
ISSN 1520-295X

Development and Appraisal of a 
Numerical Cyclic Loading Protocol for 

Quantifying Building System Performance 

by 
Andre Filiatrault, Assawin Wanitkorkul and  

Michael Constantinou

Technical Report MCEER-08-0013

April 27, 2008

This research was conducted at the University at Buffalo, State University of New York as a result of a contract from the Federal  

Emergency Management Agency to the Applied Technology Council, contract number HSFEHQ-04-D-0641.



NOTICE
This report was prepared by the University at Buffalo, State University of 
New York as a result of a contract from the Federal Emergency Management 
Agency (FEMA) to the Applied Technology Council (ATC). Neither MCEER, 
associates of MCEER, its sponsors, the University at Buffalo, State University 
of New York, nor any person acting on their behalf:

a. makes any warranty, express or implied, with respect to the use of any 
information, apparatus, method, or process disclosed in this report or that 
such use may not infringe upon privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the use of, or the 
damage resulting from the use of, any information, apparatus, method, or 
process disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this 
publication are those of the author(s) and do not necessarily reflect the views 
of MCEER, FEMA, ATC, or other sponsors.



                                                                                                                                    
                                                                  

Development and Appraisal of a Numerical Cyclic Loading 
Protocol for Quantifying Building System Performance

by

Andre Filiatrault,1 Assawin Wanitkorkul2 and Michael Constantinou1

 Publication Date: April 27, 2008
 Submittal Date: April 4, 2008

Technical Report MCEER-08-0013

Subcontract to the authors from the Applied Technology Council (ATC)
as part of the ATC-63 Project

1 Professor, Department of Civil, Structural and Environmental Engineering, Univer-
sity at Buffalo, State University of New York

2 Senior Structural Engineer, Connell Wagner (Thailand); former Post-doctoral Associ-
ate, Department of Civil, Structural and Environmental Engineering, University at 
Buffalo, State University of New York

MCEER
University at Buffalo, State University of New York
Red Jacket Quadrangle, Buffalo, NY 14261
Phone: (716) 645-3391; Fax (716) 645-3399
E-mail: mceer@buffalo.edu;  WWW Site: http://mceer.buffalo.edu



 

  



iii

Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national 
center of excellence in advanced technology applications that is dedicated to the reduction of 
earthquake losses nationwide. Headquartered at the University at Buffalo, State University 
of New York, the Center was originally established by the National Science Foundation in 
1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions 
throughout the United States, the Center’s mission is to reduce earthquake losses through 
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Cen-
ter coordinates a nationwide program of multidisciplinary team research, education and 
outreach activities. 

MCEER’s research is conducted under the sponsorship of two major federal agencies: the 
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), 
and the State of New York. Signifi cant support is derived from the Federal Emergency 
Management Agency (FEMA), other state governments, academic institutions, foreign 
governments and private industry.

Following the award of a contract from the Federal Emergency Management Agency 
(FEMA) to the Applied Technology Council (ATC) entitled “Seismic and Multi-Hazard 
Technical Guidance Development and Support,” the authors of this report received a sub-
contract to participate in the program. The FEMA contract comprised a number of tasks, 
including one entitled “Quantifi cation of Building System Performance and Response 
Parameters,” which became known as the ATC-63 Project. The purpose of ATC-63 was to 
establish and document a recommended methodology for reliably quantifying building 
system performance and response parameters for use in seismic design. As part of this 
effort, the authors were tasked with developing a numerical cyclic loading protocol.  This 
report describes the results of this effort. The ATC-63 Project Report is available from the 
ATC website at: http://www.atcouncil.org.

The main objective of this study is to develop a numerical cyclic loading protocol, based on available 
experimental and numerical studies, to quantify building system performance. The fi rst part of the 
report reviews and compares existing experimental loading protocols that have been developed for 
the quasi-static cyclic testing of structural components and systems. Numerical studies that have 
included cyclic pushover analyses of structural components or systems are also reviewed. Based 
on this review, a numerical cyclic loading protocol is proposed for quantifying building system 
performance. In the second part of the report, a sensitivity analysis on the infl uence of the number 
of repeating cycles of the proposed numerical cyclic loading protocol on the equivalent elastic lateral 
stiffness and viscous damping properties of a 4-story reinforced concrete building model is investi-
gated. Based on these results, the proposed numerical cyclic loading protocol is used in a simplifi ed 
capacity spectrum methodology to estimate the seismic response of three different building structure 
models: two 4-story building models and a 12-story building model.
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ABSTRACT 
 
 

The study described in this report focused on the development of a numerical cyclic loading 
protocol to be used for quantifying building system performance based on a review of available 
experimental and numerical studies. The proposed loading protocol first consists of a preliminary 
monotonic pushover analysis in order to establish the expected failure roof displacement of the 
building model considered.  Once the expected failure roof displacement of the building model 
considered is established, the general loading sequence of the proposed numerical cyclic loading 
protocol is established as a fraction of this expected failure roof displacement.  A sensitivity 
analysis on the influence of the number of repeating cycles of the proposed numerical cyclic 
loading protocol on the equivalent elastic lateral stiffness and viscous damping properties of a 4-
story SMF reinforced concrete building model was investigated. The numerical cyclic loading 
protocol was implemented using a force-based procedure in which the load vector was 
proportional to the first mode shape of the building under elastic conditions.  Higher mode 
effects were disregarded.  It is found that the number of repeating cycles has minor influences on 
the effective lateral stiffness and energy dissipation characteristics of the building model. Based 
on these results, the proposed numerical cyclic loading protocol was used in a simplified 
capacity spectrum methodology to estimate the seismic response of the same building model. It 
was found that the recommended simplified analysis procedure under-estimated the predictions 
of nonlinear dynamic analyses by 12% to 39% across intensity levels and protocol versions when 
compared to the counted median of the response history analysis. (When compared to the 
surviving median of the response history analysis, the under-prediction across all levels and 
protocols was lesser).  The largest under-prediction occurred in the case of the strongest seismic 
input.  In the case of the least number of cycles (case of one cyclic dwell with a total of seven 
cycles) the simplified procedure under-predicted the counted median roof displacement response 
by 12% to 31% across all intensity levels.  Inspection of the graphs comparing the spectral 
capacity and the spectral demand curves for all cases analyzed revealed that for the case of the 
strongest excitation the two curves were nearly asymptotic, which indicates that collapse is 
imminent.  Therefore, a small increase in the level of excitation would have resulted in 
prediction of collapse.  Conversely, a different extrapolation of results for the spectral capacity 
curve (one that better represents the available data at large displacements) would have resulted in 
prediction of collapse at lower excitation level, that is, in better agreement with the results of 
response history analysis. 
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SECTION 1 
INTRODUCTION 

 
The main objective of this report is to develop a numerical cyclic loading protocol to be 
used for quantifying building system performance based on available experimental and 
numerical studies. The first part of the report reviews and compares existing experimental 
loading protocols that have been developed for the quasi-static cyclic testing of structural 
components and systems. Numerical studies that have included cyclic pushover analyses 
of structural components or systems are also reviewed. Based on this review, a numerical 
cyclic loading protocol is proposed for quantifying building system performance.  
 
In the second part of the report, a sensitivity analysis on the influence of the number of 
repeating cycles of the proposed numerical cyclic loading protocol on the equivalent 
elastic lateral stiffness and viscous damping properties of a 4-story reinforced concrete 
building model is investigated. Based on these results, the proposed numerical cyclic 
loading protocol is used in a simplified capacity spectrum methodology to estimate the 
seismic response of three different building structure models: two 4-story building 
models and a 12-story building model. 
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SECTION 2 
REVIEW OF EXPERIMENTAL QUASI-STATIC  

CYCLIC TEST PROTOCOLS 
 
Several loading protocols have been proposed over the years for the cyclic testing of 
structural components and systems. Since it would be unrealistic to review all 
experimental studies that have used cyclic loading in one form or another, this section is 
limited to formal loading protocols that have been proposed and widely utilized. Because 
of the nature of various materials and structural systems, the loading protocols reviewed 
are classified by types of structural materials: concrete structures, steel structures, wood 
structures, and masonry structures. Finally, the loading protocol developed as part of the 
ATC-58 project for the fragility racking testing of nonstructural components is reviewed. 
 
2.1 Cyclic Loading Protocols for Concrete Structures 
 
A large number of cyclic testing of reinforced concrete subassemblies have been 
conducted by several investigators using a variety of loading protocols over the last two 
decades. However, a formal cyclic loading protocol was developed by researchers in New 
Zealand for testing reinforced concrete structures. Several subsequent experimental 
studies made used of this, or variations of the New Zealand Protocol. 
 
The New Zealand Protocol (1991) 
 
The New Zealand loading protocol, developed as part of a United States / New Zealand / 
Japan / China collaborative research project (Cheung et al., 1991), is based on a yield 
displacement ( yΔ ) obtained by extrapolating the displacement of the test specimen at 
75% of the theoretical strength ( iV ) measured during the third cycle of the loading 
sequence, as illustrated in Fig. 2-1. Therefore, the protocol does not require a preliminary 
monotonic test but a preliminary analysis must be conducted in order to determine the 
theoretical strength of the test specimen. 
 
The quasi-static loading history of the New Zealand protocol is shown in Fig. 2-2. The 
first three cycles of the protocol are load controlled. The first two cycles impose a lateral 
force corresponding to 50% of iV . The first yield displacement ( yΔ ) is determined in the 
third cycle of loading, as described in the previous paragraph. Subsequent pairs of cycles 
are displacement controlled with increasing imposed displacement ductility 
factor yΔΔ=μ . Table 2-1 presents the sequence of loading of the New Zealand loading 
protocol. 
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Displacement, Δ

Load, V

iV

iV75.0

yΔ
iV75.0Δ

iVy 75.033.1 Δ=Δ

 
Figure 2-1. Determination of First Yield Displacement, yΔ , of New Zealand Protocol 
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Figure 2-2. New Zealand Protocol 

 
Table 2-1. Sequence of Loading of New Zealand Protocol 

 
Cycle Group Number of Cycles Control Variable Amplitude 

1 2 iV * 0.50 iV  
2   1** yΔ  1 yΔ  
3 2 2 yΔ  
4 2 4 yΔ  
5 2 6 yΔ  
6 2 8 yΔ  
7 2 10 yΔ  

8 and greater 2 Increment of 2 yΔ until failure
*Theoretical strength obtained from preliminary analysis of test specimen. 
**First part of cycle used to determine yield displacement, yΔ . 
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2.2 Cyclic Loading Protocols for Steel Structures 
 
Two loading protocols have been developed and used extensively for the cyclic testing of 
structural steel components and systems: the ATC-24 protocol and the SAC protocol. 
Both protocols were developed by Helmut Krawinkler from Stanford University. 
 
