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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national 
center of excellence in advanced technology applications that is dedicated to the reduction of 
earthquake losses nationwide. Headquartered at the University at Buffalo, State University 
of New York, the Center was originally established by the National Science Foundation in 
1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions 
throughout the United States, the Center’s mission is to reduce earthquake losses through 
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Cen-
ter coordinates a nationwide program of multidisciplinary team research, education and 
outreach activities. 

MCEER’s research is conducted under the sponsorship of two major federal agencies: the 
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), 
and the State of New York. Signifi cant support is derived from the Federal Emergency 
Management Agency (FEMA), other state governments, academic institutions, foreign 
governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by devel-
oping seismic evaluation and rehabilitation strategies for the post-disaster facilities and 
systems (hospitals, electrical and water lifelines, and bridges and highways) that society 
expects to be operational following an earthquake; and to further enhance resilience by 
developing improved emergency management capabilities to ensure an effective response 
and recovery following the earthquake (see the fi gure below).
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A cross-program activity focuses on the establishment of an effective experimental and 
analytical network to facilitate the exchange of  information between researchers located 
in various institutions across the country. These are complemented by, and integrated 
with, other MCEER activities in education, outreach, technology transfer, and industry 
partnerships.

This report presents the technical basis for proposed changes to the 2010 edition of ASCE Standard 
4, Seismic Analysis of Safety-related Nuclear Structures. Three performance statements aiming 
at achieving the objectives of ASCE 43-05, Seismic Design Criteria for Structures, Systems and 
Components in Nuclear Facilities, are assessed in the study:  1) individual isolators shall suffer 
no damage for design level earthquake shaking, 2) the probability of the isolated nuclear structure 
impacting surrounding structure (moat) for 100% (150%) design level earthquake shaking is 1% 
(10%) or less, and 3) individual isolators sustain gravity and earthquake-induced axial loads at 90^th 
percentile lateral displacements consistent with 150% design level earthquake shaking. Nonlinear 
response-history analysis is performed in support of performance statements 2 and 3, accounting 
for the variability in both earthquake ground motions and seismic isolator properties. Lead rubber, 
low damping rubber and Frictional Pendulum base isolators are considered. Representative rock 
and soft soil sites in the Eastern, Central and Western United States are addressed. Eleven sets of 
ground motions are recommended for response-history analysis of base isolated nuclear structures. 
The median displacement response of a best-estimate model subjected to spectrum compatible design 
level ground motions should be increased by a factor of 3 to achieve the performance objectives of 
ASCE 43-05.
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ABSTRACT 

Two ASCE standards are relevant to the analysis and design of new nuclear power plants (NPPs): ASCE 

4-98, Seismic Analysis of Safety-related Nuclear Structures and Commentary (ASCE 2000) and ASCE 

43-05, Seismic Design Criteria for Structures, Systems and Components in Nuclear Facilities (ASCE 

2005). Section 1.3 of ASCE 43-05 presents dual performance objectives for nuclear structures: 1) 1% 

probability of unacceptable performance for 100% design basis earthquake (DBE) shaking, and 2) 10% 

probability of unacceptable performance for 150% DBE shaking. ASCE Standard 4-98, which includes 

provisions for the analysis and design of seismic isolation systems, is being updated at the time of this 

writing, and the studies reported herein are undertaken by the authors to provide the technical basis for 

proposed changes to the 2010 edition of the standard.  

Three performance statements for achieving the above two performance objectives of ASCE 43-05 are 

used for this study, namely, 1) individual isolators shall suffer no damage in design earthquake shaking, 

2) the probability of the isolated nuclear structure impacting surrounding structure (moat) for 100% 

(150%) design earthquake shaking is 1% (10%) or less, and 3) individual isolators sustain gravity and 

earthquake-induced axial loads at 90th percentile lateral displacements consistent with 150% design 

earthquake shaking. Nonlinear response-history analysis was performed in support of performance 

statements 2 and 3, accounting for the variability in both earthquake ground motion and isolator material 

properties. Lead-rubber, low-damping rubber and Friction Pendulum™ seismic isolators are considered. 

For representative rock and soft soil sites in the Central and Eastern United States and Western United 

States, estimates are made of 1) the ratio of the 99%-ile displacement (force) computed using a 

distribution of DBE spectral demands and distributions of isolator mechanical properties to the median 

isolator displacement (force) computed using best-estimate properties and spectrum-compatible DBE 

ground motions; 2) the ratio of the 90%-ile displacement (force) computed using a distribution of 150% 

DBE spectral demands and distributions of isolator mechanical properties to the median isolator 

displacement (force) computed using best-estimate properties and spectrum-compatible DBE ground 

motions; and 3) the number of sets of three-component ground motions to be used for response-history 

analysis to develop a reliable estimate of the median displacement (force).  
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Eleven sets of ground motions are recommended for response-history analysis of base-isolated nuclear 

structures. The median response of a best-estimate model subjected to spectrum-compatible DBE ground 

motions should be increased by a factor of 3 to achieve the performance objectives of ASCE 43-05. 
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SECTION 1  
SEISMIC ISOLATION OF NUCLEAR POWER PLANTS  

1.1 Introduction 

Seismic isolation devices have been used to protect buildings, bridges, and mission-critical infrastructure 

from the damaging effects of earthquake shaking. Nuclear structures and systems, (e.g., power plants and 

ballistic missile submarines) and other critical infrastructure (e.g., offshore platforms and LNG tanks) 

have been isolated using elastomeric and sliding isolation systems. In the United States, seismic isolation 

systems have been implemented in more than 80 buildings and 150 bridges since 1984 (Mayes 1998, 

2006). 

There are no applications of seismic isolation to nuclear structures in the United States at the time of this 

writing although some vendors of Nuclear Steam Supply Systems and power utilities are considering 

seismic isolation for new build plants. Design of new nuclear power plants (NPPs) will follow 

regulations, codes and standards set forth by the U.S. Nuclear Regulatory Commission (USNRC), the 

American Society of Civil Engineers (ASCE), the American Society of Mechanical Engineers, the 

American Concrete Institute (ACI), and the American Institute for Steel Construction (AISC), among 

others. Of these regulators and standards organizations, only the USNRC and ASCE will likely write 

rules related to the analysis and design of seismic isolation systems for new NPPs. 

Two ASCE standards are relevant to the analysis and design of new NPPs: ASCE 4-98, Seismic Analysis 

of Safety-related Nuclear Structures and Commentary (ASCE 2000) and ASCE 43-05, Seismic Design 

Criteria for Structures, Systems and Components in Nuclear Facilities (ASCE 2005). ASCE Standard 4-

98, which includes provisions for the analysis and design of seismic isolation systems, is being updated at 

the time of this writing, and the studies reported herein are undertaken by the authors to provide the 

technical basis for proposed changes to the 2010 edition of the standard. 

Seismic isolation systems worthy of consideration for application in North America include two types of 

elastomeric bearings and one type of sliding bearing. Lead-Rubber (LR) and Low-Damping Rubber 

(LDR) bearings are examples of elastomeric bearings. The sliding bearing that is suitable for application 

to nuclear structures is the Friction Pendulum™ (FP) bearing. These elastomeric and sliding seismic 

isolation bearings are stiff in the vertical direction and flexible in any horizontal direction. The horizontal 
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flexibility of the isolation system increases the fundamental period of the supported structure and reduces 

the inertial forces in the supported structure, enabling the secondary systems to be designed for much 

smaller forces and displacements than in a conventional (non-isolated) structure. Naeim and Kelly (1999) 

and Constantinou et al. (2007) provide much information of seismic isolation and isolators. Huang et al. 

(2008b, 2009) identifies the benefits of seismic isolation for nuclear structures using risk-based 

approaches that are consistent with US nuclear practice. 

1.2 Performance objectives of ASCE 43-05 and USNRC Regulatory Guide 1.208 

ASCE Standard 43-05 (ASCE 2005) provides criteria for the seismic analysis and design of safety-related 

Structures, Systems and Components (SSCs) of a broad class of nuclear facilities, including nuclear 

power plants. This standard combines a Seismic Design Category (SDC)1 and a Limit State2 to form a 

Seismic Design Basis (SDB). ASCE 43-05 presents design and analysis requirements for SDBs defined 

by 1) SDC 3, 4 and 5 associated with a quantitative target performance goals of 41 10−× , 54 10−×  and 
51 10−× , respectively, and 2) Limit States A through D. The target performance goals given above are 

expressed as mean annual frequency of exceedance of the specified Limit State of the SSCs and can be 

used to set the spectral intensity of the design earthquake. New build containment vessels for nuclear 

power plants would be assigned to SDC 5 and Limit State D. 

Section 2 of ASCE 43-05 presents a performance-based procedure for computing Design Basis 

Earthquake (DBE) spectral demands. The procedure is most different from the hazard-based procedure 

described in USNRC Regulatory Guide 1.165 (USNRC 1997) for a Safe Shutdown Earthquake because 

                                                      
1 ASCE 43 defines Seismic Design Category (SDC) on the basis of the “…severity of adverse radiological and 

toxicological effects of the hazards that may result from the failure of SSCs [structure, system, component] on 

workers, the public and the environment. SSCs may be assigned to SDCs that range from 1 to 5.” A vessel 

containing a commercial nuclear reactor would be assigned to SDC 5. 

2 ASCE 43 defines a Limit State as the limiting acceptable condition of the SSC and the state can be characterized in 

terms of maximum allowable displacement, strain, ductility or stress. Four limit states are defined: A (short of 

collapse but stable), B (moderate permanent deformation), C (limited permanent deformation) and D (essentially 

elastic).  

2



 

 

the ordinates of the design spectrum are computed on the basis of an annual frequency of unacceptable 

performance and not annual frequency of exceedance of earthquake hazard. Section 1.3 of ASCE 43-05 

presents two performance objectives for nuclear structures, namely, 1) 1% probability of unacceptable 

performance for 100% DBE shaking, and 2) 10% probability of unacceptable performance for 150% DBE 

shaking. Kennedy (2007) performed a series of parametric studies using a wide range of hazard-curve 

slope and dispersions in system-level fragility curves and concluded that the annual frequency of 

unacceptable performance did not exceed 120% of the target value if analysis and design for SDC 5 and 

Limit State D followed the procedures of Sections 1.3 and Section 2 of ASCE 43-05.  

In 2007, the USNRC issued Regulatory Guide 1.208 (USNRC 2007) that permitted the use of the 

performance-based approach described in ASCE 43-05 to develop spectral demands for the design of 

SSCs in NPPs. Regulatory Guide 1.208 specifies a target mean annual frequency of exceedance of 

unacceptable performance of less than 51 10−×  for the onset of significant inelastic deformation (OSID), 

which corresponds to SDB-5D (i.e., SDC-5 and Limit State D) in ASCE 43-05. In Regulatory Guide 

1.208, OSID is generally associated with “essentially elastic behavior” of SSCs and occurs well before 

seismically induced core damage. Analysis and design per Regulatory Guide 1.208 should result in an 

annual frequency of exceedance of core damage of much less than 51 10−× .  

1.3 Unacceptable performance of base-isolated NPPs 

In base-isolated nuclear structures, the accelerations and deformations in SSCs are relatively small; the 

SSCs are expected to remain elastic for both DBE shaking and beyond design basis shaking. As such, 

unacceptable performance of an isolated nuclear structure will more likely involve either the failure of 

isolation bearings or impact of the isolated superstructure and surrounding building or geotechnical 

structures.  

For the purpose of this study, we propose three performance statements for achieving the two 

performance objectives set forth in Section 1.3 of ASCE 43-05, namely, 1) individual isolators shall 

suffer no damage in DBE shaking, 2) the probability of the isolated nuclear structure impacting 

surrounding structure (moat) for 100% (150%) DBE shaking is 1% (10%) or less, and 3) individual 

isolators shall sustain gravity and earthquake-induced axial loads at 90th percentile lateral displacements 

consistent with 150% DBE shaking. Performance statement 1 can be realized by production testing of 

each isolator supplied to a project for median DBE displacements and co-existing gravity and earthquake-
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induced axial forces. Analysis can be used in support of performance statement 2 provided that the 

isolators are modeled correctly and the ground motion representations are reasonable. Performance 

statement 3 can be realized by prototype testing of a limited number of isolators for displacements and co-

existing axial forces consistent with 150% DBE shaking, noting that an isolation system is composed of 

10’s to 100’s of isolators and that failure of the isolation system would have to involve the simultaneous 

failure of a significant percentage of the isolators in the system. 

1.4 Considerations for the performance assessment of isolated nuclear structures 

The state-of-practice in selecting and scaling ground motions for design of conventional and isolated 

buildings and nuclear infrastructure involves selecting pairs of earthquake ground motions on the basis of 

earthquake magnitude, site-to-source distance and local soil conditions and scaling these motions to a 

design spectrum so that the resultant motions are spectrum-compatible. Although straightforward, such 

scaling cannot capture the distribution of spectral demand around the geometric mean demand, which is 

typically the product of a seismic hazard assessment. Alternate scaling procedures are used in this study 

to assess the performance of isolated nuclear structures. 

The mechanical properties of typical seismic isolators such as LDR, LR and FP bearings will tend to vary 

from the values assumed for design both a) at the time of fabrication due to variability in basic material 

properties, and b) over the lifespan of the nuclear structure due to aging, contamination, ambient 

temperature, etc. The mechanical properties of LDR bearings are a function of the raw materials used, the 

choice of rubber compound and the thermal and pressure profiles used to cure the bearings. For LR 

bearings, the mechanical properties of the lead plug are a function of the confinement provided to the plug 

and the mechanical properties of the elastomer (rubber) per the LDR bearing. For FP bearings, only the 

coefficient of sliding friction varies because the second-slope stiffness of the bearing is a function of the 

radius of the sliding surface, which is constructed to very tight tolerances. Importantly, the variability of 

the mechanical properties of an assembly of isolators (the isolation system) will be smaller than the 

variability of individual isolators. The state-of-practice of seismic isolation system analysis and design is 

to develop lower and upper bound properties for the isolation system using property modification factors 

(e.g., Constantinou et al. 1999, 2007; AASHTO 1999, FEMA 2004), to use the best-estimate, lower-

bound and upper-bound mechanical properties for analysis, and then envelope the resultant displacements 

and transmitted forces for design and assessment. The basic force-displacement relationship used to 

analyze LR and FP bearing isolation systems is shown in Figure 1-1. This model is fully defined by a 
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Figure 1-1.  Assumed mechanical properties of the LR and FP bearings in a horizontal 

direction 
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characteristic strength, dQ , and a second-slope (post-yield) stiffness, dK . The second-slope stiffness is 

related to the isolated period through the supported weight, W. Low-damping rubber bearings are modeled 

typically as linearly elastic elements with displacement-independent damping. 

1.5 Objectives of the study 

The goals of the study presented in this report are three-fold, namely, for a) rock and soil sites in the 

Central and Eastern United States (CEUS) and for a rock site in the Western United States (WUS), and b) 

LR and FP bearings characterized by the hysteretic loop of Figure 1-1 and LDR bearings (CEUS rock site 

only), to 

1. Determine the ratio of the 99%-ile estimate of the displacement (force) computed using a 

distribution of DBE spectral demands and distributions of isolator mechanical properties to the 

median isolator displacement (force) computed using best-estimate properties and spectrum-

compatible DBE shaking 

2. Determine the ratio of the 90%-ile estimate of the displacement (force) computed using a 

distribution of 150% DBE spectral demands and distributions of isolator mechanical properties to 

the median isolator displacement (force) computed using best-estimate properties and spectrum-

compatible DBE shaking 

3. Determine the number of sets of three-component ground motions to be used for response-history 

analysis to develop a reliable estimate of the median displacement (force). 

