0.018 -0.015 1.1 0.002 0.423 0.044 3.56 0.8 1.1 

(a) Based on the nail test results for nominal 51 mm (2 in.) thick framing member attached to 9.5 mm (3/8 in.) thick OSB 
using 8d box gun nails (Folz 2001). 

(b) Based on the cyclic and monotonic nail test results for nominal 51 mm (2 in.) thick Hem Fir stud attached to 11.9 mm 
(15/32”) thick OSB using 10d common nail (Coyne  2007). 

(c) The connector parameters were estimated by matching the M-CASHEW model backbone responses to the actual GWB-
only wall test results obtained from the CUREE Task 1.3.1 Test Group 12 (Gatto and Uang 2001) and CUREE Task 1.4.4 
Test Group 19 (Pardoen et al. 2003). 
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Figure 3-4 shows a 2.44 m × 2.44 m (8 ft. × 8 ft.) midply shear wall (test M47-01) 

constructed with nominal 51 mm (2 in.) thick Spruce Pine Fir studs spaced at 610 mm (24 in.) 

on-center. Sheathing nails were spaced at 102 mm (4 in.) on-center along the panel edges and 

203 mm (8 in.) along the interior studs. Power-driven nails, 3 mm (0.118 in.) in diameter and 82 

mm (3.23 in.) in length, were used. Since connector data was not available for the actual power-

driven nails used to construct the midply test specimen, the parameters of the 8d box nail (having 

similar diameter) tested in single-shear were used to model the test wall. To account for the 

double-shear effects, the backbone parameters of the nail in single-shear were modified by 

multiplying Ko and Fo parameters by 2, and multiplying Δu and r1 parameters by 0.8 (Table 3-1). 

This assumption is validated by comparing the hysteretic loops predicted by M-CASHEW with 

those from the actual midply wall test (Figure 3-4). Using the same approach, the parameters for 

the 10d common nail in double-shear were estimated and used to generate the midply backbone 

parameters used in the displacement-based design of the Capstone Building. 
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Figure 3-4: Model-predicted and test hysteretic loops of midply wall. 

 

For the gypsum-to-wood framing connection (dry wall screw), a set of five backbone 

parameters (Ko, Fo, r1, r2 and  Δ) were determined such that the model predicted backbone curve 

matched the experimental results from the monotonic pushover test of two 2.44 m × 2.44 m (8ft 

× 8ft) shear walls sheathed with 12 mm (1/2 in.) thick GWB on one-side only (Gatto and Uang 

2001) (Figure 3-5). The remaining hysteretic parameters (r3, r4,  α and β) were calibrated based 

on other cyclic response of shear walls sheathed with GWB (McMullin and Merrick 2001). 
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Figure 3-5: Experimental monotonic curves and model predicted backbone curve of 2.44 m × 
2.44 m shear wall with 12 mm thick gypsum wallboard.  

3.2 Shear Wall Backbone Database 

Using the single- and double-shear 10d nail parameters presented in Table 3-1, the 

nonlinear shear spring elements of standard and midply shear walls were constructed using the 

M-CASHEW program. Similarly, the shear spring elements for the GWB walls were constructed 

using the single-shear dry wall screw parameters listed in Table 3-1. These shear spring elements 

were used to generate the displacement-based shear wall design table / database. The shear wall 

database contains the backbone parameters for 2.74 m (9 ft) and 2.44 m (8 ft) tall standard and 

midply shear walls with field nail spacing of 305 mm (12 in.) and edge nail spacings of 51, 76, 

102 and 152 mm (2, 3, 4, and 6 in.) are shown in Table 3-2. The shear wall database can also be 
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presented in graphical format (e.g., Figure 3-6). Also shown in Table 3-2 are the backbone 

parameters for walls sheathed with only 12.7 mm (1/2 in.) thick GWB (i.e., no structural 

sheathing) connected by 31.75 mm (1.25 in.) long #6 bugle head drywall screws at 406 mm (16 

in.) on-center. The backbone curve for a wall sheathed with OSB on one side and drywall on the 

opposite side can be approximated by summing the OSB and GWB backbone curves. This 

modeling approach has been used by others (White and Ventura 2006; Folz and Filiatrault 

2001b; Kim and Rosowsky 2005). The complete shear wall database for 2.44 m (8 ft) and 2.74 m 

(9 ft) tall walls can be found in Appendix B. 

 

Table 3-2: Displacement-based shear wall design table for unit wall width (per m). 
Wall 

Height 
(m) 

Wall Type/ 
Panel Layer 

Edge 
Nail 

Spacing   
(mm) 

Ko 
(kN/mm) 

 Backbone Force at Different Drift Levels 
(kN) Fu 

(kN) 0.5% 1.0% 2.0% 3.0% 4.0% 

2.74 

Standard(a) 
 

51 2.269 31.68 19.42 26.68 31.6 27.36 22.92 
76 1.861 21.37 14.41 18.75 21.22 18.05 14.88 

102 1.586 16.40 11.49 14.53 16.13 13.69 11.24 
152 1.138 11.20 8.12 10.13 11.01 9.44 7.87 

Midply(b) 
 

51 2.890 61.53 29.82 46.39 61.52 53.09 44.66 
76 2.514 41.81 23.83 34.75 40.95 35.5 30.05 

102 2.208 31.83 19.76 27.69 30.79 26.77 22.75 
152 1.813 21.70 14.85 19.69 20.93 18.27 15.60 

GWB(c) 406 0.743 2.03 1.95 1.85 1.37 0.88 0.39 

2.44 

Standard(a) 
 

51 2.432 32.2 19.15 26.82 32.05 28.13 23.82 
76 2.176 21.94 14.8 19.17 21.87 18.7 15.52 

102 1.740 16.75 11.64 14.91 16.58 14.18 11.79 
152 1.356 11.41 8.34 10.3 11.27 9.65 8.03 

Midply(b) 
 

51 2.971 63.47 28.28 45.33 62.69 55.8 47.52 
76 2.633 42.67 22.94 34.33 41.95 36.58 31.21 

102 2.396 32.26 19.42 27.56 31.5 27.54 23.57 
152 1.988 22.11 14.79 19.87 21.38 18.76 16.14 

GWB(c) 406 1.231 2.11 2.04 1.88 1.30 0.73 0.16 
(a) Standard wall model is built with 11.9 mm thick OSB connected to framing members by 10d common 

nails (3.76 mm dia.) in single-shear. 
(b) Midply wall model is built with 11.9 mm thick OSB connected to framing members by 10d common nails 

(3.76mm dia.) in double-shear 
(c) Gypsum wall board model is built with 12.7 mm thick GWB connected to framing members by #6 bugle 

head drywall screws (3.61 mm dia.) in single-shear. 
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Figure 3-6: Shear wall backbone and Ks/Ko curves for 2.44m (8 ft) tall (a) standard and (b) 
midply walls built with 10d common nails and 11.9 mm OSB. 
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3.3 Hysteretic Damping Model for Wood Shear Walls 

Hysteretic damping, ξhyst, in the wood shear wall can be estimated using the following 

equation: 

 2

1 1
4 2

loop loop
hyst

So s t

E E
E K

ζ
π π

= =
Δ

 (3) 

where loopE  is the energy dissipated by the actual nonlinear shear wall in one complete cycle and 

SoE  is the strain energy of the linear-elastic system at the target displacement, tΔ  and secant 

stiffness, Ks, determined at tΔ . Figure 3-7 shows the determination of hysteretic damping for the 

APA shear wall test designated 2004-14 8dcom (Martin 2004) at a target displacement of 56.8 

mm.  

 
Figure 3-7: Determination of hysteretic damping of wood shear wall. 

The actual test hysteretic loops were first fitted to the 10-parameter modified Stewart 

model. Next, the fitted wall parameters were used to generate nonlinear hysteretic loops at 

different target displacements and the hysteretic damping values were calculated using equation 

2.44 m x 2.44 m Wall 
8d common nails (3.33 mm dia.) 
@ 102mm/152mm 
DF studs @ 610 mm o.c. 
11.1 mm OSB  
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(3). Using the same approach, hysteretic damping values for standard and midply shear walls 

tested by different laboratories (Martin and Skaggs 2003; Varoglu et al. 2007; Pardoen et al. 

2003) were calculated and plotted in Figure 3-8. The results show that the hysteretic damping 

can be characterized using the secant-to-initial stiffness ratio (Ko/Ks) : 

 
1.38

0.32hyst
o
sK

Keζ
−

=  (4) 

Once a target/design wall drift limit has been selected, the secant-to-initial stiffness ratio can be 

calculated (or interpolated) using the displacement-based shear wall design database (Table 3-2) 

and the resulting equivalent hysteretic damping ratio can be computed using equation (4). Other 

studies of hysteretic damping based on the results of cyclic pushover analyses of woodframe 

structures suggested an equivalent viscous damping ratio of about 18% of critical when the 

lateral stiffness of the structure degrades to 33% of its initial stiffness (Filiatrault et al. 2003). At 

Ks/Ko of 0.33, the damping model proposed in this study yields an equivalent hysteretic damping 

of 20% (Figure 3-8) which is very close to the value suggested by Filiatrault et al. (2003).  