The ATC-24 Protocol (1992) 
 
As part of the ATC-24 project, Krawinkler developed a loading protocol for the cyclic 
testing of components of steel structures (Applied Technology Council, 1992). Similar to 
the New Zealand test protocol described above, the ATC-24 protocol is based on a yield 
deformation ( yδ ) obtained by extrapolating the deformation of the test specimen at 75% 
of its theoretical strength ( yQ ) measured either during the third cycle of the loading 
sequence, as illustrated in Fig. 2-1, or during a preliminary monotonic test. The cyclic 
loading history of the ATC-24 protocol shown in Fig. 2-3 was developed based on 
statistical studies on the nonlinear time-history dynamic response of bilinear and stiffness 
degrading Single-Degree-of-Freedom (SDOF) systems subjected to a set of 15 Western 
United States earthquake ground motions (Hadidi-Tamjed, 1987, Nassar and Krawinkler, 
1991). These studies provided statistical information on seismic demand parameters for 
inelastic systems having ductility capacities between 2 and 8. The parameters that were 
analyzed in order to provide support in the development of the ATC-24 protocol were: 
the number of inelastic excursions, the individual plastic deformation ranges and the 
cumulative plastic deformation ranges. Table 2-2 presents the sequence of loading of the 
ATC-24 protocol. 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Cycle No.

Am
pl

itu
de

, δ
/ δ

y

Load Control Cycles

 
Figure 2-3. ATC-24 Loading Protocol 

 



 6  

Table 2-2. Sequence of Loading of ATC-24 Protocol 
 

Cycle Group Number of Cycles Control Variable Amplitude 
1 3 yQ * 0.50 yQ  
2    3** 0.75 yQ  
3 3 yδ  1 yδ  
4 3 2 yδ  
5 3 3 yδ  
6 2 4 yδ  
7 2 5 yδ  

8 and greater 2 Increment of yδ until failure 
*Theoretical yield strength obtained from preliminary analysis of test specimen or monotonic test. 
**Cycles used to determine yield deformation, yδ . 

 
The SAC Protocols (1997)  
 
Krawinkler (SAC, 1997) developed two loading protocols for the cyclic testing of steel 
moment-resisting connections for the SAC steel research project: a standard loading 
protocol and a near-fault loading protocol. Near-fault effects are not considered and only 
the standard loading protocol is reviewed herein, as illustrated in Fig. 2-4. The standard 
SAC loading protocols are based on the inter-story drift angle, which is defined as the 
inter-story displacement divided by the story height. The loading history used in the SAC 
Protocol has been developed based on a series of nonlinear time-history dynamic 
analyses of hypothetical steel moment-resisting frame structures subjected to a range of 
seismic input. Table 2-3 presents the sequence of loading of the SAC protocol. A major 
advantage of the SAC protocol is that no prior testing is required to obtain the governing 
parameters necessary for characterization of the protocol. 

 
Figure 2-4. SAC Standard Loading Protocol 
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Table 2-3. Sequence of Loading of SAC Standard Protocol 

 
Cycle Group Number of Cycles Drift Angle Amplitude (rad) 

1 6 0.00375 
2 6 0.005 
3 6 0.0075 
4 4 0.01 
5 2 0.015 
6 2 0.02 
7 2 0.03 

8 and greater 2 Increment of 0.01 until failure 
 

2.3 Cyclic Loading Protocols for Wood Structures 
 
Since the 1994 Northridge earthquake in California in which wood structures suffered 
significant damage, there has been a renewed interest in the seismic response of wood 
subassemblies and systems. Because wood structures are particularly difficult to model 
numerically, there has been a proliferation of full-scale cyclic testing on wood sub-
assemblies, particularly wood shear walls. In parallel, a significant number of cyclic 
loading protocols have been proposed and used in experimental studies. This section 
reviews seven cyclic loading protocols that have been proposed and used extensively in 
the cyclic testing of wood structural subassemblies and systems. 
 
The FCC Protocol (1993)  
 
The FCC protocol, developed by the Forintek Canada Corporation (Karacabeyli, 1998), 
consists of cycle groups of three equal magnitude cycles, as shown in Fig. 2-5. Cycle 
group amplitude is determined from the nominal yield slip (∆yield), defined as half the 
ultimate load displacement and found from prior monotonic testing. The first cycle group 
amplitude is equal to 50% of ∆yield followed by 100% of ∆yield and then 50% again for the 
third cycle group. A similar pattern is repeated in subsequent cycle groups, as shown in 
Table 2-4, until specimen failure is reached. 
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Figure 2-5. FCC Loading Protocol 

 
 

Table 2-4. Sequence of Loading of FCC Protocol 
 

Cycle Group Number of Cycles Amplitude (% of  ∆yield
*) 

1 3 50 % 
2 3 100 % 
3 3 50 % 
4 3 150 % 
5 3 100 % 
6 3 200 % 
7 3 150 % 
8 3 250% 
9 3 300 % 
10 3 350 % 

10 and greater 3 Increment of 50 % until failure 
*∆yield equals to half ultimate load displacement as found from prior monotonic testing 
 
The ASTM E 72 Protocol (1995) 
 
The American Society of Testing and Materials ASTM (1995a) has developed a standard 
procedure for the evaluation of sheathing panels used in wood frame shear walls. 
According to this standard, the shear wall panel specimen is loaded at a constant rate to 
3.0, 7.0, and 10.5 kN with complete unloading between each load increment, as shown in 
Fig. 2-6. After the 10.5 kN load is applied, the specimen is unloaded and then reloaded 
monotonically until failure. Table 2-5 presents the sequence of loading of the ASTM 72 
loading protocol. Note that this procedure is not intended to test a shear wall assembly 
due to the overturning forces being resisted by the steel rod at the end of the wall. 
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Figure 2-6. ASTM E72 Loading Protocol 

 
Table 2-5. Sequence of Loading of ASTM 72 Protocol 

 
Cycle Group Number of Half Cycles Force Amplitude (kN) 

1 1 3.0 
2 1 7.0 
3 1 10.5 
4 --- Load until failure 

 
The ASTM E564 Protocols (1995) 
 
A standard for testing an entire woodframe shearwall as opposed to just the sheathing is 
provided by the ASTM E564 test protocol (ASTM, 1995b). The standard provides two 
loading sequences: a static load sequence with only positive excursions and an optional 
cyclic load sequence. In the static test, the specimen is preloaded to 10% of the expected 
ultimate load (Fu) to “seat” the connections of the specimen and then unloaded. This 
expected ultimate load would need to be estimated based on a preliminary monotonic 
test. After seating the connections, three load increments are applied starting with one-
third the expected ultimate load followed by increases of one-third the ultimate load until 
the ultimate load is reached in the third increment. At each increment the specimen is 
unloaded before application of the next higher load increment, as shown in Fig. 2-7(a). In 
the optional cyclic load sequence the 10% static preload is applied and removed. A load 
increment of one-third the expected ultimate load is then applied and removed, followed 
by an equal magnitude load in the reverse direction. The reversed load is then released to 
form a complete cycle, as shown in Fig. 2-7(b). Five cycles are completed at each one-
third load increment specified in the static test until failure of the specimen. ASTM states 
that “The duration of load application at each increment shall be sufficient to permit load 
and deflection readings to be recorded.” This statement implies that the optional cyclic 
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loading procedure is a quasi-static test. Table 2-6 presents the sequence of loading of the 
ASTM E564 loading protocol. 
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Figure 2-7. ASTM E564 Loading Protocols, a) Static Loading Sequence,  
b) Cyclic Loading Protocol 

 
Table 2-6. Sequence of Loading of ASTM E564 Protocol 

 
Static Loading Sequence 

Cycle Group Number of Half Cycles Amplitude (% Fu
*) 

1 1 10 
2 1 33 
3 1 66 
4 1 100 

Cyclic Loading Sequence 
Cycle Group Number of Cycles Amplitude (% Fu

*) 
1 1 10 
2 5 33 
3 5 66 
4 5 100 

*Fu = Expected ultimate obtained from prior monotonic testing 
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The CEN Protocols (1995)  
 
The Comité Europeen de Normalisation (CEN) developed two protocols for the cyclic 
testing of wood connections: a short protocol and a long protocol (CEN, 1995). The short 
protocol consists of three equal amplitude cycles followed by a constant ramp load until 
failure. The amplitude of the three initial cycles is found by multiplying the yield 
displacement, or yield slip for wood connections, (∆yield) by an assumed ductility (D). An 
initial monotonic test must be performed to determine the yield slip. An example of a 
typical displacement history for D = 3 is given in Fig. 2-8(a). The CEN long protocol 
consists of three cycle groups with three equal amplitude cycles per group. The third 
cycle group is followed by a constant ramp load until failure. The amplitude of the first 
cycle group is equal to 35% of the ultimate load displacement (∆max) followed by 50% 
and 80% for the second and third cycle groups respectively, as shown in Fig. 2-8(b). 
Again, the displacement at maximum load must be found from previous monotonic 
testing. Also, the CEN provision stipulates that the rate of loading be held constant at a 
value between 0.02 and 0.2 mm/sec. Table 2-7 presents the sequence of loading of the 
CEN loading protocol. 

 
 

Figure 2-8.CEN Loading Protocols, a) Short Protocol, D = 3, b) Long Protocol 
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Table 2-7. Sequence of Loading of CEN Protocols 
 

Short Protocol 
Cycle Group Number of Cycles Amplitude (% ∆yield

*) 
1 3 100D** 

2 --- Load until failure 
Long Protocol 

Cycle Group Number of Cycles Amplitude (% ∆max
***) 

1 3 35 
2 3 50 
3 3 80 
4 --- Load until failure 

*∆yield = Yield displacement or slip obtained from prior monotonic testing 
**D = Assumed ductility of wood connection 
***∆max = Ultimate load displacement or slip obtained from prior monotonic testing 
 
The ISO Protocol (1998) 
 
Working Group 7 of the ISO Technical Committee on Timber Structures developed the 
ISO loading protocol (ISO 2003). Originally developed for wood connection testing, the 
procedure is also considered appropriate for the testing of woodframe shearwalls. The 
load history is based on the displacement at ultimate load (∆max) obtained from the mean 
values of prior monotonic tests. The amplitude of each cycle is a percentage of ∆max , as 
shown in Fig. 2-9. Table 2-8 presents the sequence of loading of the ISO loading 
protocol. 