In this study, we use sets of ground motions scaled to an appropriate distribution of spectral demand as 

well as motions compatible with a geomean spectrum, and an alternate presentation of isolator 

mechanical properties to that captured by lower- and upper-bound properties, to address these goals. 

Computations are performed for three sites (North Anna, Vogtle and Diablo Canyon), three types of 

isolators (LR and FP bearings for all three sites and LDR bearings for North Anna only), and realistic 

mechanical properties for these isolators.  

The mechanical properties of LR and FP bearings will change with repeated cycling to large 

displacements at the isolated frequency as energy is dissipated by the lead core and by sliding friction, 

respectively. The heating of the lead core in the LR bearing and of the sliding surface (FP bearing) will 
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reduce the energy dissipated by the isolation system at a given displacement and loading frequency. 

Studies are under way at the University at Buffalo (e.g., Kalpakidis 2008) to fully characterize the impact 

of these changes on the displacement response of an isolation system. The thermo-mechanical response of 

seismic isolation bearings is not addressed here. 

1.6 Organization of the report 

This introduction is followed by 6 sections. Section 2 introduces the base-isolation systems and numerical 

models analyzed in this study. Sections 3, 4 and 5 present the analyses for the sample CEUS rock, CEUS 

soil and WUS rock sites, respectively. Each of Sections 3, 4 and 5 includes information for DBE shaking, 

selection and scaling of ground motions, analysis procedure and results. Section 6 summarizes the results 

of Sections 3, 4 and 5 and provides recommendations on the analysis procedures for the seismic design of 

base-isolated nuclear structures, suitable for implementation in the next edition of ASCE Standard 4. 

Section 7 lists the references cited in this report. 
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SECTION 2  
BASE ISOLATION SYSTEMS AND RESPONSE ANALYSIS 

2.1 Base isolation hardware 

Two types of elastomeric bearings and one sliding bearing are studied herein, namely, lead-rubber (LR), 

low-damping rubber (LDR) and Friction Pendulum™ (FP) bearings. All three are considered appropriate 

for the seismic isolation of nuclear and other mission-critical infrastructure. In this study, the isolators are 

assumed to be placed below a stiff concrete mat that supports an internal structure and a containment 

vessel. The isolated superstructure is assumed to be rigid, which is a good assumption because the 

translational periods of a containment vessel and an internal structure are typically less than 0.2 second. 

Figure 2-1 presents a cut-away view of a LR bearing, composed of alternating layers of rubber 

(elastomer) and steel shims and the central lead core. The steel shims confine the deformation of the 

rubber in shear and increase the vertical stiffness of the isolator. (Insufficient vertical stiffness of isolators 

may result in rocking of the superstructure.) The lead core enables the isolator to dissipate substantial 

energy and its response to be modeled as bilinear. The restoring (re-centering) force is provided by the 

rubber. The characteristic strength dQ  of Figure 1-1 is governed by the dynamic yield strength of the lead 

core. The isolated period is determined by the shear stiffness of the elastomer, the bonded area and the 

total thickness of the rubber. 

The construction of LDR bearings is similar to that of Figure 2-1 but without a central lead core. The 

force-displacement behavior of a LDR bearing is near linear and with an equivalent viscous damping ratio 

of between 2% to 4% of critical, depending on the bearing displacement (Kasalanti 2009). 

Figure 2-2 presents components of two FP bearings: single concave (Figure 2-2a) and triple concave 

(Figure 2-2b). Figure 2-2a presents the articulated slider (which is coated with a low-friction composite 

material), a housing plate and a concave dish with a spherical inlay of stainless steel for a single concave 

bearing. The housing plate, shown in the right hand panel of Figure 2-2a, is inverted and installed on top 

of the articulated slider. The slider moves across the spherical surface during earthquake shaking. 

Earthquake-induced energy is dissipated by friction between the slider and the stainless steel inlay. The 

supported weight provides a restoring force. The isolated (sliding) period is determined by the radius of 
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Figure 2-1.  A cut-away view of a lead rubber bearing (courtesy of Dynamic Isolation Systems, Inc.) 

 
a. Single concave 

 
b. Triple concave 

Figure 2-2.  Friction PendulumTM bearings (courtesy of Earthquake Protection Systems, Inc.) 
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the sliding surface. Figure 2-2b presents the slider and inner and outer concave plates for a triple concave 

bearing, where the isolated period is displacement dependent and determined by a combination of the 

radii of the sliding faces of the inner and outer plates (Fenz and Constantinou 2008a). 

Constantinou et al. (2007) and Naeim and Kelly (1999) provide substantial information on the 

construction, analysis and design of elastomeric and sliding isolation systems for the interested reader. 

2.2 Response-history analysis 

SAP2000 Nonlinear (CSI 2007) was used to perform the response-history analysis of the models of base-

isolated NPPs. Each model was composed of a rigid mass supported by a link element representing the 

isolation system. Each model had three degrees of freedom: two horizontal and one vertical. The models 

of the isolation systems are described in Section 2.3. The response-history analysis was performed using 

the Fast Nonlinear Analysis algorithm implemented in SAP2000 as Nonlinear Modal Time-History 

Analysis. Sample results were verified using an alternate algorithm in SAP2000 based on direct 

integration of the equations of motion. 

For analysis of the (nonlinear) LR and FP isolation systems, 2% damping was assigned to each mode 

using values of effective isolation-system stiffness in the horizontal and vertical directions. In the 

horizontal directions, the effective stiffness was set equal to the post-yield stiffness of the isolation 

system. The effective stiffness in the vertical direction was set equal to the elastic stiffness for the LR 

isolation systems. 

For analysis of the (linear) LDR isolation systems, 3% and 2% damping were assigned to the two 

horizontal modes and one vertical mode, respectively.   

2.3 Models of isolation systems 

The LR isolation systems were modeled using the “Rubber Isolator” link element in SAP2000. This 

element has coupled plasticity properties for the two horizontal displacements and linear stiffness 

properties for the vertical displacement. The plasticity model is similar to that of Figure 1-1 but the 

transition between the elastic stiffness and the post-yield stiffness is continuous. To study a wide range of 

isolation-system properties, 9 best-estimate models were prepared with characteristic strength dQ  equal to 

3%, 6% and 9% of the supported weight W , and dT  (the period related to the post-yield stiffness of the 
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isolator dK  through W ) equal to 2, 3 and 4 seconds. Parameter vT  (the period related to the vertical 

stiffness of the isolation system vK  through W ) was set to 0.05 second. Values of the key variables for 

the 9 best-estimate LR isolation-system models are presented in Table 2-1. 

Friction PendulumTM (FP) isolators were modeled using the “Friction Isolator” link element that has 

coupled plasticity properties for the two horizontal directions and a gap element in the vertical direction. 

The coefficient of friction for FP bearings depends on the sliding velocity and is computed in SAP2000 

using the following equation (Constantinou et al. 1999, CSI 2007,) 

 max max min( ) aVeμ μ μ μ −= − − ⋅    (2.1) 

where μ is the coefficient of sliding friction, varying between maxμ  and minμ  (for high and very small 

velocities, respectively), a  is a velocity-related parameter, and V is the sliding velocity. Figure 2-3 shows 

the velocity dependence of μ  for a typical PTFE-type composite material in contact with polished 

stainless steel for a contact (normal) pressure of approximately 41 MPa. The curve of Figure 2-3 is 

generated using (2.1) and maxμ = 6%, minμ = 3% and a = 55 sec/m (from the experimental data of Fenz 

and Constantinou 2008a).  A value of a = 55 sec/m was adopted for this study. The hysteresis loop for the 

FP bearings will collapse to the bilinear loop of Figure 1-1 for Coulomb friction (i.e., a =∞ ) with 

maxdQ Wμ= . Table 2-2 summaries the values of the key parameters for the 9 best-estimate FP isolation-

system models analyzed in this study with maxμ  equal to 0.03, 0.06 and 0.09 and dT  equal to 2, 3 and 4 

seconds. The yield displacement is set at 1 mm for all FP models but we note that the use of the triple 

concave FP bearing (e.g., Fenz and Constantinou 2008c) will increase the yield displacement to a value 

similar to that adopted for the LR models. 

Low-damping rubber isolators were modeled in SAP2000 using the “Linear” link element where the 

elastic stiffness and damping can be assigned in each degree of freedom. Three best-estimate models were 

studied with hT  (the period related to the horizontal elastic stiffness of the isolator hK  through W ) equal 

to 2, 3 and 4 seconds, and vT  equal to 0.05 second. Values of the key variables for the 3 best-estimate 

LDR isolation-system models are presented in Table 2-3.  

2.4 Variations in material properties of isolators 

Section 1.4 introduced the sources of variations in the mechanical properties of seismic isolators from the 

best-estimate values assumed for analysis and design. Variations in isolator properties are addressed in 
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specifications and standards, including the AASHTO Guide Specification for Seismic Isolation Design 

(AASHTO 1999). The Guide Specification requires the analyst to estimate upper and lower bounds on the 

mechanical properties of the isolation system for the lifetime of the isolated bridge. Analysis is then 

performed for the best-estimate, lower-bound and upper-bound mechanical properties. An alternate 

approach was adopted here to enable efficient analysis and statistical interpretation of results.  

To study the impact of these variations on the response of base-isolated NPPs, 2 sets of 30 mathematical 

models were developed for each best-estimate model of Table 2-1 through Table 2-3 by modifying the 

values of key parameters of the best-estimate model. For LR models, dQ , dK  and vK  were assumed to 

vary; for FP models, only maxμ  was assumed to vary; and for LDR models, hK  and vK  were assumed to 

vary. One set of 30 models represents an isolation system with excellent control on the properties of 

individual isolators: the probability for the values of the key parameters of the isolation system described 

above to be within ±10% of the best-estimate values is 95% (Bin F1): upper- and lower-bound properties 

are +10% and -10% of the best-estimate properties, respectively, with 95% probability. The second set 

represents an isolation system with good control on the properties of individual isolators: the probability 

for the values of the key parameters of the isolation system to be within ±20% of the best-estimate values 

is 95% (Bin F2)1. We assume the distributions for the values of the key parameters to be normal. The 

criteria described herein require the coefficient of variation (i.e., the ratio of the standard deviation to the 

mean) of the normal distributions to be 0.05 for excellent control and 0.1 for good control. Figure 2-4 

illustrates these distributions in parameters dQ  and dK  for LR isolation systems; for FP isolation 

systems, only dQ  varies and dK  is constant. 

To develop the 2 sets of 30 mathematical models, 2 bins of 30 scale factors were generated first and 

presented in Table 2-4, where the factors for Bin F1 (F2) were obtained from a normal distribution with a 

mean of 1 and a standard deviation of 0.05 (0.1). Figure 2-5 presents the two normal distributions.  For 

                                                      
1 The ±10% and ±20% of best-estimate values apply to the mechanical properties of the isolation system. Given that 

an isolation system consists of a large number of isolators, larger percentage variations in the mechanical properties 

in individual isolators could be tolerated.  
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Figure 2-3.  Influence of a  on the velocity dependence of the coefficient of sliding friction 

 
Figure 2-4.  Variations in the mechanical properties of seismic isolation systems 

 
Figure 2-5.  Normal distributions with a mean of 1 and standard deviations of 0.05 and 0.1 
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Table 2-1. Key parameters for the LR isolation systems1 

Model no. Model name dQ W  dT  (sec) vT  (sec) yu  (mm) 

LR-1 LR_T2Q3 0.03 2 0.05 25 
LR-2 LR_T2Q6 0.06 2 0.05 25 
LR-3 LR_T2Q9 0.09 2 0.05 25 
LR-4 LR_T3Q3 0.03 3 0.05 25 
LR-5 LR_T3Q6 0.06 3 0.05 25 
LR-6 LR_T3Q9 0.09 3 0.05 25 
LR-7 LR_T4Q3 0.03 4 0.05 25 
LR-8 LR_T4Q6 0.06 4 0.05 25 
LR-9 LR_T4Q9 0.09 4 0.05 25 

1. See Figure 1-1 for definitions of dQ , dK  and yu ; dT is related to dK  through the supported 
weight, W , and vT  is related to the vertical stiffness of bearings through W . 

 
Table 2-2. Key parameters for the FP isolation systems1,2 

Model no. Model name maxμ  minμ  a  (s/m) yu  (mm) 

FP-1 FP_T2Q3 0.03 0.015 55 1 
FP-2 FP _T2Q6 0.06 0.030 55 1 
FP-3 FP _T2Q9 0.09 0.045 55 1 
FP-4 FP _T3Q3 0.03 0.015 55 1 
FP-5 FP _T3Q6 0.06 0.030 55 1 
FP-6 FP _T3Q9 0.09 0.045 55 1 
FP-7 FP _T4Q3 0.03 0.015 55 1 
FP-8 FP _T4Q6 0.06 0.030 55 1 
FP-9 FP _T4Q9 0.09 0.045 55 1 

1. See Figure 2-3 for definitions of maxμ , minμ  and a . 

2. The yield displacement of 1 mm applies to the single concave FP bearing; the yield 
displacement of the triple concave FP bearing will approach that of the LR bearing. 

 
Table 2-3. Key parameters for the LDR isolation systems 

Model no. Model name hT  (sec) vT  (sec) Damping ratio 

LDR-1 LDR_T2 2 0.05 0.03 
LDR-2 LDR_T3 3 0.05 0.03 
LDR-3 LDR_T4 4 0.05 0.03 
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Table 2-4. Scale factors for mechanical properties of bearings 

i  F1 F2 
1 0.894 0.787 
2 0.918 0.836 
3 0.931 0.862 
4 0.940 0.881 
5 0.948 0.896 
6 0.955 0.910 
7 0.961 0.922 
8 0.966 0.933 
9 0.971 0.943 

10 0.976 0.952 
11 0.981 0.962 
12 0.985 0.970 
13 0.990 0.979 
14 0.994 0.987 
15 0.998 0.996 
16 1.002 1.004 
17 1.006 1.013 
18 1.011 1.021 
19 1.015 1.030 
20 1.019 1.039 
21 1.024 1.048 
22 1.029 1.057 
23 1.034 1.067 
24 1.039 1.078 
25 1.045 1.090 
26 1.052 1.104 
27 1.060 1.119 
28 1.069 1.138 
29 1.082 1.165 
30 1.106 1.213 
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each of these curves in Figure 2-5, the area under the curve was divided into 30 equal segments; the 

midpoint value2 in each segment is reported in Table 2-4.    

The generation of the 2 sets of 30 models for each LR isolation system is presented below to demonstrate 

the process. For each best-estimate model of Table 2-1, the values of dQ , dK  and vK  were scaled by 2 

sets of factors: [ F1 dQ
i , F1 dK

i , F1 vK
i ] and [ F2 dQ

i , F2 dK
i , F2 vK

i ], where F1 dQ
i , F1 dK

i  and F1 vK
i  ( F2 dQ

i , F2 dK
i  

and F2 vK
i ) are the scale factors for dQ , dK  and vK , respectively, determined from bin F1 (F2) of Table 

2-4 using the Latin Hypercube Sampling procedure (Nowak and Collins 2000) and i = 1 through 30. For 

each value of i , a new model was developed for each case of excellent and good control. 

The implementation of the Latin Hypercube Sampling procedure that was used to select [ F1 dQ
i , F1 dK

i , 

F1 vK
i ] to be applied to the parameters of the best-estimate model follows steps 1 through 4: 

1. Develop a 30×3 matrix with entries in each column equal to those in the second column of Table 

2-4. 

2. Select the first combination of [ F1 dQ
i , F1 dK

i , F1 vK
i ] by randomly selecting a value from each 

column. 

3. Select the second combination by randomly choosing one of the 29 remaining values in each 

column. 