Figure 3-8: Equivalent hysteretic damping model. 
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4. SIMPLIFIED DIRECT DISPLACEMENT DESIGN (DDD) PROCEDURE 

The DDD procedure used to design the shear walls of the six-story NEESWood Capstone 

Building is a simplified version of the original DDD procedure (Pang and Rosowsky 2009). The 

original DDD procedure was intended to meet specified drift limits with a 50% non-exceedance 

probability (median) and inter-story drifts are estimated using a normalized modal analysis 

which includes contributions from all vibration modes. The main advantages of the new 

simplified DDD procedure are that (1) it does not require modal analysis and thus allows the 

design to be completed using a spreadsheet, and (2) it allows consideration of drift limit non-
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exceedance probabilities other than 50%. Table 4-1 summarizes the information used to calculate 

the design forces for Performance Level 3. These design forces were obtained using the 

simplified DDD procedure, which is described in the following sections. The complete details of 

the DDD calculations for Performance Levels 1 to 3 are given in Appendix C.  

Table 4-1: Summary of DDD calculations for design Level 3. 

Story hs 
(m) 

ho    
(m) 

θit   
(%) 

W   
(kN) 

∆it    
(mm) 

∆o    
(mm)

W*∆o    
(kN-
mm) 

Cv βv 
Cv*ho   
(m) 

W*∆o
2

  

x10
3    

(kN-
mm2) 

Vs       
(kN) 

Ks       
(kN/mm) 

F       
(kN) 

F*ho    
(kN-m)

1 3.05 3.05 2.13 502 65 65 32554 0.059 1.000 0.18 2111 2185 33.68 129 393.9 
2 2.74 5.79 2.13 474 58 123 58401 0.106 0.941 0.61 7196 2055 35.21 232 1342.6
3 2.74 8.53 2.13 474 58 182 86064 0.156 0.835 1.33 15629 1823 31.24 342 2915.8
4 2.74 11.28 2.13 474 58 240 113727 0.207 0.678 2.33 27290 1482 25.39 451 5091.4
5 2.74 14.02 2.13 505 58 298 150597 0.274 0.472 3.84 44928 1030 17.65 598 8382.0
6 2.74 16.76 2.13 305 58 357 108965 0.198 0.198 3.32 38868 433 7.41 433 7251.4
Σ   2734 ∆eff = 247 550308 1.000 heff = 11.62 136022     2185 25377.1

 

Step 1: Determine adjustment factor for specified non-exceedance (NE) probability at the 
design drift limit. 

The inter-story drift limit for seismic hazard Level 3 (MCE) is 4% with an 80% non-

exceedance probability. All other hazard levels were associated with 50% NE probabilities (i.e., 

median values). The design spectrum specified in both ASCE/SEI-7 (2005) and ASCE/SEI-41 

(2006) represents the median demand for the specified hazard level. In order to design for a 

target non-exceedance probability of inter-story drift greater than the median, the design spectral 

value must be adjusted upward to reflect the increase in the design non-exceedance probability. 

The design spectral acceleration adjusted for NE probability, XS , is equal to the product of the 

code-specified spectral acceleration value (median) and the adjustment factor, CNE: 

 X NE XS C S=  (5) 

The factor CNE is assumed to be lognormally distributed with a median value of 1.0 (assuming 

that the code specified median value is unbiased) and a logarithmic standard deviation, βR, which 
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accounts for the uncertainty of the ground motions, βEQ, as well as the uncertainty associated 

with the design procedure (i.e., simplified DDD procedure), βDS : 

 2 2
R EQ DSβ β β= +  (6) 

Figure 4-1 shows the response spectra of the ATC-63 far-field ground motion ensemble scaled to 

the MCE level (Level 3) and the logarithmic standard deviation of the response spectra, βEQ. The 

uncertainty due to the ground motion varies from about 0.35 to 0.5. Following the ATC-63 

study, a fixed value of 0.4 was assumed for the βEQ. The simplified DDD procedure does not 

explicitly account for a number of factors that might affect the actual inter-story drift response 

such as torsion, higher mode effects, anchor tiedown system (continuous rod) elongation and 

compression of the chord members, or flexible diaphragms. The uncertainties introduced into the 

analysis arising from these assumptions/simplifications, βDS, was assumed to be 0.6 and the total 

uncertainty βR, rounded up to the nearest 0.05, was determined to be 0.75 using equation (6). 

 
Figure 4-1: ATC-63 far-field ground motion ensemble scaled to the Level 3 (MCE) design 
spectrum. 
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The adjustment factor for the NE probability can be determined using the inverse of the 

lognormal cumulative distribution function (CDF) with median value of 1.0 (logarithmic median 

= 0). 

 1 1exp[ ( ) ln(1)] exp[ ( ) ]NE t R t RC NE NEβ β− −= Φ + = Φ  (7) 

where Φ-1(.) is the inverse CDF of the standard normal distribution.  Figure 4-2 shows two CDFs 

with logarithmic standard deviations of 0.40 and 0.75. The CDF with logarithmic standard 

deviation, Rβ , of 0.40 includes only the ground motion uncertainty while the CDF with Rβ  of 

0.75 includes both the ground motion and the design procedure uncertainties. The CDF with the 

higher logarithmic standard deviation (i.e., 0.75) has a greater dispersion and it produces a larger 

adjustment factor, CNE. Using equation (7), the CNE factor for the Capstone Building Level 3 

design with 80% non-exceedance probability was determined to be 1.88 (Figure 4-2).  
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Figure 4-2: Adjustment factor for non-exceedance probability. 

 

Step 2: Select a design inter-story drift. 

The proposed NEESWood drift limit for seismic hazard Level 3 is 4%. The design inter-

story drift adjusted for NE probability was 4%/CNE = 2.13%, an equivalent 50% NE drift limit, 

 θeq50. Figure 4-3 shows the target peak inter-story drift curve for seismic hazard Level 3. Note 

that the median of the new peak inter-story drift distribution curve is equal to θeq50. The 

equivalent 50% NE inter-story drift limit was used in the displacement-based design of the six-
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Figure 4-3: Target peak inter-story drift distribution curve. 

 
Step 3: Calculate the vertical distribution factors for base shear, vC , as: 
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 (8) 

Where subscript i is the floor number, W is the lumped seismic weight of the floor or the roof 

diaphragm and oΔ is the target floor displacement relative to the ground (Figure 4-4). The 

seismic weights listed in Table 4-1 were estimated based on the tributary area of the shear walls 

(i.e., half of the wall weight was assigned to the floor above and half to the floor below). 
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Figure 4-4: Example 6-story building and substitute structure for DDD procedure. 

Step 4: Calculate the effective height, effh , for the substitute structure modeled as a single-
degree-of-freedom (SDOF)  system.  

The effective height is located at the centroid of the assumed lateral force distribution and 

is calculated as:   
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veff
iv
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oii
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C h
h C hC= =

=

∑
∑∑

 (9) 

where βvi is the story shear factor computed as the sum of the vertical distribution factors, cvi,  on 

and above the ith floor and ho is the floor height with respect to the ground. For typical multi-

story buildings with approximately equal story heights and seismic weights at each story, the 

ratio of effective-to-roof height generally is about 0.7.  The effective height for the six-story 

Capstone Building was determined to be 11.62 m (see Table 4-1), or 0.69 times the roof height 

(16.76 m).  
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Step 5: Use interpolation to obtain the target displacement at the effective height, effΔ ,  or 
target drift at effective height, effθ .  

The effective height, 11.62 m (38.11 ft), for the NEESWood Capstone Building is located 

between levels 4 and 5 (Table 4-1). Using interpolation, the effective displacement with respect 

to the ground level is 247 mm (9.73 inches).  

Step 6: Calculate the effective seismic weight, effW , of the substitute structure: 

 
( )2

2eff

i oi
i

i oi
i

W
W

W

Δ
=

Δ

∑
∑

 (10) 

The i oi
i

W Δ∑  and 2
i oi

i
W Δ∑  terms are shown in last row of Table 4-1. The effective seismic 

weight for the six-story NEESWood Capstone Building is (550308)2/(136022×103) = 2226 kN 

(500.5 kip). For most mid-rise buildings of regular plan, the effective seismic weight usually is 

about 80% of the total seismic weight. For the Capstone Building, the effective seismic weight is 

81% of its total weight. 