 
 

Figure 2-9. ISO Loading Protocol 
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Table 2-8. Sequence of Loading of ISO Protocol 

 
Cycle Group Number of Cycles Amplitude (% ∆max

*) 
1 3 2.5 
2 3 5.0 
3 3 7.5 
4 3 10.0 
5 3 12.5 
6 3 25.0 
7 3 50.0 
8 3 75.0 
9 3 100.0 

> 9 3 Increment of 25 % until failure 
***∆max = Ultimate load displacement obtained from mean value of prior monotonic tests 
 
The CUREE-Caltech Protocol (2000) 
 
As part of the CUREE-Caltech Woodframe Project, Krawinkler et al. (2000) developed 
new cyclic loading protocols intended for the testing of woodframe components. Based 
on a statistical analysis of the response peaks obtained from nonlinear dynamic analyses 
of hysteretic single-degree-of-freedom systems representative of wood structures under 
both ordinary and near-fault ground motions, two protocols were developed: a standard 
protocol and a near-fault protocol. Near-fault effects are not considered and only the 
standard loading protocol is reviewed herein 

The standard protocol is based on a reference displacement (∆) and contains three 
categories of cycles namely initiation cycles, primary cycles and trailing cycles. The 
reference displacement (∆) is calculated as a fraction of the ultimate displacement (∆m) 
obtained from a prior monotonic test. Figure 2-10 provides an illustration of the 
calculation of ∆ and ∆m. The standard protocol begins with a sequence of six small 
initiation cycles intended to address cumulative damage from small earthquakes that 
would have occurred in the life of the specimen prior to a main seismic event. The 
initiation cycles are then followed by large amplitude cycles consisting of primary and 
trailing cycles, as shown in Fig. 2-11. The amplitude of each group of trailing cycles is 
equal to 75% of the amplitude of the corresponding main cycle. Table 2-9 presents the 
sequence of loading of the CUREE-Caltech loading protocol. 
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Figure 2-10. Calculation of ∆ and ∆max for CUREE-Caltech Protocol 

 
Figure 2-11. CUREE-Caltech Standard Protocol 

 
Table 2-9. Sequence of Loading of CUREE-Caltech Protocol 

 
Cycle 
Group 

Primary Cycles  Trailing Cycles 
Number Amplitude (% ∆*) Number Amplitude (% ∆*) 

1    6** 5 0 --- 
2 1 7.5 6 5.625 
3 1 10 6 7.5 
4 1 20 3 15.0 
5 1 30 3 22.5 
6 1 40 2 30 
7 1 70 2 52.5 
8 1 100 2 75% 
9 1 150 2 112.5 

> 9 1 Increment of 50% 
until failure 

2 Increment of 
37.5% until failure 

*∆ = Reference displacement obtained from prior monotonic test (see Fig. 2-10) 
**Initiation cycles 
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2.4 Cyclic Loading Protocols for Masonry Structures 
 
The Sequential Phase Displacement (SPD) Protocol 
 
The Sequential Phased Displacement (SPD) test protocol was developed by the Technical 
Coordinating Committee on Masonry Research (Porter, 1987). The SPD protocol was 
then adopted with minor modifications by the Structural Engineers Association of 
Southern California (SEAOSC) for woodframe shearwall testing. The protocol is based 
on the so-called First Major Event (FME), which can generally be considered as the 
displacement at which the structure starts to deform inelastically (anticipated yield 
displacement). Prior monotonic testing must be performed to determine the FME for the 
SPD protocol. The displacement history is composed of groups of stabilization and 
degradation cycles that are repeated at higher amplitudes, as shown in Fig. 2-12. 
 
In order to monitor the elastic performance of the structure, the SPD procedure starts with 
three phases consisting of ordinary reversed cyclic displacement cycles at displacement 
levels smaller than the FME displacement. An initial displacement level of 25 percent of 
FME displacement, followed by 50 percent and 75 percent of FME for phase two and 
three, respectively. The displacement level of the fourth phase is then increased to 100 
percent of the FME for the initial cycle, which is followed by three degradation and three 
stabilization cycles. The amplitude of each consecutive decay cycle decreases by a 
quarter of the initial displacement. The displacement then increases to the initial 
displacement level and is kept constant over sufficient cycles to obtain the stabilized 
response of the system. Stabilized response is defined as a decrease in load between two 
successive cycles of not more than 5 percent. The stabilized response is an important 
characteristic to assess structural performance after high wind events and during 
repetitive cyclic earthquake loading. Furthermore, the utilization of three cycles at the 
same displacement level allows the monitoring of the stiffness degradation of the system. 
All following phases consist of initial, decay, and stabilization cycles.  
 

 
Figure 2-12. SPD Loading Protocol 
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2.5  ATC-58 Loading Protocol for Fragility Racking Testing of Nonstructural 
Components 
 
As part of the ATC-58 project, Krawinkler et al. (2005) developed a loading protocol 
quasi-static cyclic testing of nonstructural components for the purpose of seismic 
performance assessment. In the context of performance assessment, the scope of this 
testing protocol is to provide data for the estimation of fragility functions of nonstructural 
components, which in turn will be used to estimate direct losses (repair or replacement 
costs, fatalities) or to establish criteria for adherence to specific functional criteria such as 
the need to declare the component unfit for a specified function.   
 

The development of the ATC-58 protocol was based on statistical analyses of the 
response of structures to an ensemble of 20 “ordinary” (no near-fault effect) ground 
motion records.  The set of records is the same one used to develop the CUREE-Caltech 
loading protocol for wood structures, as discussed above. This ensemble of ground 
motions was used to perform response history analysis of elastic and inelastic (with a 
target ductility of 3) SDOF systems and MDOF frame structures. Systems with periods of 
0.2, 0.3, 0.5, 0.9, and 3.6 sec. were evaluated. For each system the deformation response 
(displacement for SDOF systems and story drift for MDOF systems) for each ground 
motion was re-arranged in excursions using the rain flow cycle counting method. The 
deformation range (peak-to-peak value) of each excursion was centered with respect to 
the origin (i.e., the deformation amplitude is assumed to be half of the range, which 
implies that mean effects are ignored) and was normalized to the amplitude of the largest 
excursion of the response. When ordered in magnitude, this resulted in a string of 
numbers from 2.0 on downwards, identifying the relative magnitudes of all excursions of 
the response. For the ensemble of records, statistical measures (median and 84th 
percentile) of each normalized range (the largest one, the second largest one, the third 
largest one, etc.) were computed, providing statistical values of the ranges relative to the 
largest one. These statistical values were then used as the basis to construct the loading 
history.   
 
The resulting loading history of the ATC-58 protocol consists of cycles of step-wise 
increasing deformation amplitudes, as conceptually shown in Fig. 2-13. Two cycles per 
amplitude needs to be applied. The loading history is defined by the following four 
parameters: 
 

Δo = the targeted smallest deformation amplitude of the loading history (it must be 
safely smaller than the amplitude at which the lowest damage state is first 
observed, i.e., at the lowest damage state at least six cycles must have been 
executed).  A recommended value for this amplitude (in terms of story drift 
index δ/h) is around 0.0015.   

Δm = the targeted maximum deformation amplitude of the loading history.  It is 
estimated as the value at which the largest damage level is first observed.  This 
value has to be estimated prior to the test (it can be estimated from a monotonic 
test). If the last damage state has not yet occurred at the target value, the 
loading history shall be continued by using further increments of amplitude of 
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0.3Δm.  A recommended value for this amplitude (in terms of story drift index 
δ/h) is 0.03.   

n = the number of steps (or increments) in the loading history.  It shall be 10 or 
larger. 

ai = the amplitude of the cycles, as they increase in magnitude, i.e., the first 
amplitude, a1, is Δo (or a value close to it), and the last planned amplitude, an, is 
Δm (or a value close to it).  Whenever possible, the test shall be continued 
beyond Δm even if the last damage state has been attained and shall be 
terminated only when the capabilities of the test set-up have been reached or 
the test specimen has degraded so severely that no relevant additional 
information about performance can be acquired. 

 
The amplitude ai+1 of the step i+1 (not of each cycle, since each step has two cycles) is 
given by the following equation: 

                                                  i 1 i

n n

a a1.4
a a

+ ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                 (1) 

where ai is the amplitude of the preceding step, and an is the amplitude of the step close to 
the target Δm.   
 
If the specimen has not reached the final damage state at Δm, the amplitude shall be 
increased further by the constant increment 0.3Δm. A loading history with an = Δm and a1 
= 0.048Δm (i.e., n = 10, or 10x2 = 20 cycles) is shown in Fig. 2-14.   
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Figure 2-13. Conceptual Representation of the ATC-58 Loading Protocol 
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Figure 2-14. ATC-58 Loading Protocol a1 = 0.048Δm 

 
2.6  Comparison of Test Protocols 
 
In this section, the different loading protocols described in the previous sections are 
compared. The comparison is made in terms of the following parameters: 
 

• Total number of cycles 
• Number of initiation cycles 
• Number of primary cycles 
• Inclusion of trailing cycles 
• Inclusion of repeating cycles 
• Sequence of amplitudes of primary cycles 
• Reference parameter 
• Loading symmetry 

 
The section concludes with a review of experimental results obtained with various testing 
protocols on similar test specimens. 
 
Comparison of Total Number of Cycles 
 
The total number of cycles of a loading protocol must be determined based on a balance 
between an estimation of the seismic energy transmitted by a seismic event to a test 
specimen and the time required to complete a test in the laboratory. For the cyclic 
numerical protocol, the same balance must be considered since the total number of 
loading cycles will also influence the computer time required to conduct each cyclic 
pushover analysis. 
 
Figure 2-15 compares the total number of cycles for the 11 loading protocols reviewed. 
By far, the SPD protocol exhibits the largest total number of cycles. Attributed to this 
large number of cycles, which is mainly a result of the decay cycles, the energy demand 
of the SPD protocol is much higher than that of the other protocols and most likely much 
higher than the true energy demand observed in past earthquakes. It is suspected also that 
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the high number of cycles leads to failure modes, such as fastener fatigue, that have 
rarely been observed following earthquakes. Also shown in Fig. 2-15 is the mean total 
number of cycles across all protocols (23 cycles). 
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Figure 2-15. Total Number of Cycles for Loading Protocols 

 
Comparison of Number of Initiation Cycles 
 
Most protocols begin with a number of initiation cycles intended to represent the 
cumulative damage that the specimen would have suffered from small earthquakes that 
would have occurred in its life span to a main seismic event. For the cyclic numerical 
protocol, the number of initiation cycles will only influence building models 
incorporating hysteresis laws that behave nonlinearly over the entire deformation range. 
For hysteresis laws exhibiting inelastic response only beyond a specified yield 
deformation, the number of initiation cycles will have no influence since the response of 
the building model will be in the elastic range with its initial elastic stiffness and no 
damping capacity. 
 