4.  Continue this process until all 30 combinations have been assembled. 

The procedures described above were repeated for the FP and LDR isolation systems of Table 2-2 and 

Table 2-3, respectively. These models were used in the response-history analysis to study the impact of 

variations in the mechanical properties of isolation systems on the response of base-isolated NPPs. 

  

                                                      
2 The midpoint value divides the area under the curve in each segment into halves. 
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SECTION 3  
RESPONSE ANALYSIS FOR CEUS ROCK SITES  

3.1 Design basis earthquake 

The site of the North Anna nuclear power plant (NPP) in Louisa County, Virginia, is a representative rock 

site for NPPs in the Central and Eastern US (CEUS). The Design Basis Earthquake (DBE) for the study at 

the North Anna site is introduced in this subsection. Section 3.2 presents the development of DBE-

matched ground motions used in the response-history analysis. Section 3.3 defines four sets of response-

history analyses to investigate the impact of distribution in both spectral demands and bearing properties 

on the response of base-isolated nuclear structures. Analysis results are presented in Sections 3.4.1 

through 3.4.3 for Lead Rubber (LR), Friction Pendulum (FP) and Low Damping Rubber (LDR) bearings, 

respectively. 

The horizontal and vertical DBE spectra for the North Anna site are presented in Figure 3-1 using both 

normal and logarithmic scales. The horizontal spectrum of Figure 3-1 is a uniform-risk spectrum (URS) 

corresponding to a mean annual frequency of exceedance (MAFE) of 10-5 based on the data presented in 

an Early Site Permit (ESP) Application report for North Anna (Dominion Nuclear North Anna, LLC 

2006). The horizontal DBE spectrum of Figure 3-1 was scaled using the V/H factors of Table 3-1 to form 

the vertical DBE spectrum.  

The technical basis for the V/H factors of Table 3-1 is Bozorgnia and Campbell (2004). They studied the 

ratio of V/H using 443 accelerograms from 36 worldwide earthquakes with moment magnitude ( wM ) 

between 4.7 and 7.7 and the distance to seismogenic rupture ( seisr ) smaller than 60 km. They concluded 

that V/H is strongly dependent on natural period, distance and site condition and weakly dependent on 

magnitude and faulting mechanism. They developed a set of recommendations for V/H that are presented 

in Figure 3-2. The ratios of Figure 3-2a are for firm soil sites (NEHRP Site Class D) and those of Figure 

3-2b are for firm rock, soft rock and very firm soil sites (primarily NEHRP Site Class C and B/C 

boundary).  

Both panels of Figure 3-2 indicate V/H equal to 0.5 at periods greater than 0.3 second although Bozorgnia 

and Campbell note that V/H equal to 0.5 at periods greater than 1 second is conservative for soil sites 

(Figure 3-2a) but unconservative for rock sites (Figure 3-2b), where V/H is slightly greater than 0.5 at 1 

second, approaching a value of 0.7 at about 4 seconds.  
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a. normal scale 

 
b. logarithmic scale 

Figure 3-1.  Horizontal and vertical DBE spectra for the North Anna NPP site and 5% 
damping in normal and logarithmic scales 
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Table 3-1.  V/H for the North Anna NPP sites  
 

Period (sec) V/H 

≤ 0.1 0.9 

0.3 0.5 

1 0.5 

≥ 4 0.7 

 

 

 

 

 
Table 3-2. Analysis sets for this study 

Set Ground motions 
Number 

of 
models 

Quality 
control on 
individual 
isolators 

Number of 
realizations 

for force and 
displacement

G0 100% (150%) of the DBE spectrum-
compatible ground motions of Figure 3-5 1 NA 30 

M0 
100% (150%) of the maximum-minimum 
spectra compatible ground motions of Figure 
3-6 

1 NA 30 

M1 
100% (150%) of the maximum-minimum 
spectra compatible ground motions of Figure 
3-6 

30 excellent 900 

M2 
100% (150%) of the maximum-minimum 
spectra compatible ground motions of Figure 
3-6 

30 good 900 
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Figure 3-2.  Simplified V/H response spectral ratios of Bozorgnia and Campbell (2004) 
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Since the V/H spectral ratios of Figure 3-2 are distance dependent, the seismic hazard curves and 

deaggregation results for the North Anna site were generated using USGS Java ground motion parameter 

calculator (USGS 2009b) and interactive deaggregation tool (USGS 2008) to determine the controlling 

distance. Figure 3-3 presents the deaggregation of the hazard at periods of 0.2 and 2 seconds and a MAFE 

of 42 10−× for North Anna1. In Figure 3-3, the distance for the peak magnitude-distance ( wM - r ) bin is 

14.0 km at a period of 0.2 second and 540 km at a period of 2 seconds. 

The V/H spectral ratios of Table 3-1 for the North Anna NPP site are based on the ratios of Figure 3-2b, 

modified as noted above at a period of 4 second, and the governing distances of Figure 3-3. Linear 

interpolation is used between the reported periods.  

3.2 Selection and scaling of ground motions 

3.2.1 DBE spectrum-compatible ground motions 

Since the number of strong ground-motion records in CEUS is limited, synthetic ground motions were 

developed in 2 steps. Step 1 involved the use of the computer code “Strong Ground Motion Simulation” 

(SGMS, Halldorsson 2004) to generate CEUS-type seed ground motions, which were then spectrally 

matched to the DBE spectra of Figure 2 in step 2 using the computer code RSPMATCH (Abrahamson 

1998).  

The SGMS code is based on the Specific Barrier Model, which provides a complete and self-consistent 

description of the heterogeneous earthquake faulting process and can capture the high-frequency content 

in CEUS ground motions (Halldorsson and Papageorgiou 2005). RSPMATCH adjusts the spectral 

ordinates of the seed motions by adding wavelets to the acceleration time series in the time domain. 

The SGMS code requires the user to provide information on the site condition and the magnitude and 

distance for the scenario event of interest to simulate ground motions. For the North Anna study, the 

assumed site condition is rock. Given that the ground motions were being prepared for analysis of base-

                                                      
1 The USGS interactive deaggregation tool now provides information for an annual frequency of exceedance smaller 

than 2×10-4, which was the smallest frequency available at the time the study of this section was initiated. The 

deaggregation results for North Anna at a MAFE of 10-4 and periods of 0.2 and 2 seconds are not significantly 

different than those presented in Figure 3-3. The modal events at MAFE of 10-4 and 2×10-4 are nearly identical at 

periods of 0.2 and 2 seconds. 
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a. 0.2 second 

 
b. 2 seconds 

Figure 3-3.  Deaggregation of the seismic hazard at periods of 0.2 and 2 seconds at an annual 
frequency of exceedance of 2×10-4 for the North Anna NPP site 
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isolated structures, we developed seed motions initially using the modal event in Figure 3-3b, namely, 

wM = 7.3 and r = 540 km. The spectral shapes of the resultant ground motions are significantly different 

from the DBE spectrum of Figure 3-1. This significant difference in spectral shape made it extremely 

difficult to use the spectrum-matching routine because the solution would not converge. Instead, we used 

the modal and mean events in Figure 3-3a, namely, [ wM = 4.8 and r = 14 km] and [ wM = 6.0 and r = 48 

km], to develop the seed ground motions. 

Thirty sets of DBE spectrum-compatible ground motions were developed using the procedure described 

above. Each set of ground motions includes 2 horizontal components and a vertical component. Panels a, 

c and e of Figure 3-4 present a sample set of DBE spectrum-compatible ground motions and panels b, d 

and f present the target and achieved spectral accelerations for the time series of panels a, c and e, 

respectively. The spectral accelerations for each time series of panels a, c and e of Figure 3-4 closely 

match the target. Panels a, b and c of Figure 3-5 present the spectral accelerations for horizontal 

components 1 and 2 and the vertical component, respectively, of all 30 sets of DBE spectrum-compatible 

ground motions. Each spectrum of Figure 3-5 closely matches the target. 

3.2.2 Maximum-minimum spectra compatible ground motions 

A second set of 30 pairs ground motions, termed maximum-minimum spectra compatible ground 

motions, were developed by amplitude scaling the 30 sets of DBE spectrum-compatible ground motions 

of Figure 3-5 to represent the maximum spectral demand and the demand at the orientation perpendicular 

to the maximum direction, termed the minimum demand.  

For each set of DBE spectrum-compatible motions, the 2 horizontal components were amplitude scaled 

by 
iHF  and 1

iHF , respectively, and the vertical component was amplitude scaled by 
iVF . The factor 

iHF  

(
iVF ) was determined using a lognormal distribution with θ  of 1.3 (1.0) and β  of 0.13 (0.18) using the 

Latin Hypercube Sampling procedure (Nowak and Collins 2000). Panels a, b and c of Figure 3-6 present 

the spectral accelerations for the horizontal components 1 and 2 and vertical component, respectively, of 

all 30 sets of DBE spectrum-compatible ground motions. 

The distributions of 
iHF  and 

iVF  are based on the study of Huang et al. (2007, 2008), where the ratio of 

maximum to geometric-mean (hereafter termed geomean) spectral demands was studied using 147 pairs 

of near-fault records with wM  of 6.5 and greater and the closest site-to-source distance of 15 km and less. 

In their study, the maximum spectral demand at a given period was defined as the maximum of the 
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a. horizontal component 1 b. response spectrum of the time series of panel a 

  
c. horizontal component 2 d. response spectrum of the time series of panel c 

  
e. vertical component f. response spectrum of the time series of panel e 

Figure 3-4.  Sample spectrally matched acceleration time series and the corresponding 5% damped 
response spectra 
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a. horizontal component 1 

 
b. horizontal component 2 

 
c. vertical component 

Figure 3-5.  Five-percent damped response spectra for the 30 sets of DBE spectrum-compatible 
ground motions for the North Anna site 
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a. maximum component 

 
b. minimum component 

 
c. vertical component 

Figure 3-6.  Five-percent damped response spectra for the 30 sets of maximum-minimum DBE 
spectra-compatible ground motions for the North Anna site 
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spectral accelerations at orientations between 0° to 180° for a pair (the two orthogonal horizontal 

components) of ground motions. The solid curves of Figure 3-7a presents the 16th, 50th (median) and 

84th percentiles of the ratio of the maximum demand to GMRotI50, which is an orientation-independent 

geomean demand defined in Boore et al. (2006). The median (θ ) of the ratio varies between 1.25 and 

1.35 at periods greater than 2 seconds. Figure 3-7b presents the logarithmic standard deviation ( β ) of the 

ratio, varying between 0.11 and 0.13 at periods greater than 2 seconds. 

Beyer and Bommer (2006) investigated the ratio of the maximum to recorded geomean spectral demands 

using 949 earthquake records with moment magnitude ranging between 4.2 and 7.9 and hypocentral 

distance ranging between 5 and 200 km. They reported that the median of the ratio varied between 1.2 

and 1.3, depending on the period (see the dotted line of Figure 3-7a): a similar result to that of Huang et 

al. (2008). 

3.3 Analysis sets 

Response-history analysis was performed for two intensities of shaking: 1) 100% DBE shaking using the 

60 sets of ground motions of Figure 3-5 and Figure 3-6, and b) 150% DBE shaking using the ground 

motions of Figure 3-5 and Figure 3-6 but with the amplitude of the acceleration time series multiplied by 

1.5.  

At each intensity level, 4 sets of analyses were performed for each best-estimate model of Tables 2-1 

through 2-3 and the 60 corresponding property-varied models to study the impact of variations in spectral 

demands and the mechanical properties of isolation systems on the response of isolated NPPs. Table 3-2 

summarizes the 4 sets used for this study, denoted G0, M0, M1 and M2.  

Set G0 involves response-history analysis of a best-estimate model subjected to 100% (150%) of the 30 

sets of DBE spectrum-compatible ground motions of Figure 3-5 and produces 30 realizations for each of 

peak bearing displacement and shearing force in the horizontal plane. Here the letter G stands for 

geomean since the target horizontal DBE spectrum of Figure 3-1 is a geomean of two horizontal 

components and the number 0 is used to denote analysis performed using best-estimate models. The data 

developed from analysis of Set G0 is used to benchmark all other results. 

Set M0 is similar to Set G0 but uses 30 maximum-minimum spectrum-compatible ground motions of 

Figure 3-6 for analysis of 100% and 150% DBE shaking. For Set M1 (M2), each of the 30 models 

associated with a given best-estimate model and scale factors in column F1 (F2) of Table 2-2 is analyzed 
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a. 16th, 50th and 84th percentiles b. dispersion 

Figure 3-7.  Distribution of the ratio of maximum spectral demand and GMRotI50 
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using the 30 maximum-minimum spectrum-compatible ground motions of Figure 3-6 for 100% and 150% 

DBE shaking. At a given intensity, Sets M1 and M2 each produce 900 realizations (30 sets of ground 

motions × 30 models) for peak horizontal bearing displacement and transmitted shearing force.   

3.4 Analysis results 

3.4.1 Lead Rubber (LR) isolation systems 

Goodness-of-fit test 

All realizations in an analysis set are assumed to distribute lognormally with median (θ ) and logarithmic 

standard deviation ( β ) computed using the following equations:  

 
1

1exp ln
n

i
i

y
n

θ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (3.1) 

 2

1

1 (ln ln )
1

n

i
i

y
n

β θ
=

= −
− ∑  (3.2) 

where n  is the total number of  the realizations (peak displacement or force response) in an analysis set: 

30 for Sets G0 and M0, and 900 for Sets M1 and M2. Variable iy  is the ith realization in an analysis set. 

To verify the assumption for the distribution of the realizations, goodness-of-fit tests were performed and 

sample results are presented in Figure 3-8 using the realizations associated with Model LR_T3Q6 and 

100% DBE shaking. Panels a, c and e present the results for peak displacement for Sets G0, M0 and M1, 

respectively, and panels b, d and f present results for peak transmitted shearing force. The results for Set 

M2 show a similar trend to those of Figure 3-8 and are not here. Each panel includes two curves. The 

solid curve is the cumulative distribution function (CDF) of the n  realizations, which were sorted from 

smallest to largest and assigned a probability from 1 n  to 1.0 in increments of 1 n , and the dotted curve 

is the CDF of a lognormal distribution with the median and dispersion estimated using (3.1) and (3.2). 

Based on the results of the goodness-of-fit tests, we consider it acceptable to assume that the peak 

displacement and transmitted shearing force distribute lognormally. 

Medians and logarithmic standard deviations of peak displacement and force 

Table 3-3 presents θ  and β of peak displacement and transmitted shearing force for each case, model 

and shaking intensity analyzed for LR isolation systems. Table 3-4 presents the ratio of θ  and β  
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a. displacement, G0 b. force, G0 

  
c. displacement, M0 d. force, M0 

  
e. displacement, M1 f. force, M1 

Figure 3-8.  Goodness-of-fit tests for Model LR_T3Q6 subjected to 100% DBE shaking for Sets G0, 
M0 and M1 
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between Sets M0 and G0, Sets M1 and M0 and Sets M2 and M1 for each model and shaking intensity. 

Table 3-5 presents the ratios of θ  and β  at 150% to 100% DBE shaking. The key observations include: 

1) For 100% (150%) DBE shaking, the values of θ  of Table 3-3 for displacement range between 20 

(27) and 43 (63) mm and those for transmitted shearing force range between 3.7 (4.2) and 9.1 

(11.0) percent of the supported weight. For 100% DBE shaking, the values of θ  for the models 

with 0.09dQ W=  and 0.06W are close to the yield displacement of the LR bearings (25 mm). 

Such isolation systems make little sense for rock sites in the CEUS and should not be used. The 

results for those isolation systems in Table 3-3 through Table 3-7 are shaded and not discussed 

further in this report. 