Step 7: Determine the damping reduction factor, Bζ , per ASCE/SEI-41 (2006) section 
1.6.1.5 as: 
 4

5.6 ln(100 )eff

Bζ ζ
=

−
 (11) 

where effζ is the effective viscous damping as a fraction of the critical damping, computed as the 

sum of the hysteretic damping of the shear walls, hystζ  (see equation (4)), and the intrinsic 

damping, intξ , 

 inteff hystζ ζ ζ= +  (12) 

In the design of the six-story NEESWood Capstone Building, 5% intrinsic damping was 

assumed. The intrinsic damping accounts for the damping contributions of building components 

other than the shear walls (e.g., gypsum partition walls and floor diaphragms). At the equivalent 
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50% NE inter-story drift limit (2.13%), and assuming most walls are built with a 51 mm (2 in.) 

or 76 mm (3 in.) perimeter nailing, the Ks/Ko ratio is about 0.30 (from Figure 3-6, Table 3-2 or ). 

Substituting Ks/Ko of 0.30 into the equivalent hysteretic damping equation (4) gives an estimated 

hysteretic damping of 0.21. The total equivalent viscous damping, including the intrinsic 

damping, therefore is 0.26. Using equation (11), the damping reduction factor therefore is 1.71.  

Step 8. Determine the design base shear coefficient, cC , using the capacity spectrum 
approach as: 

 2

1
2

min

4

NE XS

NE X

eff

c

C S
B

C
C Sg

B

ζ

ζπ

⎧
⎪
⎪= ⎨

⎛ ⎞⎪ ⎜ ⎟⎪ ⎜ ⎟Δ ⎝ ⎠⎩

 (13) 

Equation (13) is the solution for the intersection between the demand and the capacity spectra 

(Shama and Mander 2003) (Figure 4-5). For seismic hazard Level 3, the spectral design values 

for short-period, SMS, and 1-second period, SM1, are 0.9 and 1.5 g, respectively (Table 2-2). The 

first term of equation (13) is for a structure having a secant period (at the design displacement, 

Δeff) less than or equal to the short-period, Ts, defined in Section 11.4 of ASCE/SEI-7 (2005). For 

most mid-rise buildings, where the secant periods are generally greater than Ts but less than TL, 

the second term usually governs the design. The long-period transition period, TL, can be 

obtained from ASCE/SEI-7 (2005). Using equation (13), the base shear coefficient for seismic 

hazard level 3 therefore is 0.981.   
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Figure 4-5: Determination of the design base shear coefficient using capacity spectrum approach. 

Step 9. Calculate design forces 

Once the base shear coefficient is obtained, the base shear, lateral forces, story shears, 

overturning moments and the required story secant stiffnesses are calculated as:  

Base shear, bV  
 b effcV C W=  (14) 

Equivalent static lateral forces, iF  
 

fi ii efv c v bF C C W C V= =  (15) 
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= =∑  (16) 
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ioM  
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N
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s
oM F h h

=
= −∑  (17) 

where Ns is the total number of stories (i.e., six for the Capstone Building). 
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 eff c eff
eff

eff eff eff

c C WC W
K

hθ
= =

Δ
 (18) 

Required secant stiffness for each story, 

 Si
i

i
s

it

V
K =

Δ
 (19) 

From Table 4-1, the design base shear and overturning moment are approximately 2185 kN (491 

kips) and 25377 kN-m (18718 kip-ft), respectively. The required effective secant stiffness of the 

building at the target drift limit, computed using equation (18), is 8.84 kN/mm (50.47 kip/in). 

The effective secant period, computed as 2π/√(g×Keff/Weff ), therefore is 1.01 s. Recall that the 

secant-to-initial stiffness ratio of 0.30 was assumed when determining the hysteretic damping, 

the minimum initial design stiffness therefore is Keff/0.30 = 29.46 kN/mm (168.23 kip/in) and the 

associated initial period is 0.55 second. 

Step 10. Select shear walls to meet the design story shears 

The design points, or expected design inter-story drift and required story shear pairs (θit 

and Vs), are shown in Table 4-1. Shear wall nailing schedules were selected from the shear wall 

database (Table 3-2 or Figure 3-6). Shear wall backbone forces were taken from the “2% drift” 

column since the equivalent 50% NE inter-story drift was determined to be 2.13% for seismic 

hazard Level 3. The design story shears were distributed to wall lines according to their tributary 

areas. Direct summation of the equivalent stiffness of shear wall segments was used to generate 

the story backbone curves. Note that this assumes no torsion and that all shear walls at the same 

floor level experience the same drift. The nailing patterns for the shear walls for each floor were 

determined such that the story backbone curve was above the design points (i.e., design NE 50% 

drift and required story shear pairs) associated with that floor (see Figure 4-6). The required story 

shears, determined using equation (16), for Levels 1 to 3 are listed in Table 4-2 (see Appendix C 
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for details). The complete shear wall nail schedules for stories 1 to 6 are provided in Appendix 

D. In the 1st story, most of the standard shear walls are sheathed with two layers of OSB (one 

layer on each side of the wall) attached using nails with either a 51 mm (2 in.) or 76 mm (3 in.) 

edge spacing (see Appendix D). At wall line B (parallel to the longitudinal direction) in the 1st 

story, double-layer midply shear walls with 76 mm (3 in.) edge nail spacing were used.  

 

Table 4-2: Design 50% NE drift limits and required story shears for Performance Levels 1 to 3. 

Performance Level Level 1 Level 2 Level 3 

Seismic Hazard 50%/50yr 10%/50yr 2%/50yr 

Story 
Drift 
Limit 
(%) 

Vs        
(kN) 

Drift 
Limit 
(%) 

Vs        
(kN) 

Drift 
Limit 
(%) 

Vs        
(kN) 

1 1.00 158.2 2.00 349.1 2.13 2184.6 
2 1.00 148.9 2.00 328.5 2.13 2055.3 
3 1.00 132.1 2.00 291.4 2.13 1823.5 
4 1.00 107.3 2.00 236.8 2.13 1481.8 
5 1.00 74.6 2.00 164.7 2.13 1030.4 
6 1.00 31.3 2.00 69.1 2.13 432.6 
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Figure 4-6: Design points for seismic hazard Level 3 and inter-story backbone curves (a) 
transverse direction and (b) longitudinal direction. 
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4.1 Comparison between Force-based Design (FBD) and Displacement-
based Design (DDD) 

In force-based design (FBD) procedure, the design base shear equation in the current 

edition of International Building Code (ICC 2006) is: 

 ( )a a E
b

S T I W
V

R
=  (20) 

where W is the total seismic weight and IE is the occupancy important factor. For the six-story 

Capstone Building, the total seismic weight was estimated to be 2734 kN (615 kip) and IE = 1 

was assumed. R is the response modification factor which is equal to 6.5 for light-frame wood 

shear wall system. Sa(Ta) is the design spectral acceleration at the approximate fundamental 

period of the building, Ta. The approximate fundamental period of the six-story building 

determined using the empirical equation provided in the ASCE/SEI 7-05 (ASCE 2005) is 0.40s. 

 x
a t nT C h=  (21) 

where hn is the roof height of the structure (55 ft or 16.76 m) and Ct is the approximate period 

parameter which is equal to 0.0488 or 0.02 when the building height is expressed in SI or US 

customary units, respectively. For woodframe structures, the exponent x is equal to 0.75. Note 

that the design hazard level for the FBD procedure is the same as the NEESWood seismic hazard 

Level 2. Therefore, the design spectral acceleration, Sa(Ta=0.40s), is equal to 1.0 g (Figure 2-1).  

The design forces, determined using the FBD procedure, are summarized in Table 4-3. 

The FBD base shear and overturning moment are 421 kN (95 kip) and 4886 m-kN (3604 ft-kip), 

respectively. According to the FBD procedure, the design base shear-to-total building weight 

ratio, V/W, is 0.154 (Table 4-4). Note that the seismic hazard associated with the FBD procedure 

is the same as the NEESWood seismic hazard Level 2. The DDD V/W ratio for seismic hazard 

Level 2 is 0.128 which is slightly lower than the FBD V/W ratio. However, Figure 4-6 shows that 
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the controlling design level is seismic hazard Level 3. In order to satisfy the design requirement 

for Performance Level 3 (i.e., 4% drift limit with 80% NE probability), the six-story Capstone 

Building must have a maximum base shear capacity of at least 79.9% of the total building weight. 

Note that the FBD procedure considers only one design requirement/objective. Furthermore, the 

FBD base shear ratio is computed as 1/R which means the V/W ratio is a constant value for all 

buildings with light-frame wood shear wall systems. On the other hand, the DDD V/W ratios are 

function of the design requirements (i.e., seismic hazard level, drift limit and target NE 

probability). This means that, using the DDD procedure, structures can be designed to meet 

owners’ specifications or needs that are beyond the current code requirement. 

Table 4-3: Design forces for force-based procedure. 