Figure 2-16 compares the number of initiation cycles for the 11 loading protocols 
reviewed. Only five protocols incorporate initiation cycles. The other six protocols, 
although may have some cycles resulting in elastic response of the test specimen, are 
based on fraction of ultimate displacements or deformation without specifying a yield 
level. Again, the SPD protocol exhibits the largest number of initiation cycles. 
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Figure 2-16. Number of Initiation Cycles for Loading Protocols 

 
Comparison of Number of Primary Cycles 
 
Primary cycles are intended to represent the largest response peak of a test specimen 
during a seismic event. Each primary cycle represents the first cycle pushing the 
hysteretic envelope of the test specimen to a new value of displacement or force. Primary 
cycles are obviously important for the cyclic numerical protocol since it is intended to 
capture the nonlinear response of building models of their entire nonlinear ranges. Figure 
2-17 compares the number of primary cycles for the 11 loading protocols reviewed.  
 
Inclusion of Trailing Cycles 
 
The SPD, FCC and CUREE-Caltech protocols are the only three protocols that have 
“trailing cycles;” i.e. cycles that have amplitudes smaller than previous cycles. These 
trailing cycles may be more indicative of the behavior of actual seismic events and also 
allow for observation of the specimen response to these trailing cycles. For the cyclic 
numerical protocol, trailing cycles may not be relevant since the purpose is to evaluate 
the equivalent viscous damping of structural systems as a function of full cyclic response 
of increasing deformation amplitudes.  
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Figure 2-17. Number of Primary Cycles for Loading Protocols 

 
Inclusion of Repeating Cycles 
 
The New Zealand, ATC-24, SAC, FCC, ASTM E564, CEN, ISO, CUREE-Caltech and 
ATC-58 protocols have “repeating cycles;” i.e. cycles that have amplitudes similar as that 
of previous cycles. These repeating cycles may be useful to assess the strength and/or 
stiffness degradation of a test specimen under repeated cycles of constant amplitude. For 
the cyclic numerical protocol, repeating cycles may be important since the equivalent 
viscous damping characteristics of structural systems may be reduced with increasing 
number of cycles at constant amplitude. Figure 2-18 compares the maximum number of 
repeating cycles contained in each of the eight protocols listed above. Six of these eight 
protocols include a maximum of either two or three repeating cycles with a mean value of 
three repeating cycles. 
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Figure 2-18. Maximum Number of Repeating Cycles for Loading Protocols 
 
 
Rate of Amplitude Increase of Primary Cycles 
 
The rate of amplitude increase of primary cycles is an important parameter for a loading 
protocol as this sequence can be related to the rate of input energy fed into a structure 
during an earthquake. If the rate of amplitude increase is too low, a large number of 
primary cycles will be required to achieve a target deformation level, which could lead to 
unrealistic failure mechanisms for seismic events (e.g., nail fatigues in wood shearwalls). 
Similarly, if the rate of amplitude increase is too high, a very small number of primary 
cycles will be required to achieve the same target deformation level. The development of 
a loading protocol for near-field seismic event would typically be characterized by a high 
rate of amplitude increase of primary cycles.  
 
The rate of amplitude increase of primary cycles in a loading protocol can be 
characterized by the ratio 1aai , where ia  is the amplitude of a group of primary cycles i, 
and 1a  is the amplitude of the first group of primary cycles of loading. Figure 2-19 
compares this ratio for the 11 loading protocols reviewed. The slope of each curve shown 
in Figure 2-19 represents the rate of amplitude increase of primary cycles of each 
corresponding loading protocol. As expected, the SPD protocol exhibits the lowest rate, 
while the ASTM E564 protocol exhibits the highest. The rate of amplitude increase of 
primary cycles increases after the first five primary cycle groups for most loading 



 23  

protocols. The rate of amplitude increase of primary cycles of the CUREE-Caltech 
loading protocol matches fairly well the mean rate taken across the 11 loading protocols 
reviewed. 
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Figure 2-19. Amplitude Increase of Primary Cycles for Loading Protocols 

 
Comparison of Reference Parameters 
 
With the exception of the SAC and the ASTM E-72 protocols, a reference displacement 
determined from either prior monotonic testing or a prior estimate of the specimen 
response is required. The lack of a requirement for prior knowledge of the specimen 
behavior provides not only the advantage of convenience, but helps to provide 
consistency between different tests. The reference displacements for four of the protocols 
are based on the yield displacement (New Zealand, ATC-24, FCC and SPD) as opposed 
to the displacement at ultimate load. For the cyclic numerical protocol, the need of a 
preliminary monotonic pushover analysis is not a major disadvantage since the computer 
time required to perform such analysis is usually not excessive. 
 
Loading Symmetry 
 
The ASTM E72 protocol is the only protocol that is nonsymmetrical. Although 
earthquakes are never perfectly symmetric, they are often very close (except for near-
fault earthquakes), hence, most loading protocols have been defined as symmetric. The 
symmetry also allows for observation of how the specimen responds to negative 
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excursions of the same amplitude as the positive excursions. For the cyclic numerical 
protocol, a symmetric loading history is required. 
 
Experimental Comparison of Loading Protocols 
 
Experimental studies involving various loading protocols on similar test specimens could 
be found only for wood structures. Because of the highly nonlinear and pinched 
hysteretic behavior of wood subassemblies and systems even at low deformations, the 
effect of the loading history of a given protocol will influence substantially their cyclic 
responses. 
 
Yasumura (1999) applied both the CEN and the ISO protocols to bolted wood joints with 
steel side plates. He observed little variation of results of the two regimes in terms of 
displacement at capacity and peak load.  
 
As part of the CUREE-Caltech Woodframe Project, Gatto and Uang (2003) tested 
standard 2.4m x 2.4m woodframe shearwalls using different loading protocols. The 
CUREE-Caltech protocol was compared with the SPD and ISO protocols. Findings from 
the research indicated that the loading protocol has a significant influence on shearwall 
performance. Protocols with a large number of cycles (SPD) tended to produce nail 
fatigue fractures, which were not nearly as prevalent in protocols with lower numbers of 
cycles (CUREE-Caltech and ISO). The research clearly showed that the nail fatigue 
fractures were associated with a large energy demand related to the number of cycles, 
which resulted in a reduced ultimate strength and deformation capacity. Note that nail 
fatigue fractures have rarely been observed following earthquakes. The initial stiffness of 
the specimens was relatively unaffected by the loading protocol used. These findings are 
in agreement with previous findings obtained by He et al. (1998) in Canada. 
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SECTION 3 
REVIEW OF NUMERICAL CYCLIC PUSHOVER 

ANALYSES 
 
Only a few numerical investigations that involved cyclic pushover analyses could be 
found and are reviewed in this section.  
 
Nathan et al. (1995) developed a finite element model to predict the nonlinear behavior of 
the historic Cesar E Chavez Avenue Bridge in the city of Los Angeles. This bridge 
structure consists of a combination of reinforced concrete flat slabs, tee beams, box 
girders and an arch bridge. The finite element model incorporated nonlinear beam 
elements in conjunction with special purpose concrete and rebar constitutive models. A 
unique aspect of the pushover analysis technique used was that the bridge was cycled 
transversely and longitudinally to evaluate the bridge's cyclic behavior and predict 
damage associated with hysteretic degradation. The numerical results obtained were used 
to develop retrofit schemes that would prevent a collapse of the structure in a major 
earthquake yet maintain its original architectural values. 
 
Filiatrault et al. (2003, 2004) performed monotonic and cyclic pushover analyses along 
the two orthogonal directions of four full-scale woodframe building models. The main 
objective of these analyses was to estimate the equivalent secant lateral stiffness and 
viscous damping ratios of woodframe buildings as a function of building drift. From 
these analyses, simple design equations were obtained for these parameters to be 
implemented in a direct-displacement based seismic design strategy for woodframe 
buildings. Because this study is highly relevant to the ATC 63 Project, some details of the 
analysis procedure and results obtained are discussed below. 
 
From a preliminary monotonic pushover analysis, the roof (building) drift maxδ    
corresponding to the maximum base shear was identified for each building configuration. 
A cyclic pushover analysis was then performed using a modified version of the CUREE-
Caltech loading protocol. Only two repetitions of each primary cycles contained in the 
CUREE-Caltech loading protocol were applied since the hysteretic model used for the 
wall elements of the structure included a strength and stiffness degradation that stabilize 
after the second cycle at a given deformation amplitude (Filiatrault et al., 2003, 2004). As 
shown in Fig. 3-1 for one particular primary cycle amplitude, the stiffness degradation 
and pinching response of the structure are evident. Also, the stiffness and energy 
dissipation characteristics are much different in the first cycle than in the other cycles.  
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Figure 3-1. Cyclic Pushover Curve for Woodframe Apartment Building  

(from Filiatrault et al., 2004) 
 
For each building model and drift level, the ratio os kk , where ok is the initial lateral 
stiffness of the building and sk the corresponding secant lateral stiffness, was computed.  
The results of this analysis are shown in Fig. 3-2.  The variation of secant lateral stiffness 
with building drift ratio for all of the woodframe buildings analyzed falls within a fairly 
narrow band.  Consequently, this variation is not strongly dependent on the building 
configuration.  Analytically, this variation was represented adequately by two piece-wise 
linear segments, as follows: 
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Assuming first mode response, Equation (2) was transformed into a period variation 
equation: 
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where sT is the secant period corresponding to the target drift level δ , and oT is the initial 
(elastic) fundamental period. 
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Figure 3-2. Normalized Secant Lateral Stiffness versus Normalized Drift Levels for 

Woodframe Buildings (from Filiatrault et al., 2004) 
 
 
In order to capture the energy dissipation characteristics of each building configuration at 
a given building drift ratioδ , an equivalent viscous damping ratio eqζ , representative of 
the hysteretic damping in the structure, was computed from the global hysteretic behavior 
of each woodframe building configuration: 

                                                          ( )22 hk
E

s

D
eq δπ

ζ δ=                                                        (4) 

 
where DδE is the energy dissipated per cycle at the building drift ratioδ , sk is the overall 
equivalent (secant) lateral stiffness of the building at the same drift level, and h is height 
of the building from the ground level to the roof eaves.  

 
Equation (4) was applied twice to compute eqζ , once over the first hysteretic cycle, and 
then over the second cycle.  The resulting values of eqζ for all index buildings and drift 
levels are shown in Fig. 3-3.   
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Figure 3-3. Equivalent Viscous Damping Ratios of Woodframe Buildings  

(from Filiatrault et al., 2004) 
 
The equivalent damping ratios are significantly higher (in the vicinity of 30% of critical) 
for the first cycle calibration than for the second cycle calibration (in the vicinity of 20% 
of critical).  Over the range of building drifts considered, the equivalent viscous damping 
ratio remains fairly constant with building drift ratio. Consequently, the variation of 
equivalent viscous damping ratio eqζ with building drift ratioδ can be represented 
reasonably accurately by the following empirical formulas:  
 

                                                   
⎩
⎨
⎧

>
≤

=
35.0for28.0

53.0for8.0
δ
δδ

ζ eq                                                   (5) 

for the first hysteretic cycle and: 
 

                                                      
⎩
⎨
⎧

>
≤

=
35.0for18.0

53.0for5.0
δ
δδ

ζ eq                                                (6) 

for all other cycles. 
 