2) In Table 3-4, the ratios of θ  for M1/M0 and M2/M1 are equal to 1 for all models with 

0.03dQ W=  and shaking intensities. The median response for analyses accounting for variability 

in the mechanical properties of the isolation system (i.e., M1 and M2) can be estimated without 

bias using analysis of a best-estimate model (i.e. M0).   

3) In Table 3-4, the ratios of θ  for M0/G0 for displacement range between 1.14 and 1.21 and those 

for shearing force range between 1.06 and 1.11 for all models with 0.03 ,dQ W=  depending on 

the degree of nonlinearity. If analysis is performed using geomean-spectrum-compatible ground 

motions, the median displacement should be increased by 15% to 20% and the median shearing 

force should be increased by 10% to address variability in spectral demands. 

4) In Table 3-5, the ratio of θ  at 150% to 100% DBE shaking for a given model and analysis set 

(for example, the θ  (= 43 mm) for LR_T2Q3 and G0 for 150% DBE shaking divided by θ  (= 

31 mm) for 100% DBE shaking2) ranges between 1.40 and 1.47 for displacement and between 

1.13 and 1.26 for shearing force for all models with 0.03 .dQ W=  The ratio of θ  does not vary 

significantly for displacement but shows dependency on dT  for shearing force. Such ratios could 

be used to estimate median and other fractile isolator responses in the absence of computations 

for 150% DBE shaking as noted below.  

                                                      
2 Each value of θ  reported in Table 3-3 for displacement was rounded to the nearest mm. The ratios of θ  in Table 

3-5 were not computed using the rounded numbers. For example, the ratio of θ  of Table 3-5 for displacement, 

LR_2Q3 and G0, equal to 1.41, was computed by dividing 43.1 mm by 30.6 mm. 
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Table 3-5. Ratios of the statistics of Table 3-3 at 150% to 100% DBE shaking 

Model 
θ   β  

G0 M0 M1 M2 G0 M0 M1 M2 
Displacement 

LR_T2Q3 1.41 1.43 1.43 1.43 1.21 1.08 1.09 1.12 
LR_T2Q6 1.40 1.42 1.42 1.41 0.96 1.26 1.18 1.15 
LR_T2Q9 1.35 1.36 1.36 1.37 1.32 1.29 1.23 1.17 
LR_T3Q3 1.42 1.47 1.46 1.46 1.15 1.33 1.30 1.25 
LR_T3Q6 1.42 1.41 1.42 1.42 1.21 1.08 1.12 1.13 
LR_T3Q9 1.36 1.38 1.38 1.38 1.15 1.10 1.13 1.18 
LR_T4Q3 1.40 1.45 1.44 1.43 1.07 1.16 1.15 1.14 
LR_T4Q6 1.40 1.42 1.42 1.42 1.31 1.26 1.22 1.16 
LR_T4Q9 1.36 1.39 1.39 1.40 1.12 1.18 1.19 1.21 

Force 
LR_T2Q3 1.25 1.26 1.26 1.26 1.19 1.07 1.07 1.10 
LR_T2Q6 1.24 1.23 1.23 1.23 0.77 1.05 1.00 0.97 
LR_T2Q9 1.24 1.21 1.21 1.22 0.97 1.02 0.98 0.96 
LR_T3Q3 1.18 1.20 1.20 1.20 1.07 1.36 1.30 1.20 
LR_T3Q6 1.20 1.17 1.17 1.17 0.89 0.80 0.87 0.97 
LR_T3Q9 1.20 1.19 1.19 1.19 0.79 0.75 0.83 0.92 
LR_T4Q3 1.13 1.14 1.14 1.14 1.00 1.20 1.19 1.15 
LR_T4Q6 1.16 1.14 1.14 1.14 0.85 0.77 0.87 0.98 
LR_T4Q9 1.18 1.17 1.17 1.17 0.78 0.76 0.82 0.94 
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5) In Table 3-3, the values of β  of Table 3-3 for displacement range between 0.10 and 0.18 and 

those for transmitted shearing force range between 0.04 and 0.10 for all models with 

0.03 .dQ W=  The dispersion in displacement is higher than for transmitted shearing force, which 

is an expected result. Although there are significant percentage differences between Sets G0 and 

M2 for β  (e.g., the percentage increase in β  is 150% between Sets G0 and M2 for transmitted 

shearing force for model LR_T4Q3 and 150% DBE shaking), all values of β  are small.  

The number of pairs of ground motions required to achieve a reliable estimate of median response 

depends on the dispersion in the response and the required precision and confidence level for the estimate. 

For a lognormal distribution with a median of θ  and a logarithmic standard deviation of β , the number 

of realizations ( n ) required to estimate the median within a range of (1 )Xθ +  with %Z  of confidence 

can be computed as (Huang et al. 2008b) 

 

2
1(1 )

2
ln(1 )

n
X

α β−⎛ ⎞Φ − ⋅⎜ ⎟
= ⎜ ⎟+⎜ ⎟
⎝ ⎠

 (3.3) 

where 1−Φ  is the inverse standardized normal distribution function and 1 %Zα = − . If we assume that the 

response-history analysis is performed using geomean-spectrum-compatible ground motions (i.e., Set G0) 

and the dispersion in the peak response is no greater than 0.15 per Table 3-3, the minimum number of 

pairs of ground motions per (3.3) to ensure a 90% confidence of the true median displacement being 

within ±10% of the estimated value is 7. 

Scale factors for responses with 1% (10%) probability of exceedance at 100% (150%) DBE shaking 

As noted previously, ASCE 43 writes that nuclear structures should achieve two performance goals: 1) 

less than 1% probability of unacceptable performance for DBE shaking, and 2) less than 10% probability 

of unacceptable performance for shaking equal to 150% of the DBE ground motion. The computation of 

the probability of unacceptable performance involves the development of the fragility curves for isolated 

nuclear structures (Reed and Kennedy 1994, Kennedy 1999), which is beyond the scope of this study. 

Instead of computing the probability of unacceptable performance, we present factors to scale the median 

responses for Sets G0 and M0 and 100% DBE shaking to the responses corresponding to 1) 1% 

probability of exceedance (PE) for Sets M1 and M2 for 100% DBE shaking, and 2) 10% PE for Sets M1 
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and M2 for 150% DBE shaking. The factors for isolation-system displacement and transmitted shearing 

force are presented in Table 3-6 and Table 3-7, respectively.  

If response-history analysis is performed using only the DBE spectrum-compatible ground motions, the 

factors in the 2nd through 5th columns of Table 3-6 and Table 3-7 can be used to address the influence of 

both maximum-demand orientation and the variation in the material properties of isolation systems on 

responses. The factor for displacement (force) corresponding to 1% PE at 100% DBE shaking ranges 

between 1.54 (1.22) and 1.66 (1.36) and that corresponding to 10% PE at 150% DBE shaking ranges 

between 1.96 (1.33) and 2.10 (1.58) for all models with 0.03dQ W= . The variation in the factors of each 

column of Table 3-6 and Table 3-7 is not significant and the factor for Set M1 (e.g., cell (2, 3) of Table 

3-6) is similar to the corresponding factor for Set M2 (e.g., cell (2, 5) of Table 3-6). 

If response-history analysis is performed using the maximum-minimum spectra compatible ground 

motions, the factors in the 6th through 9th columns of Table 3-6 and Table 3-7 can be used to address the 

impact of variation in isolator material properties on response. The factor for displacement (force) 

corresponding to 1% PE at 100% DBE shaking ranges between 1.34 (1.15) and 1.42 (1.24) and that 

corresponding to 10% PE at 150% DBE shaking ranges between 1.70 (1.25) and 1.84 (1.44) for all 

models with 0.03dQ W= . 

3.4.2 Friction Pendulum (FP) isolation systems 

Medians and logarithmic standard deviations of peak displacement and force 

The analyses of Table 3-3 through Table 3-5 were repeated for the FP isolation systems and results are 

presented in Table 3-8 through Table 3-10, respectively. The key observations include: 

1) For 100% (150%) DBE shaking, the values of θ  of Table 3-8 for displacement range between 

5.2 (9.2) and 13 (25) mm and those for transmitted shearing force range between 3.7 and 4.3 (4.3 

and 5.6), 7.2 and 7.6 (8.2 and 8.9), and 10.6 and 10.9 (12.2 and 12.6) percent of the supported 

weight for dQ  of 0.03W , 0.06W  and 0.09W , respectively. Given the spectra of Figure 3-5 and 

Figure 3-6, the median peak displacements are smaller than and median peak transmitted shearing 

forces are comparable to those of the LR isolation systems (see Table 3-3). This observation is 

expected since the spectral demands as well as the responses of the isolation systems are 
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Table 3-10. Ratios of the statistics of Table 3-8 for 150% to 100% DBE shaking 

Model 
θ  β  

G0 M0 M1 M2 G0 M0 M1 M2 
Displacement 

FP_T2Q3 1.88 2.02 2.01 2.01 1.03 0.94 0.95 0.98 
FP_T2Q6 1.74 1.80 1.80 1.80 0.99 0.96 0.96 0.95 
FP_T2Q9 1.76 1.80 1.80 1.80 1.06 0.97 0.98 0.99 
FP_T3Q3 1.90 1.97 1.97 1.98 1.00 0.97 0.97 0.99 
FP_T3Q6 1.73 1.81 1.81 1.82 0.97 0.94 0.93 0.92 
FP_T3Q9 1.76 1.81 1.81 1.81 1.10 0.97 0.97 0.98 
FP_T4Q3 1.90 1.94 1.94 1.95 0.97 1.01 1.01 1.02 
FP_T4Q6 1.74 1.81 1.82 1.82 0.97 0.92 0.91 0.90 
FP_T4Q9 1.77 1.83 1.82 1.82 1.11 0.98 0.99 1.00 

Force 
FP_T2Q3 1.27 1.29 1.29 1.30 1.32 1.57 1.48 1.29 
FP_T2Q6 1.17 1.18 1.18 1.18 1.49 1.39 1.25 1.11 
FP_T2Q9 1.16 1.16 1.16 1.16 1.40 1.10 1.08 1.05 
FP_T3Q3 1.19 1.19 1.19 1.20 1.22 1.50 1.37 1.17 
FP_T3Q6 1.15 1.15 1.15 1.15 1.39 1.32 1.19 1.08 
FP_T3Q9 1.16 1.15 1.15 1.15 1.35 1.19 1.14 1.09 
FP_T4Q3 1.17 1.17 1.17 1.16 1.19 1.44 1.30 1.14 
FP_T4Q6 1.15 1.14 1.14 1.14 1.37 1.35 1.22 1.10 
FP_T4Q9 1.15 1.15 1.15 1.15 1.35 1.22 1.16 1.11 
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insignificant in the long period range for the North Anna site and the FP isolation systems have a 

much higher pre-yield stiffness than the LR isolation systems. 

2) In Table 3-9, the ratios of θ  for M1/M0 and M2/M1 are equal to 1 for all models and shaking 

intensities. The median response for analyses accounting for the variability in the mechanical 

properties of the isolation system (i.e., M1 and M2) can be estimated without bias using analysis 

of a best-estimate model (i.e., M0). 

3) In Table 3-9, the ratios of θ  for M0/G0 for displacement range between 1.11 and 1.29 and are 

higher for the models with 0.03dQ W=  than that for 0.06dQ W=  and 0.09 .W  The difference in 

the values of θ  for shearing force between Sets G0 and M0 is insignificant. For FP isolation 

systems with 0.03dQ W= , the median displacement computed using geomean-spectrum-

compatible ground motions should be increased by 20% to 30% to address variability in spectral 

demands. 

4) In Table 3-10, the ratios of θ  at 150% to 100% DBE shaking range between 1.73 and 2.02 for 

displacement and between 1.14 and 1.29 for shearing force. The ratios for displacement are much 

greater than those for shearing force due to the nonlinear behavior of the isolation systems. The 

ratio for displacement is greater for FP isolation systems than for LR isolation systems (see Table 

3-5) for a given dQ  and dT  but the difference in the ratio for shearing force between the FP and 

LR isolation systems for a given dQ  and dT  is insignificant. 

5) In Table 3-8, the dispersions ( β ) in displacement are higher than those in transmitted shearing 

force. For displacement, the dispersion increases if the variability in the spectral demand is 

included in the analysis (see the ratio of β  of Table 3-9 for M0/G0) and does not further increase 

as the variability in the bearing properties is considered (see the ratios of β  of Table 3-9 for 

M1/M0 and M2/M1). For transmitted shearing force, although there are significant percentage 

differences in the dispersions between Sets G0 and M2, all values of β  are small.  

6) The dispersion in displacement for the FP isolation systems (Table 3-8) is much higher than that 

for LR isolation systems (Table 3-3), which results in a greater number of pairs of ground 

motions required in the response-history analysis to achieve a reliable estimate of median 

displacement. If we assume that the response-history analysis is performed for Set G0 using the 

models with 0.03dQ W=  and the dispersion in the peak displacement is no greater than 0.21 per 
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Table 3-8, the minimum number of pairs of ground motions per (3.3) to ensure a 90% confidence 

of the true median displacement being within ±10% of the estimated value is 13. 

Scale factors for responses with 1% (10%) probability of exceedance at 100% (150%) DBE shaking 

The analyses of Table 3-6 and Table 3-7 were repeated for FP isolation systems and results are presented 

in Table 3-11 and Table 3-12, respectively. As noted above, the dispersion in displacement for FP 

isolation systems is higher than that for LR isolation systems and therefore the factors to scale the median 

displacements for Sets G0 and M0 to the displacements corresponding with 1% (10%) PE at 100% 

(150%) DBE shaking for Sets M1 and M2 are higher for FP isolation systems than for LR isolation 

systems.  

If response-history analysis is performed using only the DBE spectrum-compatible ground motions, the 

scale factor for displacement (force) corresponding to 1% PE at 100% DBE shaking ranges between 2.09 

(1.17) and 2.37 (1.35) and that corresponding to 10% PE at 150% DBE shaking ranges between 2.91 

(1.27) and 3.35 (1.62) (see the 2nd through 5th columns of Table 3-11 and Table 3-12).  

If response-history analysis is performed using the maximum-minimum spectra compatible ground 

motions, the factor for displacement (force) corresponding to 1% PE at 100% DBE shaking ranges 

between 1.73 (1.17) and 2.09 (1.29) and that corresponding to 10% PE at 150% DBE shaking ranges 

between 2.53 (1.27) and 2.78 (1.55) (see the 6th through 9th columns of Table 3-11 and Table 3-12). 

The median displacements of Table 3-3 and Table 3-8 at 100% DBE shaking are very small. The median 

displacements of the LR isolation systems with 0.09dQ W=  are either smaller than or barely equal to the 

yield displacement (24 mm). Analysis results for LDR isolation systems are presented in the following 

subsection. 

3.4.3 Low Damping Rubber (LDR) isolation systems 

Medians and logarithmic standard deviations of peak displacement and force 

The analyses of Table 3-3 through Table 3-5 were repeated for LDR isolation systems and results are 

presented in Table 3-13 through Table 3-15, respectively. The key observations include: 

1) For 100% DBE shaking, the values of θ  of Table 3-13 for displacement range between 61 and 

73 mm and those for transmitted shearing force range between (6.2 and 7.1), (2.8 and 3.2), and 
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(1.6 and 1.8) percent of the supported weight for isolation systems with periods of 2, 3 and 4 

seconds, respectively. The median responses for 150% DBE shaking are 150% of those for 100% 

DBE shaking since the isolation systems are modeled using linear springs and linear viscous 

damping. The median transmitted shearing forces of Table 3-13 are small because the spectral 

demands in the long period range of the horizontal DBE spectrum of Figure 3-1 are small: the 

5%-damping spectral ordinates at periods of 2, 3 and 4 seconds are 0.045, 0.022 and 0.012 g, 

respectively. 