Story W     
(kN) 

ho      
(m) 

W*ho    
(kN-m) 

W*ho/   
Σ(W*ho)

F        
(kN) 

Vs        
(kN) 

F*ho      
(m-kN) kN/m2 F/W 

1 502 3.05 1530 0.059 24.88 420.6 75.8 1.910 0.050 
2 474 5.79 2745 0.106 44.64 395.7 258.5 1.797 0.094 
3 474 8.53 4045 0.156 65.78 351.1 561.4 1.595 0.139 
4 474 11.28 5345 0.207 86.93 285.3 980.3 1.296 0.183 
5 505 14.02 7078 0.274 115.11 198.4 1613.9 0.901 0.228 
6 305 16.76 5121 0.198 83.29 83.3 1396.2 0.378 0.273 
∑ 2734   25863 1.000 420.62   4886.2     

(a) Approximate Fundamental Period  = 0.40 s       
(b) Base Shear/Total Weight =   0.154         
(a) Ta = Cthn

x= 0.0488(16.76)0.75 = 0.404s 
(b) R = 6.5 

   
Table 4-4: Comparison between FBD and DDD base shears and overturning moments. 

 FBD DDD 
Performance Level Level 2 Level 1 Level 2 Level 3 
Seismic Hazard (b)10%/50yr 50%/50yr 10%/50yr 2%/50yr 
Base Shear (kN) 421.6 158.2 349.1 2184.6 
Base Shear/Total Building Weight(a) 0.154 0.058 0.128 0.799 
Base Overturning Moment (m-kN) 4976 1838 4056 25382 
(a) Total building weight = 2734 kN (614.7 kip) 
(b) The spectral acceleration values for the FBD are computed as 2/3 of the mapped spectral accelerations at the 

MCE level (2%/50yr). 
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5. NUMERICAL MODELS FOR THE SIX-STORY CAPSTONE BUILDING 

5.1 Pseudo-3D / 2D Model for Nonlinear Time-history Analysis (NLTHA) 

A numerical model for the Capstone Building was constructed using the M-SAWS 

program, a Matlab version of the SAWS (Seismic Analysis of Woodframe Structures) program, 

which considers only the pure-shear deformation of the shear walls (Folz and Filiatrault, 2001b). 

In the M-SAWS model, rigid diaphragms with one rotational and two in-plane translational 

degrees of freedom are assumed for each floor and roof diaphragm (Figure 5-1). Each shear wall 
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was modeled as a zero-height nonlinear SDOF spring using the modified Stewart hysteretic 

model in the M-CASHEW program (see  

Figure 3-3). Since the height of the shear wall was not explicitly considered, the M-

SAWS model is herein referred to as the pseudo-3D or 2D model. 

The load-displacement responses for 2.44 m (8 ft) wide standard and midply shear walls 

built with different nail spacings were predicted using the M-CASHEW and a system 

identification procedure was used to obtain a set of ten parameters to describe the global 

hysteretic behavior of each shear wall. The values for parameters Ko, Fo, and Fi were then 

divided by the width of the shear wall (i.e. 2.44 m or 8 ft) to obtain the unit-width hysteretic 

parameters (see Appendix E). In the M-SAWS model, only the full-height shear wall segments 

were considered and the sheathing panel above and below the windows and door openings were 

ignored. For each full-height shear wall in the Capstone Building, the hysteretic parameters Ko, 

Fo, and Fi were adjusted for the length of the wall pier while other parameters (r1, r2, r3, r4, Δ, α 

and β) were unchanged. All perimeter shear walls were sheathed with one layer of GWB on one 

side of the wall only while both sides of the interior shear walls were sheathed with GWBs.  

The damping matrix used in the NLTHA was determined using the Rayleigh damping 

model with equal damping ratios assigned to the 1st and 2nd modes.  Since the hysteretic damping 

is accounted for in the nonlinear hysteresis model itself, low level of damping values (2% and 

5% of critical dampings) were used in the nonlinear time-history analysis (NLTHA). Assuming a 

2% damping in the NLTHA is believed to be a conservative estimate for the viscous damping of 

the test building since the lateral stiffness of the structural panels above and below the door and 

window openings were not explicitly considered in the numerical model. On the other hand, 

assigning a 5% viscous damping in the NLTHA is consistent with the 5% intrinsic damping 
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value assumed in the DDD procedure (see equation (12)). The 2% and 5% damping values 

approximately bound the actual viscous damping of the test building. 

 

Figure 5-1: M-SAWS model for the six-story NEESWood Capstone Building. 

5.2 3D Model for Nonlinear Time-history Analysis (NLTHA) 

Although light-frame wood buildings generally are treated as lateral shear-dominant 

systems in design, they can also be affected by vertical excitation and overturning moment which 

induces tension forces in the shear wall hold-down system and can cause cumulative elongation 

of the hold-down rods, especially in buildings exceeding three stories. Pei and van de Lindt 

(2009) developed a simplified model that is capable of incorporating the effect of overturning 

and uplift as well as the vertical ground motion excitation in the seismic responses of woodframe 

structures. The proposed model for wood structures with vertical/uplift effects is quite different 

Diaphragm 

Nonlinear Spring 
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from the shear-only model in that the model assigns six degrees-of-freedom at each story 

diaphragm and includes the stiffness of the hold-down system and the vertical stiffness of shear 

walls provided by the vertical framing members. The diaphragm is allowed to move and rotate 

out of the horizontal plane, adding another dimension to the dynamic analysis to make it three-

dimensional (3D). Figure 5-2 illustrates the kinematics of the 3D diaphragm model. It is also 

worth pointing out that the lateral displacement of higher stories will be effected by the out-of-

plane rotation (rocking) of lower floors and this effect is cumulative.  

 
Figure 5-2: Kinematics of six degrees-of-freedom diaphragm model. 

 

The same nonlinear hysteretic shear springs used in the 2D model also were used to 

model the shear walls in the 3D model. In addition to the nonlinear horizontal shear spring, an 

un-symmetrical linear vertical spring was used to model the uplift effect of the hold-downs/tie-

down rods and the compression of the stud packs (Figure 5-3). The 3D model has been 

implemented into the SAPWood program, developed as part of the NEESWood project. The 

SAPWood program also was used to perform the 3D NLTHA to verify the applicability of the 

DDD procedure.  
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Figure 5-3: SAPWood model for the six-story NEESWood Capstone Building. 

5.3 Static Pushover Analyses 

Monotonic pushover analyses were performed using the M-SAWS model. Figure 6-3 

shows the monotonic pushover curves obtained by applying an inverted triangular lateral load 

parallel to the transverse (x-axis) and the longitudinal (y-axis) of the test building. The maximum 

base shears in the transverse and longitudinal directions are 2320 kN (521.6 kips) and 2303 kN 

(517.5 kips), respectively, which occurs at a roof drift ratio of 1.27% and 1.18%, respectively 

(roof height is 16.76 m). The model predicted base shear-to-building weight ratios at the peak of 
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the pushover curves, V/W are approximately 0.84. It should be noted that the static pushover 

curves include only the nonlinear restoring force of the shear walls. Therefore, the maximum 

“dynamic” base shears based on earthquake/shake-table tests are expected to be higher than that 

predicted by the pushover analyses. For comparison purposes, the design base shear values for 

the FBD and DDD are also labeled in Figure 6-3. The maximum pushover base shears in both 

directions are higher than the design base shears thus confirmed that the as-designed six-story 

Capstone Building has adequate base shear capacity for performance Levels 1 to 3. 

 

Figure 5-4: Pushover curves of the as-designed six-story Capstone Building (M-SAWS model) 
and DDD vs. FBD base shear-to-total building weight ratios. 
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5.4 Modal Analyses 

Modal analyses were performed to obtain the periods and mode shapes of the Capstone 

Building (Appendix F). The fundamental periods calculated using the initial stiffness of the M-

SAWS and SAPWood models were 0.375s and 0.398s, respectively (Table 5-1). Including the 

vertical effects in the SAPWood model results in slightly higher initial periods than those 

obtained from the 2D M-SAWS model. The models predicted fundamental periods are very close 

to the approximate fundamental period specified by the design code (0.40s).  

Table 5-1: First three periods of the M-SAWS and SAPWood models. 
 