Note that the linear variation of eqζ , given in Equations (5) and (6), only applies for 

small values of building drift ratio (less than 0.35%). Numerical data supporting this 
linear variation in eqζ  was established in a previous study (Filiatrault et al., 2003).  This 
linear relationship is included in the specification of eqζ  since initial cracking of 
nonstructural wall finishes, such as gypsum wallboards and stucco, can occur at drift 
level less than 0.35% (Deierlein and Kanvinde, 2003). If cracking of nonstructural wall 
finishes is not part of the performance matrix, the constant values of eqζ specified in 
Equations (5) and (6) can be used.  
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SECTION 4 
RECOMMENDED NUMERICAL CYCLIC LOADING 

PROTOCOL FOR QUANTIFYING BUILDING 
PERFORMANCE 

 
4.1 Criteria 
 
From the above review of experimental loading protocols and analytical studies using 
cyclic pushover analysis, a numerical cyclic loading protocol is recommended based on 
the following criteria: 
 
• The numerical cyclic loading protocol should be based on similar criteria used to 

develop experimental cyclic loading protocols since the cyclic analyses to be 
conducted can be viewed as a “numerical experiments.” 

• The numerical cyclic loading protocol should be applicable to all types of building 
structures and should be independent of the types of structural materials. Therefore, 
the numerical protocol should be an “average” protocol of the experimental loading 
protocols reviewed above. 

• Since the cyclic analyses will be conducted on models of complete building systems, 
the proposed numerical cyclic loading protocol should be based on a reference 
displacement obtained from a preliminary pushover analysis of the building model. 
The most natural reference displacement to be used is the lateral displacement at the 
roof of the building model. 

• The total number of cycles of the proposed numerical cyclic loading protocol should 
be close to the mean total number of cycles for the 11 experimental loading protocols 
reviewed (i.e. 23 cycles as shown in Fig. 2-15). 

• The proposed numerical cyclic loading protocol should not include initiation cycles 
since these initiation cycles will only mobilize the elastic response of the building 
model, without providing any useful information on its hysteretic response. 

• The number of primary cycles of the proposed numerical cyclic loading protocol 
should be close to the mean number of primary cycles for the 11 experimental 
protocols reviewed (i.e. 7 primary cycles as shown in Fig. 2-17). 

• Although experimental cyclic loading protocol required to generate appropriate 
mathematical hysteretic models of structural components and systems may require the 
inclusion of trailing cycles, the proposed numerical cyclic loading protocol itself need 
not to include trailing cycles since the main objective of the cyclic pushover analyses 
is to capture the nonlinear response of building models with increasing displacement 
amplitude. 

• The proposed numerical cyclic loading protocol should include repeating cycles. The 
number of repeating cycles should depend on the type of hysteretic models used. If 
the hysteretic models exhibit strength and/or stiffness degradation with repeated 
cycles at the same deformation level, the number of repeating cycles should be equal 
to two if the hysteresis loops stabilize after the second cycle or three if the loops 
stabilize after three or more cycles. 
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• The rate of amplitude increase of primary cycles of the proposed numerical cyclic 
loading protocol should be similar to that of the CUREE-Caltech loading protocol 
since this protocol is close to the mean rate of amplitude increase of primary cycles 
for the 11 loading protocol reviewed, as shown in Fig. 2-19. 

 
4.2 Proposed Numerical Cyclic Protocol 
 
The proposed numerical cyclic loading protocol will first consist of a preliminary 
monotonic pushover analysis, as shown in Fig. 4-1, in order to establish the expected 
failure roof displacement ( fΔ ) of the building model. The expected failure roof 
displacement corresponds to a fraction (α ) of the maximum base shear ( maxV ) computed. 
The expected failure displacement should be calibrated based on the results of 
incremental dynamic analyses, as an interim, a value of 80.0=α is suggested. 
 
 

Roof Lateral Displacement, Δ

Base Shear, V

masV

fΔ

masVα

 
 

Figure 4-1. Calculation of fΔ for Proposed Numerical Cyclic Loading Protocol 
 
Once the expected failure roof displacement ( fΔ ) is established, the general loading 
sequence of the proposed numerical loading protocol is established as a fraction of fΔ , as 
shown in Fig. 4-2 and Table 4-1. 
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Figure 4-2. Proposed Numerical Cyclic Loading Protocol 
 

Table 4-1. Sequence of Loading of Proposed Numerical Cyclic Loading Protocol 
 

Cycle Group Number of Cycles Roof Displacement Amplitude 
1 3 fΔ10.0  
2 3 fΔ20.0  
3 3 fΔ30.0  
4 3 fΔ40.0  
5 3 fΔ60.0  
6 3 fΔ80.0  
7 3 fΔ0.1  

 
 
The total number of cycles for the proposed numerical cyclic loading protocol is 21, 
which is close to the mean value of 23 cycles for the 11 loading protocols reviewed.  
 
The proposed numerical cyclic loading protocol contains seven primary cycles, which is 
equal to the mean number of primary cycles for the 11 experimental loading protocols 
reviewed.  
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The proposed numerical cyclic loading protocol contains three repeating cycles for each 
amplitude of primary cycles. If the strength and/or stiffness degradation of the hysteretic 
models used stabilize after only two cycles, the number of repeating cycles can be 
reduced to two. Furthermore, if the hysteretic models used do not exhibit any strength 
and stiffness degradation, the repeating cycles can be eliminated. 
 
Figure 4-3 compares the rate of amplitude increase of primary cycles of the proposed 
numerical cyclic loading protocol with that of the CUREE-Caltech loading protocol and 
the mean rate of increase for the 11 experimental loading protocols reviewed. The three 
rate of increase curves shown in Fig. 4-3 agree reasonably well. 
 
The proposed numerical cyclic loading protocol, while consistent with experimental 
cyclic loading protocols, contains a large number of cycles.  This may be inappropriate 
for degrading systems, for which the protocol may generate lower strengths and 
displacement capacities.  Accordingly, alternative protocols consisting of a reduced 
number of cycles will be investigated in Section 6. 
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Figure 4-3. Amplitude Increase of Primary Cycles for Proposed Numerical Cyclic 

Loading Protocols 
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SECTION 5 
LATERAL LOAD DISTRIBUTION FOR CYCLIC 

PUSHOVER ANALYSIS 
 
The numerical cyclic loading protocol proposed in Section 4 implies that the lateral 
loading should be implemented using a displacement-based pushover procedure.  Note 
that the recommended numerical cyclic loading protocol is based on experimental cyclic 
protocols that are typically conducted as displacement-controlled experiments. 
 
The direct application of displacement-based pushover analysis without adaptation in 
each step could conceal important structural characteristics such as strength irregularities 
(Antoniou and Pinho, 2004). While it is desirable to implement the numerical cyclic 
pushover using a displacement-based pushover analysis (and particularly an adaptive 
displacement-based method), the option is not currently available in most computer 
programs.  Moreover, current pushover analysis methods in various resource documents 
do not consider displacement-based pushover analysis procedures (e.g., FEMA, 1997, 
2005). Accordingly, only force-based pushover analysis procedures were considered. 
 
A review and evaluation of nonlinear static analysis procedures in FEMA 440 (FEMA, 
2005; Krawinkler et al., 2005) resulted in the conclusion that the best estimates of 
displacements were obtained when force-based pushover analysis procedures were used 
with load vectors being either proportional to the first mode under elastic conditions or 
having an inverse triangular shape. Moreover, use of adaptive load vectors produced 
results comparable to those based on the inverse triangular and the first-mode load 
vectors.  This conclusion is similar to the one arrived by Ramirez et al. (2001) in the 
study of structures with supplemental damping systems. 
 
The cyclic pushover analysis is implemented herein using a force-based procedure with a 
load vector proportional to the first mode of the analyzed structure under elastic 
conditions. This approach is consistent with the conclusions of the FEMA 440 study 
(FEMA, 2005; Krawinkler et al., 2005). The approach is implemented by applying an 
increasing load vector causing a deformed shape of the structural system equals to its 
elastic first mode until the roof displacement reaches the value prescribed in the loading 
protocol. This is then followed by unloading using a decreasing load vector and then the 
process is repeated in accordance with the proposed numerical cyclic protocol. 
 
Higher mode effects are not considered in this approach. These effects can be 
incorporated on the basis of the modified modal pushover analysis procedure described in 
FEMA 440.   
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SECTION 6  
ANALYSIS OF 4-STORY REINFORCED CONCRETE 

SPECIAL MOMENT FRAME 
 
6.1 Scope 
 
For the purpose of estimating the seismic response of structural systems based on the 
proposed numerical cyclic loading protocol and alternative protocols, the structure is 
modeled as a single-degree-of-freedom (SDOF) system with effective (secant) lateral 
stiffness and viscous damping properties representative of the global behavior of the 
actual structure at a target roof displacement. In this section, the influence of the number 
of repeating cycles (referred herein as cyclic dwell) of the proposed numerical cyclic 
loading protocol on the equivalent (secant) elastic lateral stiffness and viscous damping 
properties for a 4-story reinforced concrete building model is investigated. 
 
6.2 Four-story Special Moment-Resisting Reinforced Concrete Frame Building 
 
Figure 6-1 presents the geometry of the building model considered in the sensitivity 
study. This model was used by Haselton et al. (2006) to investigate the collapse 
mechanisms of building structures using Incremental Dynamic Analysis (IDA). The 
building consists of 24 in. by 24 in. to 30 in. by 30 in square columns. Beam depth varies 
from 32 to 42 in.  The model represents a 4-story special moment-resisting concrete 
frame building with member end plasticity incorporating both stiffness and strength 
degradation. This hysteretic element end model captures four different modes of cyclic 
deterioration: basic strength deterioration, post-cap strength deterioration, unloading 
stiffness deterioration, and accelerated reloading stiffness deterioration. Further details of 
this hysteretic model are given by Ibarra (2003). 
 