2) In Table 3-14, the trend in the ratios of θ  for M1/M0 and M2/M1 is the same as that in Table 3-4 

and Table 3-9; namely, the median response for analyses where the variability in material 

properties of isolators is included can be estimated without bias using a best-estimate model.  

3) In Table 3-14, the ratios of θ  for M0/G0 are independent of the isolation period and between 

1.14 and 1.16 for both displacement and shearing force. If analysis is performed using geomean-

spectrum-compatible ground motions, the median response should be increased by 15% to 

address variability in spectral demands. 

4) In Table 3-13, the dispersions β  in peak response range between 0.1 and 0.16. If we assume that 

the response-history analysis is performed using geomean-spectrum-compatible ground motions 

and the dispersion in the peak response is no greater than 0.12 per Table 3-13, the minimum 

number of pairs of ground motions required to estimate the median response within ±10% of the 

true value with 90% confidence per (3.3) is 4. 

Scale factors for responses with 1% (10%) probability of exceedance at 100% (150%) DBE shaking 

The analyses of Table 3-6 and Table 3-7 were repeated for the LDR isolation systems and results are 

presented in Table 3-15 and Table 3-16, where the corresponding scale factors for displacement and 

shearing force for a given model are similar. For example, the factors 1, ,99 0,M DBE th G DBED θ  and 

1, ,99 0,M DBE th G DBEF θ  for Model LDR_T2 are 1.43 and 1.44, respectively. The increase in the dispersion in 

the mechanical properties of the isolation system does not have a significant impact on the scale factors; 

for example, the factors 1,150% ,90 0,M DBE th G DBED θ  and 2,150% ,90 0,M DBE th G DBED θ  for Model LDR_T2 are both 

1.94. 
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If the response-history analysis is performed using only the DBE spectrum-compatible ground motions, 

the scale factor for response corresponding to 1% (10%) PE at 100% (150%) DBE shaking ranges 

between 1.43 (1.94) and 1.67 (2.12). If the response-history analysis is performed using the maximum-

minimum spectra compatible ground motions, the scale factor ranges between 1.25 (1.70) and 1.44 (1.83).  
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SECTION 4  
STUDIES FOR CEUS SOIL SITES 

4.1 Design basis earthquake 

The site of the Vogtle nuclear power plant (NPP) in Waynesboro, Georgia, is a representative soil site for 

NPPs in the Central and Eastern US (CEUS). The Design Basis Earthquake (DBE) used for the study at 

the Vogtle site is introduced in this subsection.  

Figure 4-1 presents the horizontal DBE spectrum developed by the Southern Nuclear Operating Company 

for the Vogtle Early Site Permit (ESP) Application (SNOC 2008). The spectrum is a site-specific uniform 

risk spectrum at the ground-surface level. The development of the spectrum of Figure 4-1 involves 

probabilistic seismic hazard analysis (PSHA), site response analysis and the conversion of a uniform 

hazard spectrum (UHS) to a uniform risk spectrum (URS). The procedure used to develop the spectrum of 

Figure 4-1 is documented in the Vogtle ESP application and is summarized by step below:  

1. PSHA was performed for hard rock conditions at seven structural periods, 0, 0.04, 0.1, 0.2, 0.4, 1 

and 2 seconds, using the attenuation relationship of McCann et al. (2004).The seven spectral 

ordinates associated with a mean annual frequency of exceedance (MAFE) of 410−  are presented 

in Figure 4-2 using the symbol “×”.  

2. The seismic hazard of Step 1 was deaggregated at MAFEs of 410−  and 510−  per USNRC 

Regulatory Guide 1.165 (USNRC 1997) for two sets of structural frequencies, namely, a high-

frequency set bracketing 10 and 5 Hz and a low-frequency set bracketing 2.5 and 1 Hz. The 

controlling pair of magnitude ( wM ) and distance ( r ) was identified to be 5.6 and 12 km for the 

high-frequency set and 7.2 and 130 km for the low-frequency set. 

3. For a given MAFE, the spectral shapes for each of the high- and low-frequency sets were 

developed using the controlling [ wM - r ] pairs of Step 2 and the attenuation relationship of 

McGuire et al. (2001) for the Central and Eastern United States. The resultant spectral shapes 

were scaled to target spectral ordinates at 7.5 Hz (0.133 second) and 1.75 Hz (0.57 second) for 

the high- and low-frequency cases, respectively, and the target spectral ordinates at 7.5 and 1.75 

Hz were obtained through the interpolation of the spectral ordinates of Step 1 for the 

corresponding MAFE. The scaled spectra for the high- and low-frequency cases for a MAFE of 
410−  are presented in Figure 4-2 using the red and blue curves, respectively. 
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Figure 4-1.  Five-percent damped horizontal DBE spectrum for the Vogtle site (SNOC 2008) 

 

Figure 4-2.  Five-percent damped spectral accelerations for a MAFE of 10-4 and hard rock  
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4. For a given MAFE, the scaled spectra of Step 3 for the high- and low-frequency cases were used 

as target rock spectra to develop 60 spectrally matched ground motions (30 per case) for site 

response analysis. The spectral matching was performed in the time domain using 60 seed ground 

motions selected based on the controlling [ wM - r ] pair of Step 2 and average shear-wave 

velocity in the 30 meters below the ground surface ( 30SV ) of 600+ m/s. Due to the lack of strong 

ground motion records in the Eastern North America (ENA), 58 of the 60 selected seed ground 

motions were recorded in the regions other than ENA. 

5. Site-response analysis was performed to characterize the amplification of rock motion to the free- 

field ground surface. Site investigations were conducted to identify soil parameters. The 

variations in shear modulus and damping of the soil were developed using two sets of soil 

degradation relationships developed for EPRI (1993) and the Savannah River site (Lee 1996). 

Sixty soil profiles were developed for each set of degradation relationships. For each target 

spectrum developed in Step 3, the 60 soil profiles were paired with 30 spectrally matched ground 

motions (one ground motion for two soil profiles) and analyzed using the computer program 

SHAKE (Deng and Ostadan 2000). For each analysis, the site amplification factor at a given 

period was computed using the spectral acceleration for soil response divided by the target rock 

spectral acceleration. The mean of the site amplification factors obtained from the analyses for 

each target spectrum of Step 3 was used to develop the soil spectrum for the Vogtle ESP site.  

Figure 4-3 presents the site amplification factors developed for a MAFE of 410− . The results of 

Figure 4-3 indicate a mode at a period of 1.6 second (0.6 Hz) for the soil columns developed by 

site-response analysis. The site amplification factor at 1.6 seconds is 3.9 for the low-frequency 

case, which is substantially greater than the corresponding value in ASCE 7-05 (ASCE 2006). 

6. For a given MAFE, the site-class factors for the high- and low-frequency cases were merged into 

one set of factors, where the factor at a given period was chosen from either case. The controlling 

case at a period is that with a higher mean soil response in the analysis of Step 5. At periods 

smaller than 0.125 second (i.e., frequencies greater than 8 Hz), the high-frequency case governs; 

at periods greater than 0.5 second (i.e., frequencies smaller than 2 Hz), the low-frequency case 

governs. At periods between 0.125 and 0.5 second (i.e., frequencies between 2 and 8 Hz), the 

controlling case depends on the period and MAFE.  
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7. The site amplification factors of Step 6 were used to scale the rock UHS for MAFEs of 410−  and 
510−  to site-specific UHS. The rock UHS for a MAFE of 410−  is presented in Figure 4-2 using 

the solid black line. The development of the rock UHS of Figure 4-2 started from the seven 

PSHA spectral ordinates of Figure 4-2 presented using the symbol “×”. The target rock spectrum 

of Figure 4-2 for the high- or low-frequency case was scaled to match the seven spectral ordinates 

of Step 1 to develop the rock UHS. The choice of the high- or low-frequency case depended on 

the controlling case determined in Step 6. At periods smaller than 0.125 second, the rock spectral 

shape for the high-frequency case was used; at periods greater than 0.5 second, that for the low-

frequency case was used. 

For example, the spectral ordinates of Step 1 for a MAFE of 410−  are 0.1 and 0.065 g at periods 

of 1 and 2 seconds, respectively, where the low-frequency case controls the spectral demand. The 

spectral ordinates for the target rock spectrum of Figure 4-2 for the low-frequency case at periods 

of 1 and 2 seconds are 0.09 and 0.06 g, respectively, and were scaled by factors of 1.11 and 1.08 

to be 0.1 and 0.065 g. The scale factors for periods between 1 and 2 seconds were developed by 

linear interpolation. 

Note that the rock UHS of Figure 4-2 is not consistent with the definition of the SSE per USNRC 

Regulatory Guide 1.165, where the SSE is required to envelop high- and low-frequency spectra 

for a MAFE of 510− . The rock UHS of Figure 4-2 was developed for the purpose of generating a 

performance-based URS per ASCE 43-05 (ASCE 2005). 

The rock UHS of Figure 4-2 is re-plotted in Figure 4-4 together with the corresponding site-

specific UHS developed using the rock UHS of Figure 4-2 and the site amplification factors of 

Step 6 for a MAFE of 410− . A peak can be observed in the site-specific UHS of Figure 4-4 at a 

period of 1.6 second that corresponds to the peak in the site amplification spectrum of Figure 4-3 

at the same period. 

8. The conversion of a UHS to a URS was performed per ASCE 43-05. The ratio of the spectral 

ordinates of the site-specific UHS for MAFEs of 510−  and 410−  for each period was computed 

and termed AR. The site-specific UHS for a MAFE of 410−  was converted to a URS using the 

following equation: 

 -4
0.8

Soil,10
URS = UHS max(1.0 or 0.6 AR )× ⋅  (4.1) 
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Figure 4-3.  Site amplification factors for a MAFE of 410−  for high- and low-frequency cases 

 

Figure 4-4.  Five-percent damped rock and site-specific UHS for a MAFE of 410−   
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where -4Soil,10
UHS  is the spectral ordinate of the site-specific UHS for a MAFE of 410−  at a given 

period. The spectrum so developed is termed the baseline DBE spectrum. The site-specific UHS 

for a MAFE of 410− and the baseline DBE spectrum are presented in Figure 4-5. The baseline 

DBE spectrum was smoothed by a running average filter, which smoothed out the peaks and 

troughs in the raw spectrum at periods smaller than 1 second but maintains the peak at a period of 

1.6 seconds representing a long-period mode of the soil column used in the analysis. The 

smoothed DBE spectrum of Figure 4-1 is also presented in Figure 4-5. 

The horizontal and vertical DBE spectra developed by the Southern Nuclear Operating Company for the 

Vogtle site are presented in Figure 4-6, where the vertical DBE spectral ordinates were developed by 

scaling the horizontal DBE spectral ordinates using a V/H scale factor of 0.9 at periods smaller than 0.07 

second (15 Hz) and 0.5 at periods greater than 1 second. Interpolation was used to determine the scale 

factors at periods between 0.07 and 1 second. The technical basis for the V/H scale factors for the spectra 

of Figure 4-6 is provided in SNOC (2008). The DBE spectra of Figure 4-6 were used in this study. 

4.2 Selection and scaling of ground motions 

The two-step approach described in Section 3.2 was used to developed synthetic ground motions for the 

Vogtle study. In the first step, the computer code “Strong Ground Motion Simulation” (SGMS, 

Halldorsson 2004) was used to generate 30 sets of CEUS-type seed ground motions. Each set of ground 

motions includes two horizontal components and a vertical component. The [ wM - r ] pair used to 

generate seed ground motions was the controlling pair for the low-frequency hazard identified in Step 2 of 

Section 4.1, namely, wM = 7.2 and r = 130 km. In the second step, each set of the seed ground motions 

was spectrally matched to the DBE spectra of Figure 4-6 using the computer code RSPMATCH 

(Abrahamson 1998).  

Panels a, c and e of Figure 4-7 present a sample set of DBE spectrum-compatible ground motions and 

panels b, d and f present the target and achieved spectral accelerations for the time series of panels a, c 

and e, respectively. Panels a, b and c of Figure 4-8 present the spectral accelerations for the horizontal 

components 1 and 2 and vertical component, respectively, of all 30 sets of DBE spectrum-compatible 

ground motions. Each spectrum of Figure 4-8 closely matches the target. 

The 30 sets of DBE spectrum-compatible ground motions of Figure 4-8 were amplitude scaled to develop 

the maximum-minimum spectra compatible ground motions. The scaling procedure was the same as that 
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Figure 4-5.  Site-specific UHS of Figure 4-4 and the raw and smoothed SNOC DBE spectra for 
the Vogtle site 

 

Figure 4-6.  Five-percent damped horizontal and vertical DBE spectra for the Vogtle site 
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a. horizontal component 1 b. response spectrum of the time series of panel a 

 
c. horizontal component 2 d. response spectrum of the time series of panel c 

 
e. vertical component f. response spectrum of the time series of panel e 

Figure 4-7.  Sample spectrally matched acceleration time series and the corresponding 5% damped 
response spectra 
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a. horizontal component 1 

 
b. horizontal component 2 

 
c. vertical component 

Figure 4-8.  Five-percent damped response spectra for the 30 sets of DBE spectrum-compatible 
ground motions for the Vogtle site 
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described in Section 3.2.2 and is not repeated here. Panels a, b and c of Figure 4-9 present the spectral 

accelerations for the horizontal components 1 and 2 and vertical component, respectively, of all 30 sets of 

DBE spectrum-compatible ground motions. 

4.3 Analysis sets 

The analysis described in Section 3.3 was repeated using the ground motions developed for the Vogtle 

NPP site. Response-history analysis was performed for two intensities of shaking: 1) 100% DBE shaking 

using the 60 sets of ground motions of Figure 4-8 and Figure 4-9, and b) 150% DBE shaking using the 

ground motions of Figure 4-8 and Figure 4-9 but with the amplitude of the acceleration time series 

multiplied by 1.5.  

At each intensity level, the 4 sets of analyses of Table 3-2, namely, Sets G0, M0, M1 and M2, were 

performed for each best-estimate model of Tables 2-1 through 2-3 and the 60 corresponding property-

varied models to study the impact of variations in spectral demand and mechanical properties of the 

isolation system on the response of isolated NPPs. 