 

 

 

The model predicted periods listed in Table 5-1 include the stiffness contribution of GWBs 

attached to the shear walls. However, full-scale wall tests show that the stiffness contribution of 

GWB diminishes quickly at very low drift level (~0.5%, see Figure 3-5). To obtain an upper 

bound estimate of the fundamental period, modal analysis also was performed using the global 

tangent stiffness of the M-SAWS model at a very low drift level (0.15% roof drift or 2.54 cm (1 

in) roof displacement). Specifically, pushover analysis was first performed at each of the 

horizontal directions to achieve a 0.15% drift at the roof level. Then, modal analysis was 

performed using the global tangent stiffness of the lightly “damaged” building. The first three 

mode shapes and periods of the Capstone Building based on the tangent stiffness at 0.15% drift 

are shown in  

Figure 5-5. The fundamental period at 0.15% drift is about 0.54s which corresponds to a 

primary translational mode shape drift in the Y (longitudinal) direction. The second mode is a 

Model M-SAWS SAPWood 

Mode Initial Stiffness Tangent Stiffness  
at 0.15% Drift Initial Stiffness 

1 
2 
3 

0.375 
0.359 
0.320 

0.537 
0.505 
0.443 

0.398 
0.391 
0.321 
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pure translational mode in the X (transverse) direction with negligible rotation. Mode 3 is a pure 

rotational or torsional mode which causes the building to twist around the center of gravity of the 

floor diaphragms. The fundamental period at 0.15% drift (0.54s) is relatively close to the upper 

limit of the approximate period specified by the design code (0.57s, see Appendix G). 

 
 

 
 
Figure 5-5: First three mode shapes of the M-SAWS model based on tangent stiffness at 0.15% 
drift. 
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median response spectrum of the normalized ground motion ensemble was scaled using a single 

scaling factor to match the design 5%-damped spectral acceleration at the upper limit of the code 

prescribed fundamental period of the building (ATC 2008).  

According to ASCE-07 (2005), the upper limit of the approximate fundamental period, Tu, 

of the Capstone Building is 0.57s. The median spectral acceleration, Sa, of the normalized ATC-

63 far field ground motion suite at Tu = 0.57s is 0.655 g (Figure 5-6). Therefore, the ensemble 

scaling factor for seismic hazard Level 3 (2%/50yr or MCE) is 1.50g/0.655g = 2.290, where 1.50 

g is the code specified spectral acceleration value for the MCE level. The scale factors for 

adjusting the 22 bi-axial ATC-63 far-field ground motions to match the design seismic hazard 

Levels 1 to 3 are given in Appendix G.  

The ground motions were scaled and the building was analyzed at each of the three 

performance levels. The bi-axial ground motions also were rotated by 90-degrees and thus, at 

each performance level, the building was analyzed twice for each of the 22 record pairs for a 

total of 44 analyses. Similarly, the building was also analyzed using the six pairs of near-fault 

ground motions rotated at 0 and 90 degrees for seismic hazard Level 4 for a total of 12 analyses. 

These ground motion ensembles were used in both the 2D and 3D NLTHA to obtain the 

maximum inter-story drifts of the designed structure at the four design ground motion intensity 

levels.  
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Figure 5-6: Example scaling of the ATC-63 far-field ground motion ensemble. 

5.6 Expected Peak Inter-story Drift Distributions 

The peak inter-story drifts obtained from the 2D NLTHA for seismic intensity Level 3 

(2%/50yr or MCE) are shown in Figure 5-7. Each point represents the maximum inter-story drift 

recorded from a NLTHA for a particular bi-axial ground motion record rotated at either 0 or 90 

degrees. The sample cumulative distribution function (CDF) was constructed from the rank-

ordered peak inter-story drifts (dots in Figure 5-7) which were also fitted to a lognormal 

distribution function given by : 

 ln( )( )NEP θ λθ
ξ

⎛ ⎞−= Φ ⎜ ⎟
⎝ ⎠

 (22) 

where Φ(.) is the CDF of the standard normal distribution, λ is the logarithmic median, and ξ  is 

the logarithmic standard deviation. The term PNE(θ) defines the non-exceedance probability at a 

given inter-story drift, θ.  
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Figure 5-7: Lognormal distribution fit of the peak inter-story drifts for Seismic Hazard Level 3. 

The peak inter-story drift distributions based on results from the 3D and 2D NLTHA are 

shown in Figure 5-8 and the corresponding NE probabilities at the design drift limits are 

summarized in Table 5-2. Note that the upper and lower bounds of the peak drift distributions are 

based on the NLTHA results with viscous damping values of 2% and 5%, respectively. For the 

six-story woodframe structure designed in this study, the differences in the inter-story drifts 

between the shear-only (2D) model and the three-dimensional model are not felt to be 

significant. This result is not unexpected because of the aspect ratio (lateral dimension to height 

ratio approximately equal to one) of the building that makes the dynamic behavior shear-

dominant, which is commonly seen in most typical woodframe building floor plans, i.e. multi-

unit residential structures.  

In summary, both the 2D and 3D NLTHA indicate that the Capstone Building designed 

using the simplified DDD procedure satisfies all four design objectives. As stated previously, the 
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peak drift distribution curves with 5% viscous damping are felt to be most representative of the 

actual performance of the test building. As can be seen from the peak drift distribution curves 

with 5% damping (Figure 5-8), the Capstone Building designed using DDD procedure performs 

satisfactorily (i.e., meets performance requirements) at all four hazard levels. The median peak 

drifts at the Levels 1 and 2 were considerably lower than the 1% and 2% drift limits, while the 

median peak drift at the Level 3 was 1.41% with a 97% probability of not exceeding the 4% drift 

limit. At Level 4, the probability of exceeding the 7% drift limit was approximately 13% which 

satisfied the near-fault ground motion performance requirement.  

While the peak drift distribution curves with 5% damping were used to verify the seismic 

performance of the Capstone Building, it should be noted that the design criteria are not tied to 

the 5% equivalent damping value. An appropriate equivalent viscous damping should be 

determined for each specific building based on the amount of damping expected from the non-

structural elements such as the partition walls and exterior cladding. In addition to the NLTHA 

with 5% damping, a more conservative assumption of 2% equivalent viscous damping value also 

was used in the NLTHA to estimate the upper bounds for peak inter-story drifts. The peak drift 

distribution curves with 2% damping show that the performance requirements are met at all 

hazard levels except for Level 3 (Table 5-2). Based on the 2D model with 2% equivalent 

damping, the probability of not exceeding the design drift limit at seismic hazard Level 3 was 

75%, which was slightly lower that the design goal (i.e. 80% NE probability). The uncertainties 

associate with the numerical model and ground motion justify the acceptance of this design since 

the non-exceedance probability of inter-story drift was within few percents of the design goal 

and furthermore it was based on a more conservative damping assumption.  

The drift profiles (relative to the ground) of two selected earthquake records at the MCE 

level (2%/50yr) also are shown in Figure 5-8. It can be seen that the drift profiles are relatively 
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uniform which means the seismic demand was distributed evenly among the stories. In other 

words, the Capstone Building does not have “weak-story”.  

 
Figure 5-8: Peak inter-story drift distributions of the NEESWood Capstone Building. 

 

Table 5-2: Summary of nonlinear time-history analyses of six-story NEESWood Capstone 
Building designed using DDD. 
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6. ATC-63 COLLAPSE MARGIN RATIO 

In addition to considering the four NEESWood performance requirements, monotonic 

pushover and incremental dynamic analyses (IDA) (Vamvatsikos and Cornell 2002) were 

performed to evaluate the collapse margin ratio of the test building using the ATC-63 

methodology (ATC 2008). The ATC-63 methodology was developed for evaluating the collapse 

risk of structures designed using the current code specified force-based procedures under 

Maximum Considered Earthquake (MCE) ground motions. An evaluation of the collapse margin 

ratio using the ATC-63 procedure provides additional perspective on collapse risk of the 
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Capstone Building designed using the DDD procedure. To compute the collapse capacity, IDA 

was performed using the ATC-63 far-field ground motions. The spectral intensity of the ground 

motion causing 50% of the analyses/cases to collapse is 2.57g and the unadjusted collapse 

margin ratio (CMR) is 2.57/1.50 = 1.71 (Figure 6-1). According to the ATC-63 methodology, the 

raw CMR must be adjusted for the spectral shape before the acceptance criterion can be 

determined.  

The spectral shape factor (SSF) is a function of the seismic design category (SDC), 

ductility of the structure which is determined through the pushover curve and the upper limit of 

the code-defined fundamental period of the structure (ATC 2008). The Capstone Building is 

designed for SDC Dmax (Southern California regions) and the code-defined period, determined 

per ASCE/SEI-07 Section 12.8.2, is 0.57 second. Figure 6-3 shows the monotonic pushover 

curve obtained by applying an inverted triangular lateral load parallel to the transverse direction 

(x-axis) of the test building. The maximum base shear in the transverse direction is 2734 kN 

(514.7 kips) and occurs at a roof drift ratio of 1.27% (roof height is 16.76 m). The seismic 

coefficient at the peak of the pushover curve, V/W is 0.849. The ultimate drift (1.54%) is defined 

at the point where the base shear deteriorates to 80% of the maximum value. An idealized 

elastic-plastic curve is determined by defining the initial stiffness using a secant-stiffness line 

that passes through the point where the base shear is at 60% of the maximum. From the elastic-

plastic curve, the “yield” drift is 0.52% and the ductility factor, µc, is computed as 1.54/0.52 = 

2.96. Using Table B-4 in the ATC-63 90% draft report, the SSF is 1.22 (ATC 2008). Therefore, 

the adjusted collapse margin ratio (ACMR), is computed as CMR×SSF = 2.09. While only the 

pushover response in the transverse direction is discussed herein, it should be noted that the 

pushover curve in the longitudinal direction is very similar to that in the transverse direction. 