 
Figure 6-1. Special Moment-Resisting 4-Story Concrete Frame Building Model  

(Haselton et al., 2006a) 
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Table 6-1. Lumped Tributary Weights and Modal Properties of Analyzed 4-story 

Special Moment Frame 
 

Floor Weight 
(kips) 

Mode 1 
(T = 1.35sec) 

Mode 2 
(T = 0.46sec) 

Mode 3 
(T = 0.25sec) 

Mode 4 
(T = 0.17sec) 

4 (roof) 1675 1.000 -0.925 -0.676 0.307 
3 1717 0.793 0.217 1.000 -0.681 
2 1748 0.488 1.000 -0.060 1.000 
1 1810 0.204 0.677 -0.940 -0.864 

 
Table 6-1 presents the modal properties of the frame under elastic conditions obtained 
with the computer program OpenSees. Included in this table are lumped tributary weight 
per level (or floor), natural periods (T) and modal floor displacements for the first four 
modes of vibration.  Note that the modal floor displacements presented in the table are for 
horizontal degrees of freedom at the indicated floor. 
 
6.3 Monotonic Pushover Analysis 
 
Before performing the sensitivity study using the proposed numerical cyclic loading 
protocol and other protocols, a monotonic pushover analysis is performed on the building 
model. For this purpose a lateral load distribution producing a deformed shape of the 
building model corresponding to its first elastic mode of vibration is utilized. Figure 6-2 
shows the result of the monotonic pushover analysis. For the purpose of this study, it is 
assumed that the failure roof drift occurs when the lateral force equals 80% of the peak 
base shear. From Fig. 6-2, a peak base shear of 1729 kips and a roof drift of 5.2% (33.1 
in) correspond to this failure point. 
 
6.4 Cyclic Loading Protocols 
 
Three different versions of the proposed numerical cyclic loading protocol are considered 
in the sensitivity analysis, as illustrated in Fig. 6-3. Each version contains the same 
sequence of primary cycles but each includes a different number of repeating cycles 
(referred herein as cyclic dwell). The first version of the loading protocol (cyclic dwell = 
1) includes only the sequence of primary cycles without any repeating cycles. The second 
version of the loading protocol (cyclic dwell = 2) includes one repeating cycle following 
each primary cycle. Finally, the third version of the loading protocol (cyclic dwell = 3) 
includes two repeating cycles following each primary cycle. Moreover, for comparison 
purposes, a fourth “arbitrary” cyclic loading protocol is used that contains a total of ten 
cycles, without any repeating cycles and with the amplitude increasing by 0.1 fΔ  in each 
cycle.  This arbitrary protocol is also illustrated in Fig. 6-3. 
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Figure 6-2. Result of Monotonic Pushover Analysis of 4-story SMF 
 

a)                                                                         b) 
 
 

 
 
 
 
 
 
 
 
 

 
c) d)     

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-3. Numerical Cyclic Loading Protocols used for 4-story SMF,  
a) Cyclic Dwell 1, b) Cyclic Dwell 2, c) Cyclic Dwell =3, and d) Arbitrary Protocol 
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6.5 Cyclic Pushover Analyses 
 
Figure 6-4 presents the results of the cyclic pushover analyses performed on the building 
model using the three different versions of the proposed numerical loading protocol and 
the fourth arbitrary protocol. The monotonic pushover curve obtained previously is 
included on each graph for comparison purposes. The strength and stiffness degradations 
induced by the cyclic loading protocol are significant. These degradations are more 
significant as the number of repeating cycles is increased, which is one of the main 
characteristics of the hysteretic model used for the beams and columns end plasticity (see 
Section 6.2). 
 
a)                                                                      b) 
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   c)                                                                   d)  
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Figure 6-4. Results of Cyclic Pushover Analyses for 4-story SMF, a) Cyclic Dwell 1,  

b) Cyclic Dwell  2, c) Cyclic Dwell  3, d) Arbitrary Protocol  
 

6.6 Sensitivity of Effective Lateral Stiffness 
 
For each global hysteresis loop obtained for the cyclic pushover analyses shown in Fig. 
6-4, the global effective (secant) lateral stiffness of the building, effk , is obtained 
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where F+ is the force at maximum positive displacement U+ and F- is the force at 
maximum negative displacement U-.  Note that the effective stiffness line is shown in 
Figure 6-5 not to pass through the origin of the axes, which is the case of hysteresis loops 
that lack anti-symmetry. Such condition arises in systems in which significant 
degradation of strength and stiffness occurs over small increments of displacement. 
 

F +

U +

F -

U -

Keff
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U +

F -
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k eff

 
Figure 6-5. Definition of Effective Lateral Stiffness 

 
The variation of effective lateral stiffness with roof displacement could then be plotted. 
Since the structure is modeled as an equivalent SDOF system, it is useful to plot the 
variation of effective lateral stiffness with effective spectral displacement. For this 
purpose, the effective spectral displacement, dS , can be simply obtained from: 

                                                           
1

r
d Γ

ΔS =                                                                  (8) 

where rΔ is the roof lateral displacement and 1Γ is the first modal participation factor of 
the structure  
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where iw  is the weight at level i, N is the number of levels (N = 4 in the case of the 
structure of Figure 6-1) and iφ is the first mode modal displacement at level i. Using the 
data in Table 6-1 for the structure of Fig. 26, 312.11 =Γ . 
 
Figure 6-6 presents the variations of the effective lateral stiffness of the building model 
with dS  for all the hysteresis loops generated by the three versions of the proposed 
loading protocol. The stiffness values are normalized to the initial (elastic) lateral 
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stiffness of the building model, ik = 253 kips/in. The results are presented for each group 
of primary and repeating cycles of the three versions of the proposed loading protocol as 
well as for the fourth arbitrary protocol. The number of repeating cycles only has 
minimal effect on the variation of effk with dS . Also shown in Fig. 6-6 are smooth 
interpolated functions of the form: 
 

                                                   1alnS a
k

k0 2d1
i

eff ≤+−=≤                                          (10) 

for the proposed numerical cyclic protocol, where the best fit values of a1 and a2 are listed 
in Table 6-2, and: 
 

                                               1e5091.1
k

k
0 dS1257.0

i

eff ≤⋅=≤ −       (11) 

for the fourth arbitrary protocol. 
 
a)                                                                            b) 
 
 
 
 

 
 
 
 
 
 
 
 
 c)             d) 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-6. Effective Stiffness as Function of Spectral Displacement of 4-story SMF,  
a) Cyclic Dwell 1, b) Cyclic Dwell  2, c) Cyclic Dwell  3, d) Arbitrary Protocol 
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overestimated.  This is better observed in the spectral capacity curves presented in 
Appendix B. 
 

Table 6-2. Best Fit Values of Constants in Equation (10) for 4-story SMF 
 

Protocol Cycles a1 a2 
Cyclic Dwell 1 1 0.44 1.47 
Cyclic Dwell 2 1 0.49 1.54 

2 0.48 1.52 
Cyclic Dwell 3 1 0.47 1.52 

2 0.50 1.55 
3 0.52 1.57 

 
6.7 Sensitivity of Spectral Capacity Curves 
 
The effective secant stiffness values shown in Fig. 6-6 can be used to construct effective 
spectral capacity curves for the building model considered. For this purpose, the spectral 
capacity curve is defined as the envelope (or backbone curve) of the cyclic pushover 
curves for the building model expressed in terms of effective SDOF spectral acceleration, 

aS , and spectral displacement, dS . The effective spectral displacement, dS , was already 
obtained from the roof lateral displacement per Equation (8).  The effective spectral 
acceleration, aS , can be obtained by: 
 

                                                          
1

d1eff
a W

SΓkS =                                                         (12) 

 
where 1W is the first modal weight  
 

1 1
1
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i i
i

W wφ
=

= Γ ∑         (13) 

 
For the structure of Figure 6-1 and based on the data of Table 11, 1 5587W kip= . 
 
Figure 6-7 presents the spectral capacity curves for the building model based on the three 
versions of the proposed numerical cyclic loading protocol and the fourth arbitrary 
protocol. The effect of repeating cycles on the spectral capacity curve of the building 
model considered is moderate. The peak spectral acceleration based on first cycles when 
no repeating cycles are present (Cyclic Dwell = 1) is reduced by 8% when two repeating 
cycles are introduced (Cyclic Dwell = 3). When one repeating cycle is introduced (Cyclic 
Dwell = 2), the peak spectral acceleration based on second cycles is 3% less than the 
peak spectral acceleration based on first cycles. A more pronounced strength degradation 
is observed when 2 repeating cycles are introduced (Cyclic Dwell = 3), where the peak 
spectral acceleration based on third cycles is 9% less than the peak spectral acceleration 
based on first cycles. The spectral capacity curve for the fourth arbitrary protocol is 
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almost identical to that obtained with the first cycles of the proposed numerical cyclic 
protocol since the arbitrary protocol does not include repeating cycles. 
 
a)                                                                              b) 
 
 
 

 
 
 
 
 
 
 
 
 

  c)               d) 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6-7. Spectral Capacity Curves of 4-story SMF,  
a) Cyclic Dwell 1, b) Cyclic Dwell 2, c) Cyclic Dwell 3, d) Arbitrary Protocol 

 
 
6.8 Sensitivity of Hysteretic Energy 
 
The energy dissipated by hysteresis actions during a given cyclic response of the building 
model loaded by the proposed numerical cyclic loading protocol and by the arbitrary 
protocol can be obtained by computing the area under the corresponding hysteresis loop, 
as illustrated by the shaded area in Fig. 6-5. The variation of this hysteretic energy, hE , 
with effective spectral displacement, dS , can then be obtained. Figure 6-8 presents these 
variations for all the hysteresis loops of the three versions of the proposed loading 
protocol. 
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a)                                                                              b) 
 
 
 
 
 
 
 
 
 
 
 
 
 c)               d) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-8. Variations of Hysteretic Energy Dissipated by 4-story SMF with 
Spectral Displacement, a) Cyclic Dwell  1, b) Cyclic Dwell  2, c) Cyclic Dwell  3,  

d) Arbitrary Protocol 
 
The number of repeating cycles only has a very minor effect on the variation of 

hE with dS . Also shown in Fig. 6-8 are smooth interpolated functions of the form: 
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d1h ≥−+=                                               (14) 

 
where the best fit values of b1, b2 and b3 are listed in Table 6-3. 
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Table 6-3. Best Fit Values of Constants in Equation (14) for 4-story SMF  
 

Protocol Cycles b1 b2 b3 
Cyclic Dwell 1 1 81.3 2252.7 7473.6 
Cyclic Dwell 2 1 56.8 2600.6 8534.5 

2 120.5 1361.0 5154.4 
Cyclic Dwell 3 1 89.0 2067.9 6918.4 

2 112.6 1420.4 5327.0 
3 69.7 1889.1 6362.2 

Arbitrary 1 28.9 3179.2 10430.0 
 
 
6.9 Sensitivity of Equivalent Viscous Damping Ratio 
 
By expressing Equation (4) in terms of effective spectral values and substituting Equation 
(14), an explicit expression for the equivalent viscous damping ratio, eqζ , can be 
obtained: 
 

                          ( ) ( ) π
2

SΓk2π
bSbSb
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E

ζ0.05 2
d1eff

3d2
2
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2
d1eff

h
eq ≤−+==≤                              (15) 

 
Figure 6-9 presents the variation of eqζ , as computed from Equation (15), with effective 
spectral displacement, dS , for all the hysteresis loops of the three versions of the proposed 
loading protocol and for the fourth arbitrary protocol. The equivalent viscous damping 
ratios is artificially limited by a lower bound equal to 5% of critical corresponding to the 
energy dissipated by the building model prior to yielding of the main structural elements 
and by an upper bound of π2 (or 64% of critical) corresponding to a perfect rectangular 
hysteresis loop. Again, the number of repeating cycles has only a minor effect on the 
variations of eqζ  with dS . 
 