4.4 Analysis results 

4.4.1 Lead Rubber (LR) isolation systems 

Medians and logarithmic standard deviations of peak displacement and force 

Table 4-1 presents θ  and β of peak displacement and transmitted shear force for each case, model and 

shaking intensity analyzed LR isolation systems. Table 4-2 presents the ratios of θ  and β  between Sets 

M0 and G0, Sets M1 and M0 and Sets M2 and M1 for each model and shaking intensity. Table 4-3 

presents the ratios of θ  and β  at 150% to 100% DBE shaking. The key observations include: 

1) For 100% (150%) DBE shaking, the values of θ  of Table 4-1 for displacement range between 

101 (251) and 401 (686) mm and those for transmitted shearing force range between 8.4 (11.3) 

and 42.8 (71.1) percent of the supported weight. The median shearing forces for the models 

associated with dT = 2 seconds are greater than those with dT = 3 and 4 seconds. For the spectral 

shape of Figure 4-1 where a local peak is evident at a period of 1.6 seconds, the use of an 

isolation period of 2 seconds makes no practical sense. Accordingly, the results for the isolation 

systems with dT = 2 seconds in Table 4-1 through Table 4-5 are shaded and not used again in this 

report. 
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a. maximum component 

 
b. minimum component 

 
c. vertical component 

Figure 4-9.  Five-percent damped response spectra for the 30 sets of maximum-minimum DBE 
spectra-compatible ground motions for the Vogtle site 
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Table 4-3. Ratios of the statistics of Table 4-1 at 150% to 100% DBE shaking 

Model 
θ   β  

G0 M0 M1 M2 G0 M0 M1 M2 
Displacement 

LR_T2Q3 1.78 1.71 1.71 1.72 0.91 0.93 0.93 0.93 
LR_T2Q6 2.17 2.04 2.03 2.03 0.84 0.84 0.83 0.79 
LR_T2Q9 2.49 2.51 2.49 2.45 1.08 0.71 0.74 0.78 
LR_T3Q3 1.61 1.60 1.60 1.60 0.92 0.83 0.85 0.88 
LR_T3Q6 1.80 1.73 1.73 1.73 0.93 0.89 0.89 0.91 
LR_T3Q9 2.08 2.00 2.00 2.00 0.89 1.00 0.97 0.91 
LR_T4Q3 1.55 1.55 1.55 1.56 0.86 0.90 0.89 0.89 
LR_T4Q6 1.59 1.57 1.57 1.58 1.04 1.03 1.02 1.02 
LR_T4Q9 1.86 1.77 1.77 1.77 0.99 0.95 0.95 0.92 

Force 
LR_T2Q3 1.71 1.66 1.67 1.67 0.94 0.96 0.97 0.98 
LR_T2Q6 1.88 1.85 1.84 1.83 0.95 0.90 0.92 0.94 
LR_T2Q9 1.76 1.88 1.88 1.85 1.42 0.99 1.02 1.08 
LR_T3Q3 1.50 1.50 1.50 1.50 0.98 0.89 0.94 1.01 
LR_T3Q6 1.47 1.47 1.47 1.47 1.12 1.09 1.11 1.16 
LR_T3Q9 1.40 1.46 1.46 1.45 1.13 1.37 1.37 1.39 
LR_T4Q3 1.36 1.38 1.38 1.38 0.91 1.03 1.03 1.03 
LR_T4Q6 1.24 1.28 1.28 1.28 1.42 1.27 1.25 1.23 
LR_T4Q9 1.23 1.25 1.25 1.25 1.22 1.41 1.41 1.39 
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2) In Table 4-2, the ratios of θ  for M1/M0 and M2/M1 are equal to 1 for all models with dT = 3 and 

4 seconds and shaking intensities. The median response for analyses accounting for the variability 

in isolation-system material properties (i.e., Sets M1 and M2) can be estimated without bias using 

analysis of a best-estimate model (i.e., Set M0).  

3) In Table 4-2, the ratios of θ  for M0/G0 for displacement range between 1.20 and 1.38 and those 

for shearing force range between 1.10 and 1.21 for all models with dT = 3 and 4 seconds. If 

analysis is performed using geomean-spectrum-compatible ground motions, the median 

displacement should be increased by 20% to 40% and the median shearing force should be 

increased by 20% to address variability in spectral demands. 

4) In Table 4-3, the ratio of θ  at 150% to 100% DBE shaking for a given model and analysis set 

ranges between 1.55 and 2.08 for bearing displacement and between 1.23 and 1.50 for shearing 

force all models with dT = 3 and 4 seconds. At a given dT , the ratio of θ  for bearing 

displacement increases as dQ  increases and that for shearing force decreases as dQ  increases. 

5) In Table 4-1, the values of β  of Table 4-1 for displacement range between 0.11 and 0.27 and 

those for transmitted shearing force range between 0.05 and 0.21 for all models with dT = 3 and 4 

seconds. The dispersion in displacement is higher than for transmitted shearing force. The 

percentage increase in β  due to variability in spectral demand is higher than that due to the 

variability in the mechanical properties of the isolation system.  

6) If we assume that the response-history analysis is performed for Set G0 using the models 

associated with dT = 3 and 4 seconds and the dispersion in the peak bearing displacement is no 

greater than 0.19 per Table 4-1, the minimum number of pairs of ground motions per (3.3) to 

ensure a 90% confidence of the true median displacement being within ±10% of the estimated 

value is 11. 

Scale factors for responses with 1% (10%) probability of exceedance at 100% (150%) DBE shaking 

The analyses of Table 3-6 and Table 3-7 were repeated for the Vogtle NPP site to compute the factors to 

scale the median responses for Sets G0 and M0 and 100% DBE shaking to the responses corresponding to 

1) 1% probability of exceedance (PE) for Sets M1 and M2 for 100% DBE shaking, and 2) 10% PE for 

Sets M1 and M2 for 150% DBE shaking. The results are presented in Table 4-4 and Table 4-5 for 
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displacement and shearing force, respectively. The scale factor for displacement is greater than the 

corresponding factor for shearing force. For example, the factors 1, ,99 0,M DBE th G DBED θ  and 

1, ,99 0,M DBE th G DBEF θ  for Model LR_T3Q6 are 2.22 and 1.76, respectively. The factors for 10% PE and 

150% DBE shaking are greater than the corresponding factors for 1% PE and 100% DBE shaking: 

1,150% ,90 0,M DBE th G DBED θ  and 1, ,99 0,M DBE th G DBED θ  for Model LR_T3Q6 are 2.91 and 2.22, respectively. 

If response-history analysis is performed using only the DBE spectrum-compatible ground motions, the 

scale factor for displacement (force) corresponding to 1% PE at 100% DBE shaking ranges between 1.83 

(1.35) and 2.59 (1.91) and that corresponding to 10% PE at 150% DBE shaking ranges between 2.34 

(1.61) and 3.77 (2.32) for all models associated with dT = 3 and 4 seconds (see the 2nd through 5th 

columns of Table 4-4 and Table 4-5).  

If response-history analysis is performed using the maximum-minimum spectra compatible ground 

motions, the factor for displacement (force) corresponding to 1% PE at 100% DBE shaking ranges 

between 1.51 (1.22) and 1.88 (1.61) and that corresponding to 10% PE at 150% DBE shaking ranges 

between 1.94 (1.46) and 2.74 (1.95) for all models associated with dT = 3 and 4 seconds (see the 6th 

through 9th columns of Table 4-4 and Table 4-5). 

4.4.2 Friction Pendulum (FP) isolation systems 

Medians and logarithmic standard deviations of peak displacement and force 

The analyses of Table 4-1 through Table 4-3 were repeated for the FP isolation systems and results are 

presented in Table 4-6 through Table 4-8, respectively. The key observations include: 

1) For 100% (150%) DBE shaking, the values of θ  of Table 4-6 for displacement range between 71 

(191) and 379 (674) mm and those for transmitted shearing force range between 8.4 (12.6) and 

44.3 (81.4) percent of the supported weight. Similar to the presentation of Section 4.4.1, the shape 

of the spectrum at the Vogtle site per the dashed line in Figure 4-4 should preclude the use of 

isolation systems with dT = 2 seconds. Accordingly, the results for the isolation systems with dT = 

2 seconds are shaded in Table 4-6 through Table 4-10 not used further in this report. 

2) In Table 4-7, the ratios of θ  for M1/M0 and M2/M1 are equal to 1 for all models and shaking 

intensities. The median response for analyses accounting for variability in the mechanical 
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Table 4-8. Ratios of the statistics of Table 4-6 for 150% to 100% DBE shaking 

Model 
θ   β  

G0 M0 M1 M2 G0 M0 M1 M2 
Displacement 

FP_T2Q3 1.85 1.78 1.78 1.78 0.92 0.99 0.98 0.95 
FP_T2Q6 2.49 2.28 2.28 2.28 0.76 0.73 0.71 0.68 
FP_T2Q9 3.05 2.97 2.97 2.95 1.01 0.67 0.68 0.69 
FP_T3Q3 1.76 1.72 1.72 1.72 0.86 0.77 0.77 0.77 
FP_T3Q6 2.20 2.06 2.06 2.07 0.84 0.83 0.82 0.80 
FP_T3Q9 2.75 2.67 2.66 2.64 1.01 0.95 0.93 0.89 
FP_T4Q3 1.69 1.68 1.68 1.68 0.83 0.84 0.83 0.83 
FP_T4Q6 1.99 1.90 1.90 1.90 0.86 0.90 0.90 0.89 
FP_T4Q9 2.43 2.34 2.34 2.33 1.02 0.93 0.92 0.89 

Force 
FP_T2Q3 1.91 1.84 1.84 1.84 0.99 0.96 0.95 0.94 
FP_T2Q6 2.18 2.12 2.12 2.12 0.87 0.89 0.88 0.88 
FP_T2Q9 2.00 2.13 2.13 2.12 1.57 1.13 1.13 1.15 
FP_T3Q3 1.74 1.71 1.71 1.71 0.94 0.86 0.86 0.86 
FP_T3Q6 1.72 1.71 1.72 1.72 1.17 1.24 1.24 1.23 
FP_T3Q9 1.52 1.63 1.63 1.62 1.64 1.91 1.86 1.77 
FP_T4Q3 1.51 1.53 1.53 1.53 1.08 1.00 1.00 1.00 
FP_T4Q6 1.43 1.47 1.47 1.47 1.48 1.27 1.28 1.28 
FP_T4Q9 1.31 1.37 1.37 1.37 1.64 2.25 2.08 1.72 
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properties of the isolation system (i.e., M1 and M2) can be estimated without bias using analysis 

of a best-estimate model.  

3) In Table 4-7, the ratios of θ  for M0/G0 for displacement range between 1.21 and 1.40 and those 

for shearing force range between 1.07 and 1.21 for all models with dT = 3 and 4 seconds. If the 

analysis is performed using geomean-spectrum-compatible ground motions, the median 

displacement should be increased by 20% to 40% and the median shearing force should be 

increased by 10% to 20% to address variability in spectral demand. 

4) In Table 4-8, the ratios of θ  at 150% to 100% DBE shaking range between 1.68 and 2.75 for 

bearing displacement and between 1.31 and 1.74 for shearing force for all models with dT = 3 and 

4 seconds. At a given dT , the ratio of θ  for displacement increases as dQ  increases and that for 

shearing force decreases as dQ  increases.  

5) In Table 4-6, the values of β  for displacement range between 0.14 and 0.35 and those for 

transmitted shearing force range between 0.05 and 0.21 for all models with dT = 3 and 4 seconds. 

The dispersion in displacement is generally higher than for transmitted shearing force. The 

percentage increase in β  due to the variability in spectral demand is higher than that due to the 

variability in the mechanical properties of the isolation system. 

6) If we assume that the response-history analysis is performed for Set G0 using the models with dT

= 3 and 4 seconds and the dispersion in the peak displacement is no greater than 0.22 per Table 

4-6, the minimum number of pairs of ground motions per (3.3) to ensure a 90% confidence of the 

true median displacement being within ±10% of the estimated value is about 14. 

Scale factors for responses with 1% (10%) probability of exceedance at 100% (150%) DBE shaking 

The analyses of Table 4-4 and Table 4-5 were repeated for the FP isolation systems and results are 

presented in Table 4-9 and Table 4-10, respectively. For all models with dT = 3 and 4 seconds, the scale 

factor for displacement is generally greater than the corresponding factor for shearing force except for 

Model FP_T3Q3. The factor for 10% PE and 150% DBE shaking is greater than the corresponding factor 

for 1% PE and 100% DBE shaking: a trend similar to that observed in Table 4-4 and Table 4-5 for LR 

bearings. 
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If response-history analysis is performed using only the DBE spectrum-compatible ground motions, the 

scale factor for displacement (force) corresponding to 1% PE at 100% DBE shaking ranges between 1.93 

(1.26) and 3.20 (1.97) and that corresponding to 10% PE at 150% DBE shaking ranges between 2.57 

(1.77) and 5.57 (2.81) (see the 2nd through 5th columns of Table 4-9 and Table 4-10). The values of 

1,150% ,90 0,M DBE th G DBED θ  and 2,150% ,90 0,M DBE th G DBED θ  for the models with 0.09dQ W= are much higher than 

those with 0.03dQ W=  and 0.06W . For example, the value of 2,150% ,90 0,M DBE th G DBED θ  for Model 

FP_T3Q9 is 5.57, which is the product of 1.4 (see Table 4-7 for the ratio of median displacement for 

Model FP_T3Q9, M0/G0 and 100% DBE shaking),  2.67 (see Table 4-8 for the ratio of median 

displacement for Model FP_T3Q9 and Set M0 for 150% to 100% DBE shaking) and 1.5 (the ratio of the 

90th- to 50th-percentile value of a lognormal distribution with a β  of 0.31, presented in Table 4-6 for 

displacement, Model FP_T3Q9, Set M2 and 150% DBE shaking). The value of 2,150% ,90 0,M DBE th G DBED θ  

for Model FP_T3Q3 is 2.58, which is the product of 1.23, 1.72 and 1.22, where the third value is the ratio 

of the 90th- to 50th-percentile value of a lognormal distribution with a β  of 0.15 (see Table 4-6 for 

displacement, Model FP_T3Q3, Set M2 and 150% DBE shaking). 

If response-history analysis is performed using the maximum-minimum spectra compatible ground 

motions, the factor for displacement (force) corresponding to 1% PE at 100% DBE shaking ranges 

between 1.57 (1.18) and 2.29 (1.63) and that corresponding to 10% PE at 150% DBE shaking ranges 

between 2.09 (1.66) and 3.99 (2.33) (see the 6th through 9th columns of Table 4-9 and Table 4-10). 
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SECTION 5  
STUDIES FOR WUS ROCK SITES 

5.1 Design basis earthquake 

The site of the Diablo Canyon nuclear power plant (NPP) in San Luis Obispo County, California, is a 

representative rock site for a NPP in the Western US (WUS). The Design Basis Earthquake (DBE) used 

for the study at the Diablo Canyon site, which was provided by staff at the United States Nuclear 

Regulatory Commission (USNRC), is introduced in this subsection.  

The horizontal and vertical DBE spectra for the Diablo Canyon study are presented in Figure 5-1 using 

both normal and logarithmic scales. The horizontal DBE spectrum transmitted to the authors is truncated 

at a period of 2 seconds with the spectral ordinates at periods of 1, 1.5 and 2 seconds equal to 0.9, 0.59 

and 0.4 g, respectively. Since the spectral ordinates at periods greater than 1 second is close to the 

function of 0.9 T , where T  is period, the horizontal spectral ordinates at periods greater than 1 second 

were replaced by 0.9 T  at periods between 1 and 5 seconds. The vertical DBE spectrum provided to the 

authors was truncated at a period of 1 second. The spectral ordinates of 0.9 T  at periods between 1 and 5 

seconds were scaled by the ratio of the ordinates of the original vertical and horizontal DBE spectra at a 

period of 1 second to develop the vertical spectra of Figure 5-1.  

5.2 Selection and scaling of ground motions 

Panels a and b of Figure 5-2 present the deaggregation of the seismic hazard at periods of 2 and 3 

seconds, respectively, and an annual frequency of exceedance of 410− for the Diablo Canyon NPP site. 

The deaggregation results were generated using USGS interactive deaggregation tool (USGS 2009a). The 

magnitude ( wM ) and distance ( r ) for the modal and mean events, which are indentified in Figure 5-2, 

range between 7.5 and 7.8 ( wM ) and 10 and 20 km ( r ).  

The seed ground motions used to develop the DBE spectrum-compatible ground motions for the Diablo 

Canyon study were selected from the PEER NGA Database (http://peer.berkeley.edu/nga/). The number 

of rock-site records in the PEER NGA Database within the ranges of wM  and r  listed above is less than 

30. To select 30 sets of seed ground motions, we expanded the range to wM  greater than 6.6, r  less than 

32 km and 30SV  (the average shear-wave velocity to 30-meter depth) greater than 700 m/s. Table 5-1 

presents the 30 sets of seed ground motions used for the Diablo Canyon study. Each set of the seed 
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a. normal scale 

 
b. logarithmic scale 

Figure 5-1.  Horizontal and vertical DBE spectra for the Diablo Canyon  NPP site and 5% 
damping in normal and logarithmic scales 
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a. 2 seconds 

 
b. 3 seconds 

Figure 5-2.  Deaggregation of the seismic hazard at periods of 2 and 3 seconds at an annual 
frequency of exceedance of 410− for the Diablo Canyon NPP site (USGS 2009a) 
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ground motions was spectrally matched to the DBE spectra of Figure 5-1 using the computer code 

RSPMATCH (Abrahamson 1998).  