This is because the inter-story backbone curves of the Capstone Building designed using the 
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DDD procedure are very similar in two horizontal directions (Figure 4-6). Therefore, the 

ACMR’s are approximately the same in both directions (ACMR in the Y-direction is 2.07). 

 

Figure 6-1: Collapse fragility curve of the NEESWood Capstone Building. 
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Figure 6-2: Monotonic Pushover curve (transverse, X-direction) of the NEESWood Capstone 
Building. 
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Figure 6-3: Monotonic Pushover curve (longitudinal, Y-direction) of the NEESWood Capstone 
Building. 
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The acceptable value for the ACMR of an individual system (i.e., < 20% collapse 

probability) depends on the uncertainties of the model and the design procedure. Using the same 

assumptions as the ATC-63 wood building design examples, the uncertainty in ground motion 

records is 0.40, design requirement uncertainty (B-Good) is 0.30, test data quality (B-Good) is 

0.30, and modeling uncertainty (C-Fair) is 0.45. Thus the composite/total uncertainty, βTOT, is 

0.75 (Table 7-2c, ATC 2008). The Capstone Building satisfies the ATC-63 collapse margin 

requirement, since the ACMR of the Capstone Building (2.09) is higher than the acceptable 

ACMR for individual building with βTOT of 0.75 is 1.88 (determined from Table 7-3, ATC 2008).  

Based on the adjusted collapse fragility curve, the collapse probability of the Capstone Building 

at MCE Level is approximately 16% (Figure 6-4).  
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Figure 6-4: Adjusted collapse fragility curve of the 6-story NEESWood Capstone Building. 
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7. SUMMARY AND DISCUSSION 

 A simplified direct displacement design (DDD) procedure for performance-based design 

of multi-story wood buildings is presented. The design procedure can be used to consider drift 

limit non-exceedance probabilities other than 50%. The proposed design procedure is relatively 

simple and the shear wall design process can be performed using a spreadsheet. The simplified 

DDD procedure was used to design the shear walls of the six-story NEESWood Capstone 

Building. To validate the design procedure, two numerical models (2D and 3D models) were 

constructed and nonlinear time-history analyses (NLTHA) were performed using the ATC-63 

far-field ground motions and a set of near-fault ground motions. The results of the NLTHA 
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confirmed that the Capstone Building designed using the simplified DDD procedure satisfies all 

four design performance requirements. Additionally, the results of the NLTHA show that the 

seismic demand was distributed evenly among the stories (uniform drift profiles). Finally, the 

collapse margin ratio of the Capstone Building under MCE ground motions was determined to be 

acceptable per the ATC-63 methodology. 

 In the simplified DDD procedure, an adjustment factor CNE was introduced to design for 

performance requirements associated with non-exceedance probabilities other than the median.  

While it is possible to determine CNE for each specific building using the procedure outlined in 

this study, the current procedure for determining CNE requires the engineers to be familiar with 

fragility analysis and the treatment of uncertainties at the outset. This may be viewed as a 

disadvantage of the procedure since most engineers do not have expertise in fragility analysis. 

One possible way to address this drawback is to pre-analyze a portfolio of buildings (e.g., the 

ATC-63 woodframe structure archetypes) and develop design charts or tables for determining 

CNE for use in the simplified DDD procedure. Then, design charts can be created for selection of 

the adjustment factor considering different non-exceedance probabilities. This would provide a 

relatively simple procedure for direct displacement design of multi-story woodframe buildings in 

which the engineer is given flexibility in setting non-exceedance probabilities associated with the 

different performance requirements/drift limits. 
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Appendix A  

Seismic Hazard for Southern California 
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Seismic Hazard for Southern California: 
• Seismic Design Category D 
• Site Class D (stiff soil) 
• Spectral values determined following the requirements of ASCE/SEI 7-05 and ASCE/SEI 

41-06 
 

Table A-1: Design spectral acceleration parameters for 5% damping. 

 
Mapped values for short and one-second spectral acceleration: 
Ss = 1.5 g           [representative mapped values for Southern California] 
S1 = 0.6 g 
 
Site Coefficients: 
Fa = 1.0              [Fa from ASCE/SEI 7-05, Table 11.4-1] 
Fv = 1.5              [Fv from ASCE/SEI 7-05, Table 11.4-2] 
 
Maximum Credible Earthquake (MCE) [ASCE/SEI 7-05, Section 11.4] 
SMS = Ss × Fa = 1.5 × 1.0 = 1.5               
SM1 = S1 × Fv = 0.6 × 1.5 = 0.9                
 
Design Basis Earthquake (DBE) [ASCE/SEI 7-05, Section 11.4.4] 
SDS = 2/3 × SMS = 2/3 × 1.5 = 1.0 
SD1 = 2/3 × SM1 = 2/3 × 0.9 = 0.6               
 
Short Return Period Earthquake (SRE) [ASCE/SEI 41-06, Section 1.6.1.3.2] 
10%/50yr spectral value (i.e., SDS) < 1.5 g, use Equation 1-3: 

50% / 50 10% / 50 475

n
R

yr yr
P

S S ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

where PR is the mean return period 
           n = 0.44 for California   [ASCE/SEI 41-06, Table 1-2] 

0.4472
475SS DSS S ⎛ ⎞= ⎜ ⎟

⎝ ⎠
= 0.44 g 

0.44

1 1
72
475S DS S ⎛ ⎞= ⎜ ⎟

⎝ ⎠
= 0.26 g 

Hazard Level 
Intensity 

(% of DBE)
Exceedance 
Probability 

Spectral Acceleration   
Short-period

SXS
(a) (g) 

1-second 
SX1

(a) (g) 
T0

(b) 
(s) 

TS
(c)

 

(s) 
Short Return Period Earthquake 44% 50%/50yr 0.44 0.26 0.12 0.59
Design Basis Earthquake (DBE) 100% 10%/50yr 1.00 0.60 0.12 0.60
Maximum Credible Earthquake (MCE) 150% 2%/50yr 1.50 0.90 0.12 0.60

(a) X = M = Maximum Credible Earthquake  
           D = Design Basis Earthquake 
           S = Short Return Period Earthquake 
(b) T0 = 0.2 SXS/SX1 
(c) TS = SXS/SX1 
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Appendix B  

Displacement-based Shear Wall Design Database 
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Figure B-1: Shear wall backbone and ks/ko curves for 2.44 m (8 ft) tall (a) standard and (b) 
Midply walls built with 10d common nails and 11.9 mm (15/32 in.) OSB. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

B
ac

kb
on

e 
F

or
ce

 (k
ip

/f
t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

B
ac

kb
on

e 
Fo

rc
e 

(k
N

/m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Drift (% of Wall Height)

K
s/

K
o

 

 
51mm (2 in)
76mm (3 in)
102mm (4 in)
152mm (6 in)
GWB 406mm (16 in)

0

0.5

1

1.5

2

B
ac

kb
on

e 
Fo

rc
e 

(k
ip

/ft
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

B
ac

kb
on

e 
F

or
ce

 (k
N

/m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Drift (% of Wall Height)

K
s/

K
o

 

51mm (2 in)
76mm (3 in)
102mm (4 in)
152mm (6 in)
GWB 406mm (16 in)

(a) Standard 

(b) Midply  

GWB  

GWB  



73 
  

 
Figure B-2: Shear wall backbone and ks/ko curves for 2.74 m (9 ft) tall (a) standard and (b) 
Midply walls built with 10d common nails and 11.9 mm (15/32 in.) OSB. 
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Appendix C  

Direct Displacement Design Calculations 
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Figure D-1: Story 1 shear wall nail schedule. 
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Figure D-2: Story 2 shear wall nail schedule. 
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Figure D-3: Story 3 shear wall nail schedule. 
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Figure D-4: Story4 shear wall nail schedule. 
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Figure D-5: Story 5 shear wall nail schedule. 
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Figure D-6: Story 6 shear wall nail schedule. 
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Table E-1: Shear wall hysteretic parameters for unit wall width (per ft) in US customary units. 
Wall 

Height
Edge Nail 
Spacing Ko r1 r2 r3 r4 Fo Fi Δ α β

(ft) (in)  (kip/in per ft) (kip per ft) (kip per ft) (in)