6.10 Estimation of Seismic Response 
 
The seismic response of the building model is estimated using a simplified capacity 
spectrum methodology based on the proposed numerical cyclic loading protocol and is 
compared to the median seismic response of the same building model obtained by 
Nonlinear Dynamic Analyses (NDA) under an ensemble 60 strong motion records scaled 
at different intensities (Haselton et al., 2006a). For comparison purposes, the same 
methodology is used with the fourth arbitrary protocol. 
 
For this purpose the spectral capacity curves (or capacity spectra) of the building model 
shown in Fig. 6-7 are compared to the median elastic response spectra of the strong 
motion ensemble at damping ratios corresponding to the relationships given by Equation 
(15) and shown in Fig. 6-9. For each value of spectral displacement, the corresponding 
damping ratio is obtained from Equation (15) and the spectral amplitude corresponding to 
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this damping is retained. The point of intersection between the resulting spectral demand 
curve connecting the spectral values corresponding to the proper damping ratios and the 
capacity spectrum represents the estimated median seismic response of the building 
model, as illustrated in Fig. 6-10. 
 
a)                                                                              b) 
 
 
 
 
 
 
 
 
 
 
 
 
c)               d) 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 6-9. Variations of Equivalent Viscous Damping Ratio with Spectral 
Displacement for 4-story SMF, a) Cyclic Dwell 1, b) Cyclic Dwell 2,  

c) Cyclic Dwell 3, d) Arbitrary Protocol 
 
Once the estimated median spectral displacement response, dS , is obtained, the estimated 
median roof lateral displacement of the building model can be obtained from Equation 
(8).  
 
6.11 Response Spectra used in Simplified Analysis 
 
The response spectra used in the simplified analysis are the median response spectra of an 
ensemble of 60 strong motion records that were scaled at different intensities and used in 
the Incremental Dynamic Analysis of the building of Fig. 6-1 (Haselton et al., 2006a). 
Four intensities of these motions are used herein for analysis. They are characterized in 
terms of the spectral acceleration at 1 second: a1S  = 0.11 g, 0.32 g, 1.12 g and 1.92 g.  
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Figures 6-11 through 6-14 present the median response spectra of the 60 scaled motions 
at the four selected intensities. Spectra for damping ratios of 5, 10, 15, 20, 25 and 30-
percent are presented. Note that the spectra for higher than 5-percent damping were 
directly obtained by response history analysis and not by the use of the 5-percent damped 
spectra and damping coefficients (B factors) for higher damping.  Moreover, Figs. 6-15 
through 6-18 present the median, maximum and minimum 5-percent damped spectra 
values for each of the four intensities of ground motion. These spectra reveal the 
variability in the scaled motions. Values of the median spectra acceleration are presented 
in Appendix A. 
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Figure 6-10. Estimation of Seismic Response of Building Model 
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Median Spectra: Sa (1 sec) = 0.11g
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Figure 6-11. Median Response Spectra for 0.11g Intensity Motions 

 
 

Median Spectra: Sa (1 sec) = 0.32g
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Figure 6-12. Median Response Spectra for 0.32g Intensity Motions 
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Median Spectra: Sa (1 sec) = 1.12g
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Figure 6-13. Median Response Spectra for 1.12 g Intensity Motions 

 
 

Median Spectra: Sa (1 sec) = 1.92g
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Figure 6-14. Median Response Spectra for 1.92g Intensity Motions 
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Spectra at 5% damping: Sa (1 sec) = 0.11g
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Figure 6-15. Median, Maximum and Minimum Spectral Values for 0.11g Intensity 
Motions 

 

Spectra at 5% damping: Sa (1 sec) = 0.32g
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Figure 6-16. Median, Maximum and Minimum Spectral Values for 0.32g Intensity 
Motions 
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Spectra at 5% damping: Sa (1 sec) = 1.12g
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Figure 6-17. Median, Maximum and Minimum Spectral Values for 1.12g Intensity 
Motions 

 

Spectra at 5% damping: Sa (1 sec) = 1.92g
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Figure 6-18. Median, Maximum and Minimum Spectral Values for 1.92g Intensity 
Motions 
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6.12 Calculation of Response and Comparison to Results of Nonlinear Dynamic 
Analysis 
 
The response of the structure of Fig. 6-1 was calculated using the simplified procedure 
described in Section 6.10 and the median spectra of Figs. 6-11 to 6-14.  Appendix B 
presents detailed results for all cases considered in this study. 
 
Tables 6-4 to 6-7 compare the estimated median peak roof displacement for the building 
model using the procedure outlined above with that obtained from nonlinear dynamic 
analyses (Haselton et al., 2006a). The median roof displacement was calculated from the 
results of dynamic analysis using (a) the counted median (Shome and Cornell, 2000) and 
(b) the surviving median.  The former is the median from the middle of the ordered 
response results, including the cases in which “collapse” (actually numerical instability in 
the analysis program) occurred.  The latter is the median from the ordered response 
results excluding the “collapse” cases. Each table corresponds to a different intensity of 
the ground motions expressed in terms of spectral acceleration at 1 second: a1S  = 0.11 g, 
0.32 g, 1.12 g and 1.92 g. 
 

Table 6-4. Estimated Median Roof Displacement of 4-story SMF, Sa1 = 0.11 g 
 

Protocol Cycles Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Haselton et al. 2006a) 

Cyclic Dwell 1 1 1.86  
 

Surviving Median 2.11 
Counted Median 2.11 

(no collapses) 

Cyclic Dwell  2 1 1.86 
2 1.86 

Cyclic Dwell  3 1 1.86 
2 1.86 
3 1.86 

Arbitrary  1 1.86 
 

Table 6-5. Estimated Median Roof Displacement of 4-story SMF, Sa1 = 0.32 g 
 

Protocol Cycles Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Haselton et al. 2006a) 

Cyclic Dwell  1 1 4.74  
 

Surviving Median 5.63 
Counted Median 5.63 

(no collapses) 

Cyclic Dwell  2 1 4.83 
2 4.89 

Cyclic Dwell  3 1 4.68 
2 4.91 
3 4.91 

Arbitrary 1 4.72 
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Table 6-6. Estimated Median Roof Displacement of 4-story SMF, Sa1 = 1.12 g 
 

Protocol Cycles Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Haselton et al. 2006a) 

Cyclic Dwell  1 1 14.65  
 

Surviving Median 17.80 
Counted Median 18.31 

( 4 collapses out of 60 cases) 

Cyclic Dwell  2 1 14.76 
2 15.09 

Cyclic Dwell  3 1 14.88 
2 15.18 
3 15.48 

Arbitrary 1 14.41 
 

Table 6-7. Estimated Median Roof Displacement of 4-story SMF, Sa1 = 1.92 g 
 

Protocol Cycles Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Haselton et al. 2006a) 

Cyclic Dwell  1 1 24.82  
 

Surviving Median 27.56 
Counted Median 36.11 

(24 collapses out of 60 cases) 

Cyclic Dwell  2 1 23.29 
2 22.82 

Cyclic Dwell  3 1 23.57 
2 22.82 
3 21.97 

Arbitrary 1 24.37 
 
An observation to be made is that the simplified procedure predicts displacements in the 
case of a1S  = 1.92 g (Table 6-7) that slightly decrease as cyclic dwell increases.  This 
appears as counter-intuitive because it is expected that the displacement should increase 
as the stiffness of the structure reduces with increasing number of cycles.  However, in 
this case the increase of effective damping associated with increasing number of cycles 
(see Figure 6-9c) counteracts the effect of reducing stiffness with a net effect of a slightly 
reduced rather than increased displacement. 
 
The simplified procedure predicts identical median roof displacements for all versions of 
the cyclic protocol (including the arbitrary one) at a1S  = 0.11 g since the building remains 
in the elastic range at this low excitation level and its cyclic response is independent of 
the number of repeating cycles. Also, the simplified procedure predicts similar median 
roof displacements for all versions of the cyclic protocol at all levels of seismic excitation 
considered. At high excitation intensity ( a1S  = 1.92 g) the protocols with the least number 
of cycles (arbitrary protocol with 10 cycles and the cyclic dwell 1 protocol with 7 cycles) 
result in slightly larger displacements that are closer to the results of dynamic response 
history analysis. This is due to the fact that the calculated effective damping is less for the 
protocols with less number of cycles. This indicates that the effective damping may be 
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adjusted (or the procedure may be calibrated) to obtain results that are closer to the 
results of response history analysis. 
 
The proposed simplified procedure under-predicts the median roof displacement by 12% 
to 30% across intensity levels and protocol versions when compared to the surviving 
median of the response history analysis. When compared to the counted median of the 
response history analysis, the under-prediction across all levels and protocols is 12% to 
39%.  The largest under-prediction occurs in the case of the strongest seismic input.  In 
the case of the least number of cycles (case of one cyclic dwell with a total of seven 
cycles) the simplified procedure under-predicts the counted median roof displacement 
response by 12% to 31% across all intensity levels. Note that in all cases, the median 
peak roof displacements predicted by the simplified procedures are less than the 
estimated failure roof displacement of 33.1 in (Fig. 6-2), thereby indicating that no failure 
(in a median sense) is predicted by the simplified procedure.  However, an inspection of 
the graphs in Appendix B reveals that for the case of the strongest excitation (1.92g) the 
capacity spectral curve and the spectral demand curve are nearly asymptotic, which 
indicates that collapse is imminent.  Therefore, a small increase in the level of excitation 
would have resulted in prediction of collapse.  Moreover, one may observe in the graphs 
of Appendix B (particularly those for the proposed 3-cycle dwell with results for the 
second cycle) that a different extrapolation of the spectral capacity curve (one that better 
represents the available data at large displacements) would have resulted in prediction of 
collapse at the excitation level of 1.92g. 
 