Panels a, c and e of Figure 5-3 present a sample set of DBE spectrum-compatible ground motions and 

panels b, d and f present the target and achieved spectral accelerations for the time series of panels a, c 

and e, respectively. The spectrum-compatible ground motions of Figure 5-3 were developed using the 

third set of seed motions in Table 5-1. Panels a, b and c of Figure 5-4 present the spectral accelerations for 

horizontal components 1 and 2 and the vertical component, respectively, of all 30 sets of DBE spectrum-

compatible ground motions. Each spectrum of Figure 5-4 closely matches the target. 

The 30 sets of DBE spectrum-compatible ground motions of Figure 5-4 were amplitude scaled to develop 

the maximum-minimum spectra compatible ground motions. The scaling procedure was the same as that 

described in Section 3.2.2 and is not repeated herein. Panels a, b and c of Figure 5-5 present the spectral 

accelerations for the horizontal components 1 and 2 and vertical component, respectively, of all 30 sets of 

DBE spectrum-compatible ground motions. 

5.3 Analysis sets and discussion  

The analysis described in Section 3.3 was repeated using the ground motions developed for the Diablo 

Canyon NPP site. Response-history analysis was performed for two intensities of shaking: 1) 100% DBE 

shaking using the 60 sets of ground motions of Figure 5-4 and Figure 5-5, and b) 150% DBE shaking 

using the ground motions of Figure 5-4 and Figure 5-5 but with the acceleration amplitudes multiplied by 

1.5. At each intensity level, the 4 sets of analyses of Table 3-2, namely, Sets G0, M0, M1 and M2, were 

performed for each best-estimate model of Tables 2-1 through 2-3 and the 60 corresponding property-

varied models to study the impact of variations in spectral demand and mechanical properties of the 

isolation system on the response of isolated NPPs. 

The amplitude of the spectral response in the vertical direction for 100% DBE (and 150% DBE) shaking 

is such that separation of the containment vessel from the foundation is possible in either conventional or 

isolated configurations. Although disengagement of the containment vessel from the foundation could be 

accommodated, alternate analysis tools and numerical models from those described in Section 2 would be 

required for response computations. Analysis codes and component models would have address 

disengagement and re-contact for conventional and FP-isolated containment vessels and differences in 

compressive and tensile isolator axial stiffness for LR-isolated containment vessels. 
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a. horizontal component 1 b. response spectrum of the time series of panel a 

 
c. horizontal component 2 d. response spectrum of the time series of panel c 

 
e. vertical component f. response spectrum of the time series of panel e 

Figure 5-3.  Sample spectrally matched acceleration time series and the corresponding 5% damped 
response spectra 
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Table 5-1. Seed ground motions for the Diablo Canyon study 

No. Event Station Date wM  r  
(km) 

30SV  
(m/s) 

1 San Fernando Lake Hughes #4 1971/02/09 6.61 25.1 821.7 
2 San Fernando Pacoima Dam (upper left) 1971/02/09 6.61 1.8 2016.1
3 San Fernando Pasadena 1971/02/09 6.61 21.5 969.1 
4 Tabas, Iran Tabas 1978/09/16 7.35 2.1 766.8 
5 Irpinia, Italy Auletta 1980/11/23 6.90 9.6 1000.0
6 Irpinia, Italy Bagnoli Irpinio 1980/11/23 6.90 8.2 1000.0
7 Irpinia, Italy Bisaccia 1980/11/23 6.90 21.3 1000.0
8 Irpinia, Italy Sturno 1980/11/23 6.90 10.8 1000.0
9 Loma Prieta Gilroy - Gavilan Coll. 1989/10/18 6.93 10.0 729.7 
10 Loma Prieta Gilroy Array #1 1989/10/18 6.93 9.6 1428.0
11 Loma Prieta UCSC 1989/10/18 6.93 18.5 714.0 
12 Loma Prieta UCSC Lick Observatory 1989/10/18 6.93 18.4 714.0 
13 Cape Mendocino Petrolia 1992/04/25 7.01 8.2 712.8 
14 Northridge Burbank - Howard Rd. 1994/01/17 6.69 16.9 821.7 
15 Northridge Chalon Rd 1994/01/17 6.69 20.5 740.1 
16 Northridge Griffith Park Observatory 1994/01/17 6.69 23.8 1015.9
17 Northridge Wonderland Ave 1994/01/17 6.69 20.3 1222.5
18 Northridge LA 00 1994/01/17 6.69 19.1 706.2 
19 Northridge Lake Hughes #4 1994/01/17 6.69 31.7 821.7 
20 Northridge Pacoima Dam (downstr) 1994/01/17 6.69 7.0 2016.1
21 Northridge Pacoima Dam (upper left) 1994/01/17 6.69 7.0 2016.1
22 Northridge Santa Susana Ground 1994/01/17 6.69 16.7 715.1 
23 Northridge Vasquez Rocks Park 1994/01/17 6.69 23.6 996.4 
24 Kocaeli, Turkey Gebze 1999/08/17 7.51 10.9 792.0 
25 Kocaeli, Turkey Izmit 1999/08/17 7.51 7.2 811.0 
26 Chi-Chi, Taiwan TCU045 1999/09/20 7.62 26.0 704.6 
27 Chi-Chi, Taiwan TCU102 1999/09/20 7.62 1.5 714.3 
28 Duzce, Turkey Lamont 1060 1999/11/12 7.14 25.9 782.0 
29 Manjil, Iran Abbar 1990/06/20 7.37 12.6 724.0 
30 Loma Prieta Los Gatos - Lexington Dam 1989/10/18 6.93 5.0 1070.3
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a. horizontal component 1 

 
b. horizontal component 2 

 
c. vertical component 

Figure 5-4.  Five-percent damped response spectra of the 30 sets of DBE spectrum-compatible 
ground motions for the Diablo Canyon site 
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a. maximum component 

 
b. minimum component 

 
c. vertical component 

Figure 5-5.  Five-percent damped response spectra of the 30 sets of maximum-minimum DBE 
spectra-compatible ground motions for the Diablo Canyon site 
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Numerical and experimental studies have shown that vertical earthquake shaking does not affect the 

displacement response of either elastomeric or sliding isolation systems (e.g., Zayas et al, 1987, 

Mosqueda et al. 2004, Morgan 2007, Fenz and Constantinou, 2008b). The effects of vertical earthquake 

shaking on transmitted shearing forces in elastomeric isolation systems will be small. Experiments on FP-

isolated models using recorded ground motions have shown only modest percent changes in transmitted 

shearing forces resulting from the application of vertical earthquake shaking, although significant percent 

increases have been observed for some combinations of near-fault ground motions, structural systems and 

isolator characteristics (Zayas et al, 1987, Fenz and Constantinou, 2008b). Given that the numerical tools 

of Chapter 2 may not reliably capture the effects of the intense vertical shaking expected at the Diablo 

Canyon site for 100% and 150% DBE shaking, the discussion that follows focuses solely on 

displacements of the isolation system.  

5.4 Analysis results 

5.4.1 Lead Rubber (LR) isolation systems 

Medians and logarithmic standard deviations of peak displacement  

Table 5-2 presents θ  and β of peak displacement for each case, model and shaking intensity analyzed 

for LR isolation systems. Table 5-3 presents the ratios of θ  and β  for Set M0 to Set G0, Set M1 to Set 

M0, and Set M2 to Set M1, for each model and shaking intensity. Table 5-4 presents the ratios of θ  and 

β  at 150% to 100% DBE shaking. The key observations include: 

1) For 100% (150%) DBE shaking, the values of θ  of Table 5-2 for displacement range between 

338 (595) and 940 (1621) mm. 

2) In Table 5-3, the ratios of θ  for M1/M0 and M2/M1 are equal to 1 for all models and shaking 

intensities. The median response for analyses accounting for the variability in the mechanical 

properties of isolation systems (i.e., Sets M1 and M2) can be estimated without bias using 

analysis of a best-estimate model (i.e., Set M0). 

3) In Table 5-3, the ratios of θ  for M0/G0 for displacement range between 1.17 and 1.22. If the 

analysis is performed using geomean-spectrum-compatible ground motions, the median 

displacement should be increased by 20% to address variability in spectral demands. 
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Table 5-4. Ratios of the statistics of Table 5-2 at 150% to 100% DBE shaking 

Model 
θ   β  

G0 M0 M1 M2 G0 M0 M1 M2 
LR_T2Q3 1.62 1.63 1.62 1.63 0.83 0.87 0.87 0.89 
LR_T2Q6 1.69 1.68 1.69 1.69 0.86 0.80 0.80 0.81 
LR_T2Q9 1.76 1.74 1.74 1.73 0.73 0.83 0.84 0.85 
LR_T3Q3 1.69 1.68 1.68 1.68 0.80 0.87 0.88 0.89 
LR_T3Q6 1.75 1.78 1.78 1.78 0.97 0.87 0.87 0.86 
LR_T3Q9 1.81 1.83 1.83 1.83 0.98 0.92 0.92 0.92 
LR_T4Q3 1.73 1.73 1.72 1.73 0.94 0.86 0.86 0.86 
LR_T4Q6 1.92 1.90 1.90 1.90 0.76 0.80 0.80 0.80 
LR_T4Q9 1.87 1.93 1.93 1.92 0.90 0.81 0.82 0.84 
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4) In Table 5-4, the ratio of θ  at 150% to 100% DBE shaking for a given model and analysis set 

ranges between 1.62 and 1.93. The variation in the ratio of θ  is no more than 20%.  

5) The values of β  of Table 5-2 range between 0.09 and 0.29. The percentage increase in β  due to 

the variability in spectral demand is higher than that due to the variability in the mechanical 

properties of the isolation system. 

6) If we assume that the response-history analysis is performed for Set G0 and the dispersion in the 

peak displacement is no greater than 0.21 per Table 5-2, the minimum number of pairs of ground 

motions per (3.3) to ensure a 90% confidence of the true median displacement being within ±10% 

of the estimated value is 13. 

Scale factors for responses with 1% (10%) probability of exceedance at 100% (150%) DBE shaking 

The analyses of Table 3-6 and Table 3-7 were repeated for the Diablo Canyon NPP site to compute the 

factors to scale the median responses for Sets G0 and M0 and 100% DBE shaking to the responses 

corresponding to 1) 1% probability of exceedance (PE) for Sets M1 and M2 for 100% DBE shaking, and 

2) 10% PE for Sets M1 and M2 for 150% DBE shaking. Results are presented in Table 5-5. The factor for 

10% PE and 150% DBE shaking is greater than the corresponding factor for 1% PE and 100% DBE 

shaking for all cases of Table 5-5. 

If the response-history analysis is performed using only the DBE spectrum-compatible ground motions, 

the scale factor for displacement corresponding to 1% PE at 100% DBE shaking ranges between 1.60 and 

2.33 and that corresponding to 10% PE at 150% DBE shaking ranges between 2.22 and 3.11 (see the 2nd 

through 5th columns of Table 5-5).  

If the response-history analysis is performed using the maximum-minimum spectra compatible ground 

motions, the factor for displacement corresponding to 1% PE at 100% DBE shaking ranges between 1.37 

and 1.97 and that corresponding to 10% PE at 150% DBE shaking ranges between 1.89 and 2.64 (see the 

6th through 9th columns of Table 5-5). 

5.4.2 Friction Pendulum (FP) isolation systems 

Medians and logarithmic standard deviations of peak displacement 
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The analyses of Table 5-2 through Table 5-4 were repeated for FP isolation systems and results are 

presented in Table 5-6 through Table 5-8, respectively. The key observations include: 

1) For 100% (150%) DBE shaking, the values of θ  of Table 5-6 range between 321 (593) and 923 

(1276) mm. For a given model and analysis set, the median displacement for FP isolation systems 

is comparable to that for LR isolation systems (see Table 5-2). 

2) In Table 5-7, the ratios of θ  for M1/M0 and M2/M1 are equal to 1 for all models and shaking 

intensities. 

3) In Table 5-7, the ratios of θ  for M0/G0 range between 1.16 and 1.23. If analysis is performed 

using geomean-spectrum-compatible ground motions, the median displacement and shearing 

force should be increased by 20% to address the variability in spectral demands 

4) In Table 5-8, the ratios of θ  at 150% to 100% DBE shaking range between 1.67 and 2.0. For a 

given dQ and dT , the ratio for displacement is comparable for FP and LR isolation systems. 

5) If we assume that the response-history analysis is performed for Set G0 and the dispersion in the 

peak displacement is no greater than 0.24 per Table 5-6, the minimum number of pairs of ground 

motions per (3.3) to ensure a 90% confidence of the true median displacement being within ±10% 

of the estimated value is 17. 

Scale factors for responses with 1% (10%) probability of exceedance at 100% (150%) DBE shaking 

The analyses of Table 5-5 were repeated for FP isolation systems and results are presented in Table 5-9.  

If the response-history analysis is performed using only the DBE spectrum-compatible ground motions, 

the scale factor for displacement corresponding to 1% PE at 100% DBE shaking ranges between 1.60 and 

2.49 and that corresponding to 10% PE at 150% DBE shaking ranges between 2.29 and 3.31 (see the 2nd 

through 5th columns of Table 5-9).  

If response-history analysis is performed using the maximum-minimum spectra compatible ground 

motions, the factor for displacement corresponding to 1% PE at 100% DBE shaking ranges between 1.38 

and 2.06 and that corresponding to 10% PE at 150% DBE shaking ranges between 1.98 and 2.74 (see the 

6th through 9th columns of Table 5-9).  
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Table 5-8. Ratios of the statistics of Table 5-6 for 150% to 100% DBE shaking 

Model 
θ   β  

G0 M0 M1 M2 G0 M0 M1 M2 
FP_T2Q3 1.67 1.67 1.67 1.67 1.07 0.96 0.96 0.96 
FP_T2Q6 1.75 1.74 1.74 1.74 0.87 0.78 0.78 0.78 
FP_T2Q9 1.85 1.81 1.81 1.81 0.77 0.84 0.83 0.83 
FP_T3Q3 1.71 1.70 1.70 1.70 0.80 0.86 0.85 0.85 
FP_T3Q6 1.81 1.81 1.81 1.81 0.85 0.84 0.83 0.83 
FP_T3Q9 1.89 1.88 1.88 1.88 0.93 0.94 0.93 0.92 
FP_T4Q3 1.76 1.75 1.75 1.75 0.93 0.86 0.85 0.85 
FP_T4Q6 1.97 1.94 1.94 1.94 0.79 0.81 0.81 0.81 
FP_T4Q9 1.98 2.00 2.00 2.00 0.82 0.76 0.76 0.78 
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SECTION 6  
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

Two ASCE standards are used for the analysis and design of nuclear power plants (NPPs): ASCE 4-98, 

Seismic Analysis of Safety-related Nuclear Structures and Commentary (ASCE 2000) and ASCE 43-05, 

Seismic Design Criteria for Structures, Systems and Components in Nuclear Facilities (ASCE 2005). 