2 3.949 0.034 -0.071 1.010 0.033 1.900 0.242 2.188 0.759 1.241
3 3.239 0.030 -0.062 1.010 0.024 1.268 0.161 2.108 0.759 1.286
4 2.761 0.033 -0.056 1.010 0.022 0.941 0.127 2.042 0.714 1.286
6 1.981 0.024 -0.050 1.034 0.021 0.673 0.087 2.035 0.714 1.286

2 5.030 0.033 -0.106 1.010 0.048 4.206 0.219 2.159 0.768 1.150
3 4.375 0.014 -0.079 1.010 0.037 2.895 0.162 1.989 0.759 1.195
4 3.844 0.011 -0.066 1.010 0.034 2.189 0.133 1.880 0.759 1.241
6 3.155 0.008 -0.054 1.010 0.027 1.470 0.082 1.848 0.759 1.286

GWB(c) 16 1.294 0.026 -0.024 1.028 0.005 0.116 0.013 0.694 0.855 1.143

2 4.232 0.030 -0.073 1.010 0.033 1.989 0.247 1.972 0.759 1.241
3 3.787 0.032 -0.060 1.010 0.023 1.277 0.170 1.898 0.714 1.286
4 3.028 0.026 -0.056 1.010 0.022 1.006 0.146 1.850 0.759 1.286
6 2.359 0.025 -0.049 1.010 0.019 0.675 0.091 1.841 0.714 1.286

2 5.171 0.046 -0.114 1.010 0.053 4.315 0.255 1.990 0.723 1.150
3 4.582 0.024 -0.084 1.010 0.040 2.916 0.155 1.791 0.814 1.241
4 4.171 0.013 -0.068 1.010 0.035 2.202 0.121 1.735 0.759 1.241
6 3.459 0.009 -0.054 1.010 0.028 1.499 0.087 1.652 0.759 1.286

GWB(c) 16 2.142 0.028 -0.019 1.010 0.005 0.111 0.015 0.568 0.845 1.141
(a) Standard wall model is built with 15/32 in. thick OSB connected to framing members by 10d common nails (0.148 in. diameter) in single-shear.
(b) Midply wall model is built with 15/32 in. thick OSB connected to framing members by 10d common nails (0.148 in. diameter) in double-shear
(c) Gypsum wall board model is built with 1/2 in. thick GWB connected to framing members by #6 bugle head drywall screws (0.142 in. diameter) in single-shear.
(d) All wall models are built using edge nail distance of 0.5 in. and panel shear modulus of 180 ksi.
(e) In M-CASHEW, each panel-to-frame connection is modeled using two orthogonal uncoupled non-linear springs. The peak backbone forces predicted by M-CASHEW are about 10~15% 
higher than the peak force predicted by the Fortran version of CASHEW.

Wall Type/ 
Sheathing  

Layer

Midply(b)

8

Standard(a)

Midply(b)

9

Standard(a)

 
 
Table E-2: Shear wall hysteretic parameters for unit wall width (per m) in SI units. 

Wall 
Height

Edge Nail 
Spacing Ko r1 r2 r3 r4 Fo Fi Δ α β

(m) (mm)  (kN/mm per m) (kN per m) (kN per m) (mm)

51 2.269 0.034 -0.071 1.010 0.033 27.735 3.539 55.575 0.759 1.241
76 1.861 0.030 -0.062 1.010 0.024 18.500 2.348 53.533 0.759 1.286

102 1.586 0.033 -0.056 1.010 0.022 13.735 1.857 51.874 0.714 1.286
152 1.138 0.024 -0.050 1.034 0.021 9.828 1.263 51.692 0.714 1.286

51 2.890 0.033 -0.106 1.010 0.048 61.378 3.199 54.826 0.768 1.150
76 2.514 0.014 -0.079 1.010 0.037 42.246 2.364 50.531 0.759 1.195

102 2.208 0.011 -0.066 1.010 0.034 31.943 1.947 47.752 0.759 1.241
152 1.813 0.008 -0.054 1.010 0.027 21.449 1.197 46.939 0.759 1.286

GWB(c) 406 0.743 0.026 -0.024 1.028 0.005 1.687 0.191 17.631 0.855 1.143

51 2.432 0.030 -0.073 1.010 0.033 29.028 3.607 50.086 0.759 1.241
76 2.176 0.032 -0.060 1.010 0.023 18.641 2.485 48.217 0.714 1.286

102 1.740 0.026 -0.056 1.010 0.022 14.674 2.128 46.987 0.759 1.286
152 1.356 0.025 -0.049 1.010 0.019 9.852 1.330 46.764 0.714 1.286

51 2.971 0.046 -0.114 1.010 0.053 62.970 3.723 50.533 0.723 1.150
76 2.633 0.024 -0.084 1.010 0.040 42.561 2.268 45.491 0.814 1.241

102 2.396 0.013 -0.068 1.010 0.035 32.131 1.768 44.079 0.759 1.241
152 1.988 0.009 -0.054 1.010 0.028 21.879 1.273 41.953 0.759 1.286

GWB(c) 406 1.231 0.028 -0.019 1.010 0.005 1.613 0.212 14.425 0.845 1.141
(a) Standard wall model is built with 11.9 mm thick OSB connected to framing members by 10d common nails (3.76 mm diameter) in single-shear.
(b) Midply wall model is built with 11.9 mm thick OSB connected to framing members by 10d common nails (3.76 mm diameter) in double-shear
(c) Gypsum wall board model is built with 12.7 mm thick GWB connected to framing members by #6 bugle head drywall screws (3.61 mm diameter) in single-shear.
(d) All wall models are built using edge nail distance of 12.7 mm and panel shear modulus of 1241 MPa.
(e) In M-CASHEW, each panel-to-frame connection is modeled using two orthogonal uncoupled non-linear springs. The peak backbone force predicted by M-CASHEW are about 10~15% higher 
than the peak force predicted by the Fortran version of CASHEW.

Wall Type/ 
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Layer
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Midply(b)
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Figure F-1: Diaphragm degrees-of-freedom and corner coordinates in the M-SAWS model.
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Table F-2: First 6 mode shapes based on initial stiffness of the M-SAWS model. 

 

1 2 3 4 5 6

1 X -0.0701 0.2376 -0.2540 -0.3309 0.0765 -0.5257
2 Y -0.2461 -0.0024 0.1953 0.0085 0.5349 0.3992
3 θ -0.0002 0.0000 -0.0007 -0.0001 0.0002 -0.0016

4 X -0.1221 0.4173 -0.4508 -0.4809 0.0957 -0.7325
5 Y -0.4381 -0.0042 0.3479 0.0140 0.7566 0.5629
6 θ -0.0003 0.0000 -0.0013 -0.0001 0.0003 -0.0022

7 X -0.1696 0.5804 -0.6296 -0.4661 0.0637 -0.6292
8 Y -0.6110 -0.0059 0.4865 0.0168 0.6729 0.4934
9 θ -0.0005 0.0000 -0.0018 -0.0001 0.0002 -0.0019

10 X -0.2077 0.7323 -0.7989 -0.2556 -0.0053 -0.1791
11 Y -0.7894 -0.0077 0.6231 0.0157 0.2073 0.1460
12 θ -0.0006 0.0000 -0.0023 -0.0001 0.0000 -0.0005

13 X -0.2330 0.8524 -0.9158 0.1098 -0.0723 0.3773
14 Y -0.9172 -0.0091 0.7187 0.0095 -0.4028 -0.2994
15 θ -0.0006 0.0000 -0.0026 0.0000 -0.0002 0.0012

16 X -0.2479 1.0000 -1.0000 1.0000 -0.0945 1.0000
17 Y -1.0000 -0.0178 0.7831 -0.0529 -1.0000 -0.7616
18 θ -0.0007 0.0001 -0.0028 0.0003 -0.0003 0.0028

Diaphragm D.O.F.(a)

Mode Shapes

1

2

3

4

5

6

(a) The units for translational and rotational degrees-of-freedom are inches and radian, 
respectively.
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Table F-4: First 6 mode shapes based on tangent stiffness at 0.15% drift of the M-SAWS model. 