Section 1.3 of ASCE 43-05 presents dual performance objectives for nuclear structures: 1) 1% probability 

of unacceptable performance for 100% Design Basis Earthquake (DBE) shaking, and 2) 10% probability 

of unacceptable performance for 150% DBE shaking. ASCE Standard 4-98, which includes provisions for 

the analysis and design of seismic isolation systems, is being updated at the time of this writing, and the 

studies reported herein are undertaken by the authors to provide the technical basis for proposed changes 

to the 2010 edition of the standard.  

In base-isolated nuclear structures, the accelerations and deformations in structures, systems and 

components (SSCs) are relatively small. The SSCs are expected to remain elastic for both DBE shaking 

and beyond design basis shaking. As such, unacceptable performance of an isolated nuclear structure will 

most likely involve either the failure of isolation bearings or impact of the isolated superstructure and 

surrounding building or geotechnical structures. Three performance statements for achieving the above 

two performance objectives of ASCE 43-05 were used for this study, namely, 1) individual isolators shall 

suffer no damage in DBE shaking, 2) the probability of the isolated nuclear structure impacting 

surrounding structure (moat) for 100% (150%) DBE shaking is 1% (10%) or less, and 3) individual 

isolators sustain gravity and earthquake-induced axial loads at 90th percentile lateral displacements 

consistent with 150% DBE shaking. Performance statement 1 can be realized by production testing of 

each isolator supplied to a project for median DBE displacements and co-existing gravity and earthquake-

induced axial forces. Analysis can be used in support of performance statement 2 provided that the 

isolators are modeled correctly and the ground motion representations are reasonable. Performance 

statement 3 can be realized by prototype testing of a limited number of isolators for mean displacements 

and co-existing axial forces consistent with 150% of the DBE, noting that an isolation system is 

composed of 10’s to 100’s of isolators and that failure of the isolation system would have to involve the 

simultaneous failure of a significant percentage of the isolators in the system. Nonlinear response-history 
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analysis was performed in this study in support of performance statements 2 and 3, accounting for the 

variability in both earthquake ground motion and the mechanical properties of the isolation system. 

The mechanical properties of low-damping rubber (LDR), lead-rubber (LR) and Friction Pendulum (FP) 

seismic isolation bearings will tend to vary from the values assumed for design both a) at the time of 

fabrication due to variability in basic material properties, and b) over the lifespan of the nuclear structure 

due to aging, contamination, ambient temperature, etc. The variability of the mechanical properties of an 

assembly of isolators (the isolation system) will be smaller than the variability of individual isolators. 

Two levels of variability were considered for these studies: Bin F1 assumed that the probability of the 

values of the key parameters of the isolation system being within 10%±  of the best-estimate values was 

95%; Bin F2 assumed that the probability of the values of the key parameters of the isolation system 

being within 20%±  of the best-estimate values was 95%. 

The goals of the study were three-fold, namely, for representative rock and soil sites in the Central and 

Eastern United States (CEUS) and a rock site in the Western United States (WUS), 1) determine the ratio 

of the 99%-ile estimate of the displacement (force) computed using a distribution of DBE spectral 

demands and distributions of isolator mechanical properties to the median isolator displacement (force) 

computed using best-estimate properties and spectrum-compatible DBE shaking; 2) determine the ratio of 

the 90%-ile estimate of the displacement (force) computed using a distribution of 150% DBE spectral 

demands and distributions of isolator mechanical properties to the median isolator displacement (force) 

computed using best-estimate properties and spectrum-compatible DBE shaking, and 3) determine the 

number of sets of three-component ground motions to be used for response-history analysis to develop a 

reliable estimate of the median displacement (force). 

Computations were performed for three sites (North Anna, Vogtle and Diablo Canyon), three types of 

isolators (LR and FP bearings for all three sites and LDR bearings for North Anna only), and realistic 

mechanical properties for the isolators. Three-component sets of ground motions scaled to a) an 

appropriate distribution of spectral demand (denoted by the prefix M) and b) a geomean spectrum 

(denoted by the prefix G) were used to represent the seismic hazard at each site. For each isolation model, 

four sets of analysis were performed. Set G0 involves the use of ground motions scaled per b) and best-

estimate isolator properties and Sets M0, M1 and M2 involve the use of ground motions scaled per a) and 
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isolation systems with best-estimate properties (Set M0), the properties of Bins F1 (Set M1) and Bin F2 

(Set M2). The Latin Hypercube Sampling procedure was used to reduce the computational effort. 

The mechanical properties of LR and FP bearings will change with repeated cycling to large 

displacements as energy is dissipated by the lead core and by sliding friction, respectively. The heating of 

the lead core in the LR bearing and of the sliding surface (FP bearing) will reduce the energy dissipated 

by the isolation system at a given displacement and loading frequency. The thermo-mechanical response 

of seismic isolation bearings is not addressed here. 

The analyses presented in this report do not consider torsional response of the isolated nuclear structure. 

If the increment in displacement response due to torsion is a significant percentage of the displacement at 

the center of mass of the isolated superstructure, the conclusions and recommendations presented below 

must be used with care. 

Table 6-1 presents the isolation-system displacement and transmitted shearing force for the most 

demanding scenario considered in this study, namely, the response associated with 10% PE and 150% 

DBE shaking in analysis set M2. Values for transmitted shearing force for the Diablo Canyon site are not 

presented for the reasons given in Chapter 5. Those isolation systems that make little practical sense are 

shaded and not considered further. We note that for each representative site and type of isolation system, 

one or more combinations of isolation-system mechanical properties are suitable. Importantly, we note 

that the single concave FP bearing could be replaced with the triple concave FP bearing to produce 

responses similar to those of the LR bearing. 

At the North Anna site, the results for models with 0.06dQ W=  and 0.09W  are shaded because the 

isolation-system displacements are tiny: the LR models subjected to 100% DBE shaking did not or barely 

achieved the yield displacement of the lead core. At the Vogtle site, the results for models with 2dT =  

seconds are shaded because such an isolation system would not be used at a site with the DBE spectrum 

of Figure 4-1; the results for 0.09dQ W=  are also shaded because the scale factors of Figures 4-4 and 4-9 

for displacement with 10% PE in 150% DBE shaking are much higher than the factors for the models 

with 0.03dQ W=  and 0.06 .W  At the Diablo Canyon site, the results for the models with displacements 

greater than 1500 mm (60 inches) are shaded because better isolation systems could be used. 
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Table 6-1. Bearing displacement and shearing force for 10% PE and 150% DBE shaking 

Type of isolator Model 
Displacement (mm) Shearing Force 

(%W) 

North 
Anna Vogtle Diablo 

Canyon 
North 
Anna Vogtle 

Lead Rubber 

LR_T2Q3 60 821 1100 9 87 

LR_T2Q6 44 627 990 10 68 

LR_T2Q9 36 472 922 12 55 

LR_T3Q3 73 686 1603 6 35 

LR_T3Q6 50 598 1375 8 33 

LR_T3Q9 40 502 1207 11 31 

LR_T4Q3 77 537 1945 5 17 

LR_T4Q6 52 503 1562 8 18 

LR_T4Q9 42 444 1300 10 20 

Friction 
Pendulum 

FP_T2Q3 31 811 1131 7 100 

FP_T2Q6 19 593 993 10 78 

FP_T2Q9 15 432 924 15 62 

FP_T3Q3 33 635 1564 5 39 

FP_T3Q6 21 538 1351 10 36 

FP_T3Q9 17 420 1185 14 31 

FP_T4Q3 34 512 1946 5 19 

FP_T4Q6 22 444 1537 10 21 

FP_T4Q9 17 361 1266 14 22 

Low Damping 
Rubber 

LDR_T2 121   12 

LDR_T3 124   5 

LDR_T4 127   3 
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6.2 Conclusions 

The key conclusions of the study presented in this report are: 

1. At a period of 0.1 (0.2) second, the 150% DBE spectral demand in the horizontal direction is 0.9 

(0.5), 1.2 (1.2) and 2.6 (3.0) g, for the North Anna, Vogtle and Diablo Canyon sites, respectively. The 

reduction in horizontal seismic force on the supported structure due to the implementation of seismic 

isolation is significant, even for the worse-case scenarios of Table 6-1. 

2. For a given model, the ratio of median responses for Set M0 to Set G0 generally ranges between 1.1 

and 1.3. The median responses for analyses using geomean spectrum-compatible ground motions in 

both horizontal directions should be amplified to address the known variability in spectral demands. 

3. The ratios of median responses for Set M1 to Set M0 and those for Set M2 to Set M1 are either equal 

to or very close to 1 for all cases considered in this study. The median response for analyses 

accounting for the variability in isolator material properties (i.e., M1 and M2) can be estimated 

without bias using analysis of a best-estimate model (i.e. M0). 

4. Table 6-2 presents the lower and upper bounds on the factors to scale the median displacements for 

Sets G0 and M0 and 100% DBE shaking to the displacements corresponding to 1) 1% PE for Sets M1 

and M2 for 100% DBE shaking and 2) 10% PE for Sets M1 and M2 for 150% DBE shaking. Only the 

cases not shaded in Table 6-1 are considered in the analysis of Table 6-2.  

For a given site, type of isolator and analysis set (G0 or M0), the factor for 10% PE and 150% DBE 

shaking is greater than that for 1% PE and 100% DBE shaking. For a given site and type of isolator, 

the factor for Set G0 is always greater than that for Set M0 since the ratio of median displacement for 

Set M0 to Set G0 is always greater than 1. For Set G0, 10% PE and 150% DBE shaking, the upper 

bound of the scale factor for LR (FP) bearings is 2.1 (3.3) at the North Anna site, 2.9 (3.8) at the 

Vogtle site, and 3.1 (3.3) at the Diablo Canyon site. At the Diablo Canyon site, the spectral demand is 

much higher than that at the two CEUS sites and the difference in the scale factors for the LR and FP 

bearings is insignificant. 

5. Table 6-2 presents the lower and upper bounds for β  in displacement for Sets G0 and M0 and 100% 

DBE shaking, together with the corresponding number of sets of ground motions required in the 
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Table 6-2. Lower and upper bounds for 1) scale factors for displacement associated with (1% PE, 
100% DBE) and (10% PE, 150% DBE), 2) β  in displacement and 3) n 1   

Site Type of 
Isolator 

Scale factor for 
1% PE 

100% DBE 

Scale factor for 
10% PE 

150% DBE 
β  n  

Lower2 Upper3 Lower Upper Lower Upper Lower Upper 

G0 

North 
Anna 

LR 1.5 1.7 2.0 2.1 0.10 0.11 3 4 

FP 2.1 2.2 3.2 3.3 0.18 0.21 10 13 

LDR 1.4 1.5 1.9 2.0 0.11 0.12 4 4 

Vogtle 
LR 1.8 2.2 2.3 2.9 0.13 0.16 5 8 

FP 1.9 2.8 2.6 3.8 0.14 0.21 6 14 

Diablo 
Canyon 

LR 1.6 2.3 2.2 3.1 0.10 0.21 3 13 

FP 1.6 2.5 2.3 3.3 0.11 0.24 3 17 

M0 

North 
Anna 

LR 1.3 1.4 1.7 1.8 0.12 0.14 5 6 

FP 1.7 1.8 2.6 2.8 0.23 0.25 16 18 

LDR 1.3 1.3 1.7 1.7 0.10 0.12 3 5 

Vogtle 
LR 1.5 1.7 1.9 2.3 0.18 0.24 10 17 

FP 1.6 2.1 2.1 2.8 0.20 0.30 11 27 

Diablo 
Canyon 

LR 1.4 2.0 1.9 2.6 0.13 0.29 5 25 

FP 1.4 2.1 2.0 2.7 0.14 0.31 6 29 

1. The number of sets of ground motions required to achieve a 90% confidence level that the true median 
displacement is within ±10% of the estimated value 

2. Lower bound 
3. Upper bound 
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response-history analysis to ensure a 90% confidence of the true median displacement being within 

±10% of the estimated value. Only those cases not shaded in Table 6-1 are considered. The number of 

sets of ground motions required for Set M0 is always greater than for Set G0 because β  is greater for 

Set M0. 

6.3 Recommendations 

The three key recommendations of this study are listed below and can be used in support of performance 

statements 2 and 3 identified in Section 6.1. 

1. The bearing displacement for 1% PE for DBE shaking is smaller than that for 10% PE for 150% DBE 

shaking for the three NPP sites considered here. Analysis of isolator capacity and clearance to 

surrounding structure can be based on 10% PE for 150% DBE shaking. 

2. Two levels of variability in isolation-system mechanical properties were considered: Bin F1 assumed 

that the probability of the values of the key parameters being within 10%±  of the best-estimate 

values is 95% and Bin F2 assumed that the probability of the values of the key parameters being 

within 20%±  of the best-estimate values is 95%. The difference in the factors to scale the results of 

analysis of best-estimate models and DBE shaking to 10% PE and 150% DBE shaking for Bins F1 

and F2 is negligible. The recommended procedures presented below can be applied to both bins with 

no loss of accuracy. 

3. Two approaches are presented below aiming to determine the displacement associated with 10% PE 

in 150% DBE shaking.  

Approach I involves the use of geomean spectrum-compatible ground motions. The analysis for 

Approach I is performed for 100% DBE shaking only, which is consistent with design practice for 

conventional nuclear structures. Approach II involves the use of maximum-minimum spectrum-

compatible ground motions for 150% DBE shaking and requires more sets of ground motions for 

analysis than Approach I. The recommendations presented herein are based on the data of Table 6-2. 

The horizontal design force for the supported structure should be determined using the isolation-

system displacement, the best-estimate force-displacement relationships of the isolation system, and 

an estimate of the sustained dead and live axial load and earthquake-induced axial load on the 
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isolators. The default multipliers on isolation-system displacement presented below can be set aside 

by site-specific analysis for 150% DBE shaking using Approach II. 

Approach I: 

i. Select or generate n  sets of seed ground motions appropriate for the site condition and 

controlling magnitude-distance pair(s) for the site. Each set of seed ground motions should 

include two horizontal components and one vertical component. The value of n  should not 

be less than the corresponding upper bound value of n  presented in Table 6-2 for Set G0. In 

lieu of calculation, use 11n = .  

ii. Spectrally match each set of seed ground motions to the horizontal and vertical DBE spectra. 

iii. Perform n  response-history analyses using the best-estimate model and the n  sets of 

spectrum-compatible ground motions of step ii. 

iv. Compute the maximum horizontal displacement of the isolation system (i.e., vector sum at 

each time step) for each set of analyses. Sort the n  maximum displacements and determine 

the median value. 

v. Multiply the median value of step iv by the corresponding upper-bound scale factor of Table 

6-2 for Set G0, 10% PE and 150% DBE shaking. In lieu of calculation, use a factor of 3. 

Approach II: 

i. Select or generate 30 sets of seed ground motions appropriate for the site condition and 

controlling magnitude-distance pair(s) for the site. Each set of seed ground motions should 

include two horizontal components and one vertical component.  

ii. Develop 30 sets of maximum-minimum spectrum-compatible ground motions for 150% DBE 

shaking per the procedure of Section 3.2.2. 

iii. For a given type of isolator (i.e., LDR, LR or FP) and user-selected range of isolator 

properties (i.e., Bin F1, Bin F2 or alternate), use the Latin Hypercube Sampling procedure of 

Section 2.3 to generate 30 models of the isolator.  
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iv. Using the Latin Hypercube sampling procedure, perform 30 response-history analyses using 

the 30 sets of ground motions of step ii and the 30 mathematical models of step iii. 

(Alternately, 900 analyses can be performed using each set of ground motions and each 

mathematical model, per Section 3.3 for Set M1 or M2.) 

v. Compute the maximum horizontal displacement of the isolation system (vector sum at each 

time step) for each analysis. Assume that the displacements distribute lognormally and 

compute the median displacement, the logarithmic standard deviation and the 10% PE (90th 

percentile) displacement. 
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