1 2 3 4 5 6

1 X -0.0833 0.2210 -0.2386 0.3302 -0.0111 -0.5344
2 Y -0.2160 -0.0280 0.1900 0.0125 -0.5377 0.3939
3 θ -0.0002 0.0001 -0.0007 0.0001 -0.0002 -0.0016

4 X -0.1464 0.4004 -0.4340 0.4944 0.0079 -0.7643
5 Y -0.4022 -0.0506 0.3510 0.0193 -0.8084 0.5873
6 θ -0.0004 0.0001 -0.0013 0.0002 -0.0002 -0.0024

7 X -0.2081 0.5726 -0.6217 0.4847 0.0495 -0.6638
8 Y -0.5766 -0.0726 0.5043 0.0163 -0.7619 0.5435
9 θ -0.0005 0.0002 -0.0019 0.0002 -0.0001 -0.0020

10 X -0.2570 0.7346 -0.8074 0.2567 0.0852 -0.1630
11 Y -0.7812 -0.0943 0.6698 -0.0049 -0.2404 0.1680
12 θ -0.0006 0.0002 -0.0024 0.0001 0.0001 -0.0005

13 X -0.2798 0.8563 -0.9200 -0.1162 0.0381 0.3705
14 Y -0.9206 -0.1080 0.7803 -0.0300 0.4220 -0.3126
15 θ -0.0007 0.0003 -0.0028 0.0000 0.0002 0.0012

16 X -0.3033 1.0000 -1.0000 -1.0000 -0.0986 1.0000
17 Y -1.0000 -0.1266 0.8489 0.0250 1.0000 -0.7733
18 θ -0.0007 0.0003 -0.0030 -0.0004 0.0002 0.0029

6

(a) The units for translational and rotational degrees-of-freedom are inches and radian, 
respectively.
(b) The mode shapes were obtained using tangent stiffness of the building at 0.15% drift. 

1
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3

4

5

Mode Shapes(b)

D.O.F.(a)Diaphragm
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Figure F-14: Diaphragm degrees-of-freedom and corner coordinates in the SAPWood model.
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SAPWOOD 3D MODEL (INITIAL STIFFNESS) 

Table F-5: First 6 mode shapes based on initial stiffness of the SAPWood model. 

0.398 0.391 0.321 0.162 0.148 0.119

Diaphragm Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

1 X -0.1741 0.0009 0.0018 0.2201 0.0004 -0.0491
2 Y 0.0009 0.2133 0.0133 -0.0002 -0.4302 -0.0020
3 Z -0.0050 -0.0002 0.0000 -0.0039 -0.0007 0.0638
4 α 0.0000 -0.0001 0.0000 0.0000 -0.0001 0.0000
5 β -0.0001 0.0000 0.0000 0.0000 0.0000 0.0001
6 θ 0.0000 0.0001 -0.0007 0.0000 -0.0001 0.0011

7 X -0.3205 0.0016 0.0032 0.3350 0.0004 -0.0480
8 Y 0.0017 0.3883 0.0262 -0.0003 -0.6302 -0.0117
9 Z -0.0110 -0.0004 0.0000 -0.0119 -0.0018 0.1528

10 α 0.0000 -0.0001 0.0000 0.0000 -0.0002 0.0000
11 β -0.0002 0.0000 0.0000 -0.0001 0.0000 0.0003
12 θ 0.0000 0.0002 -0.0012 0.0000 -0.0001 0.0016

13 X -0.4730 0.0023 0.0045 0.3538 0.0001 -0.0014
14 Y 0.0025 0.5533 0.0389 -0.0005 -0.6029 -0.0250
15 Z -0.0166 -0.0006 0.0000 -0.0243 -0.0034 0.2715
16 α 0.0000 -0.0002 0.0000 0.0000 -0.0004 0.0000
17 β -0.0004 0.0000 0.0000 -0.0003 0.0000 0.0005
18 θ 0.0000 0.0003 -0.0017 0.0001 -0.0001 0.0015

19 X -0.6317 0.0031 0.0057 0.2486 -0.0006 0.0744
20 Y 0.0034 0.7267 0.0573 -0.0006 -0.2935 -0.0280
21 Z -0.0219 -0.0007 0.0000 -0.0420 -0.0055 0.4352
22 α 0.0000 -0.0002 0.0000 0.0000 -0.0006 0.0000
23 β -0.0005 0.0000 0.0000 -0.0006 0.0000 0.0008
24 θ 0.0000 0.0003 -0.0022 0.0000 0.0000 0.0006

25 X -0.7843 0.0037 0.0066 0.0126 -0.0013 0.1267
26 Y 0.0042 0.8650 0.0732 -0.0005 0.1942 -0.0103
27 Z -0.0250 -0.0009 0.0000 -0.0594 -0.0080 0.6644
28 α 0.0000 -0.0003 0.0000 0.0000 -0.0009 0.0000
29 β -0.0006 0.0000 0.0000 -0.0010 0.0000 0.0010
30 θ 0.0000 0.0004 -0.0025 0.0000 0.0001 -0.0006

31 X -1.0000 0.0056 -0.0026 -0.6612 0.0033 -0.3097
32 Y 0.0051 1.0000 0.0920 0.0004 1.0000 0.0664
33 Z -0.0236 -0.0010 0.0000 -0.0585 -0.0110 1.0000
34 α 0.0000 -0.0003 0.0000 0.0000 -0.0012 0.0000
35 β -0.0007 0.0000 0.0000 -0.0015 0.0000 0.0006
36 θ 0.0000 0.0004 -0.0028 -0.0001 0.0002 -0.0025
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Appendix G  

Spectral Scaling Factors for ATC-63 Far-Field Ground 

Motions 
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Approximate Fundamental Period of the Six-story Capstone Building [ASCE 7-05, 12.8.2] 
x

a t nT C h=      [ASCE 7-05, Equation 12.8-7] 

nh = total height, measure from ground level to the roof (not including the 3-ft parapet) 
    = 55 ft 

tC  = 0.02       [ASCE 7-05, Table 12.8.2] 

x  = 0.75 
0.750.02(55) 0.404saT = =  

Upper Limit of the Approximate Fundamental Period 

uC  = coefficient for upper limit on calculated period [ASCE 7-05, Table 12.8-1] 
      = 1.4   for SD1 ≥  0.4g 

1.4 0.404 0.57u u aT C T s s= = × =  
   
 
Normalized ATC-63 Far Field Ground Motion Set  
Median Sa value @ [ uT =0.57s] = 0.655g 

 
Figure G-1: Design spectral acceleration values at the upper limit of the approximate period for 
the NEESWood Capstone Building. 
 
Ensemble Scale Factors 
Level 1 = 0.44/0.655 = 0.672 
Level 2 = 1.00/0.655 = 1.527  
Level 3 = 1.50/0.655 = 2.290 
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Table G-1: Factors for Scaling ATC-63 Far Field Ground Motion Records to the NEESWood 
Capstone Design Response Spectra. 

EQ 
No. 

PEER-NGA Record File Names ATC-63 
Norm.  
Factor

Scale Factors 

Level 1 Level 2 Level 3 
Component 1 Component 2 0.672 1.527 2.290 

1 NORTHR/MUL009 NORTHR/MUL279 0.651 0.437 0.994 1.490 
2 NORTHR/LOS000 NORTHR/LOS270 0.832 0.559 1.270 1.904 
3 DUZCE/BOL000 DUZCE/BOL090 0.629 0.423 0.961 1.441 
4 HECTOR/HEC000 HECTOR/HEC090 1.092 0.734 1.667 2.500 
5 IMPVALL/H-DLT262 IMPVALL/H-DLT352 1.311 0.881 2.003 3.003 
6 IMPVALL/H-E11140 IMPVALL/H-E11230 1.014 0.681 1.548 2.322 
7 KOBE/NIS000 KOBE/NIS090 1.034 0.695 1.579 2.368 
8 KOBE/SHI000 KOBE/SHI090 1.099 0.739 1.678 2.517 
9 KOCAELI/DZC180 KOCAELI/DZC270 0.688 0.463 1.051 1.576 
10 KOCAELI/ARC000 KOCAELI/ARC090 1.360 0.914 2.077 3.115 
11 LANDERS/YER270 LANDERS/YER360 0.987 0.663 1.506 2.259 
12 LANDERS/CLW-LN LANDERS/CLW-TR 1.149 0.772 1.754 2.631 
13 LOMAP/CAP000 LOMAP/CAP090 1.089 0.731 1.662 2.493 
14 LOMAP/G03000 LOMAP/G03090 0.880 0.592 1.344 2.016 
15 MANJIL/ABBAR--L MANJIL/ABBAR--T 0.787 0.529 1.202 1.803 
16 SUPERST/B-ICC000 SUPERST/B-ICC090 0.870 0.584 1.328 1.992 
17 SUPERST/B-POE270 SUPERST/B-POE360 1.174 0.789 1.793 2.689 
18 CAPEMEND/RIO270 CAPEMEND/RIO360 0.820 0.551 1.252 1.878 
19 CHICHI/CHY101-E CHICHI/CHY101-N 0.410 0.276 0.627 0.940 
20 CHICHI/TCU045-E CHICHI/TCU045-N 0.959 0.645 1.465 2.197 
21 SFERN/PEL090 SFERN/PEL180 2.096 1.409 3.201 4.800 
22 FRIULI/A-TMZ000 FRIULI/A-TMZ270 1.440 0.968 2.199 3.298 

(a) ATC-63 Normalization factors are obtained from Table A-4D of the ATC-63 90% draft report. 
(b) Scale factors for individual record are in blue color. 
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Appendix H  

Near-Fault Ground Motions 
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