6.13 Damage Predicted by Simplified Analysis and by Nonlinear Dynamic Analysis 
 
Haselton et al. (2006a) reported on the damage patterns observed in the nonlinear 
dynamic analysis.  Figure 6-19 presents the collapse modes observed in the dynamic 
analysis.  The percentage figures shown in the graphs are the percentage of the 60 ground 
motions records that resulted in the shown failure mode. Several different collapse modes 
are possible for the same structure. 
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(a) 40% of collapses                         (b) 27% of collapses 

 

           
(c) 17% of collapses                         (d) 12% of collapses 

 

           
(e) 5% of collapses                           (f) 2% of collapses 

 
Figure 6-19. Diagrams Showing Collapse Modes of 4-story SMF Observed in 

Dynamic Analysis (Haselton et al., 2006a)   

 
The simplified analysis is capable of predicting a single failure mode.  Figure 6-20 
presents the damage pattern observed in the simplified analysis for the case of a1S  = 1.92 
g ground motion intensity. The simplified analysis in this case shows that the structure is 
near collapse (as evident from the spectral capacity and spectral demand curves being 
nearly asymptotic). The large circles in the figure denote locations of very large plastic 
curvature.  Evidently, this damage pattern agrees well with failure mode (c) in Fig. 6-19. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-20. Damage Pattern of 4-story SMF Observed in Simplified Analysis at  
a1S = 1.92 g (near collapse) 
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SECTION 7  
ANALYSIS OF 4-STORY REINFORCED CONCRETE 

INTERMEDIATE MOMENT FRAME 
 
In this section, a 4-story reinforced concrete intermediate moment frame (IMF) described 
in Liel et al. (2006) was analyzed using the proposed simplified capacity spectrum 
method and compared with the results of incremental dynamic analyses. The structure 
has a similar geometry as the 4-story special moment frame shown in Fig. 6-1 but with 
the columns having dimensions of 20 in. by 22 in. to 28 in. by 28 in. and beams having 
depth between 10 in. and 26 in. The model used to represent the structure is identical to 
the one used for the 4-story special moment frame but with plastic rotation capacities 
limited to 2/3 of those used for the special moment frame. 
 
Table 7-1 presents the modal properties of the analyzed frame under elastic conditions 
obtained with the computer program OpenSees. Included in this table are lumped 
tributary weight per level (or floor), natural periods (T) and modal floor displacements 
for the first four modes of vibration.   
 

Table 7-1. Lumped Tributary Weights and Modal Properties of Analyzed 4-story 
Intermediate Moment Frame 

 
Floor Weight 

(kips) 
Mode 1 

(T = 3.10 sec) 
Mode 2 

(T = 1.11 sec) 
Mode 3 

(T = 0.62 sec) 
Mode 4 

(T = 0.42 sec) 
4 (roof) 1675 1.000 -0.940 -0.587 -0.162 

3 1717 0.796 0.302 1.000 0.441 
2 1748 0.484 1.000 -0.305 -0.865 
1 1810 0.194 0.602 -0.740 1.000 

 
Analyses are performed for two cyclic loading protocols: (a) the full proposed numerical 
cyclic protocol incorporating 21 total cycles of loading, 3 repeating cycles (otherwise 
indicated as cyclic dwell 3) and using the results obtained for the second repeating cycle, 
and (b) a simplified version of the proposed numerical cyclic protocol obtained by 
considering only the 7 primary cycles of loading; i.e. only one repeating cycle (otherwise 
indicated as cyclic dwell 1).  In both cases the loading was developed in proportion to the 
first mode shape as calculated using the elastic properties (Table 7-1).  The first modal 
participating factor and the first modal weight were calculated by use of Equations (9) 
and (13) as 1 1.31Γ = and 1 5545W kip= . 
 
Figure 7-1 presents the monotonic pushover curve obtained for the 4-story IMF. The roof 
displacement at “collapse” was estimated to be Δf = 22.4 in. Figure 7-2 presents the 
results of the cyclic pushover analysis for the two protocols considered.  Also, Figs. 7-3 
to 7-5 present the effective stiffness and effective damping as functions of the spectral 
displacement and the spectral capacity curves of the 4-story IMF as calculated for each 
two loading protocol, respectively.  
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Figure 7-1. Result of Monotonic Pushover Analysis of 4-story IMF 
 
a)      b) 

 
 
 
 
 
 
 
 
 
 

Figure 7-2. Results of Cyclic Pushover Analyses for 4-story IMF,  
a) Cyclic Dwell 1, b) Cyclic Dwell 3 

 
a)      b) 

 
 
 
 
 
 
 
 
 
 

Figure 7-3. Effective Stiffness as Function of Spectral Displacement of 4-story IMF.  
a) Cyclic Dwell 1, b) Cyclic Dwell 3 
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a)               b) 

 
Figure 7-4. Effective Damping as Function of Spectral Displacement of 4-story IMF,  

a) Cyclic Dwell 1, b) Cyclic Dwell 3 
 
 
 

a)                 b) 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-5. Spectral Capacity Curves of 4-story IMF,  
a) Cyclic Dwell 1, b) Cyclic Dwell 3 

 
  
Appendix C presents detailed results for each case of the 4-story IMF analyzed.  Tables 
7-2 to 7-4 tabulate results of simplified and response history analysis obtained from Liel 
et al. (2006). 
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Table 7-2. Estimated Median Roof Displacement of 4-story IMF, Sa1 = 0.11 g 
 

Protocol Cycle Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Liel et al., 2006) 

Cyclic Dwell 1 1 2.83  
Surviving Median 3.03 
Counted Median 3.03 

(no collapses) 

 

Cyclic Dwell 3 2 2.83 

 
Table 7-3. Estimated Median Roof Displacement of 4-story IMF, Sa1 = 0.32 g 

 
Protocol Cycle Median Peak Roof Displacement (in) 

Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Liel et al., 2006) 

Cyclic Dwell 1 1 7.53  
Surviving Median 7.36 
Counted Median NA 

(30 collapses) 

 

Cyclic Dwell 3 2 6.68 

 
 

Table 7-4. Estimated Median Roof Displacement of 4-story IMF, Sa1 = 1.12 g 
 

Protocol Cycle Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analyses  
(Liel et al., 2006) 

    
Cyclic Dwell 1 1 17.48  

Surviving Median 14.74 
Counted Median NA 

(54 collapses) 

 

Cyclic Dwell 3 2 18.21 

 
No results are presented for Sa1 = 1.92 g since at this intensity, the seismic demand curve 
does not intersect with the spectral capacity curve, thereby indicating collapse of the 
structure. This result obtained from the simplified capacity spectrum method is consistent 
with the results obtained from incremental dynamic analyses where 59 of 60 cases 
collapsed.  Moreover, inspection of the graphs of Appendix C reveals, as in the case of 
the 4-story SMF, that an alternative extrapolation of results for the spectral capacity curve 
(one that better represents the available data at large displacements-particularly for the 
case of the one cycle dwell) would have likely resulted in prediction of collapse at the 
excitation level of 1.12g. 
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SECTION 8  
ANALYSIS OF A 12-STORY SPECIAL WALL BUILDING 

 
In this section, a 12-story reinforced concrete special wall building described in Haselton 
et al. (2006b) is analyzed using the proposed simplified capacity spectrum method and 
compared with the results if incremental dynamic analyses. Figure 8-1 illustrates the plan 
view of the building incorporating special core walls. Haselton et al. (2006b) investigated 
the collapse mechanisms of this building through nonlinear time-history dynamic 
analyses. The building dimension is 90 ft. by 1800 ft. in plan with a total height of 129.5 
ft.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8-1. Plan View of The 12-story Building with Special Core Walls  

(Haselton et al., 2006b) 
 

The building was designed as a core-wall system to meet the required design parameters, 
viz. a fundamental vibration period of 1.4 sec, yield base shear ratio (V/W) of 0.20, and 
the maximum considered earthquake (MCE) of 0.90g. 
 
Only the central I-shaped wall was modeled in OpenSees for analyses. Figure 8-2 
presents the model of the core wall along with its moment-curvature and shear-
displacement backbone curves. Frame elements and shear springs with post-cap strength 
deterioration are included in the model to represent both flexural and shear failures of the 
structure. More details on the modeling of this building can be found in by Haselton et al. 
(2006b). 
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Figure 8-2. 12-story with Special Core Wall Building Model  

(Haselton et al., 2006b) 
 

The tributary weight per level, modal properties, natural periods (T) and modal floor 
displacements for the first four modes of the structure are summarized in Table 8-1. 
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Table 8-1. Lumped Tributary Weights and Modal Properties of Analyzed 12-story 
Special Wall Building 

 
Floor Weight 

(kips) 
Mode 1 

(T = 1.41 sec)
Mode 2 

(T = 0.84 sec)
Mode 3 

(T = 0.34 sec) 
Mode 4 

(T = 0.19 sec)
12 

(roof) 
2939 

1.000 1.000 1.000 -0.866 
11 2939 0.891 0.503 0.066 0.405 
10 2939 0.769 0.043 -0.638 0.994 
9 2939 0.649 -0.340 -0.917 0.644 
8 2939 0.535 -0.617 -0.757 -0.214 
7 2939 0.427 -0.772 -0.299 -0.872 
6 2939 0.328 -0.819 0.252 -0.923 
5 2939 0.239 -0.764 0.717 -0.386 
4 2939 0.162 -0.632 0.958 0.390 
3 2939 0.099 -0.458 0.932 0.932 
2 2939 0.051 -0.273 0.690 1.000 
1 2939 0.018 -0.115 0.346 0.627 

 
Similar to the case of the 4-story IMF building, analyses were performed for two cyclic 
loading protocols: (a) the full proposed numerical cyclic protocol incorporating 21 total 
cycles of loading, 3 repeating cycles (otherwise indicated as cyclic dwell 3) and using the 
results obtained for the second repeating cycle, and (b) a simplified version of the 
proposed numerical cyclic protocol obtained by considering only the 7 primary cycles of 
loading; i.e. only one repeating cycle (otherwise indicated as cyclic dwell 1). 
 
Figure 8-3 shows the monotonic pushover curve obtained for the 12-story special wall 
building. The collapse roof displacement (Δf) was determined to be 77.4 in. Figure 8-4 
presents the results of the cyclic pushover analyses with the two protocols considered. 
Also, Figs. 8-5 to 8-7 present the effective stiffness and effective damping as functions of 
the spectral displacement and the spectral capacity curves of the 12-story special wall as 
calculated for each loading protocol, respectively. 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 8-3. Result of Monotonic Pushover Analysis of 12-story Special Wall 
Building 
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a)         b) 
 
 
 
 
 
 
 
 
 
 
Figure 8-4. Results of Cyclic Pushover Analyses for 12-story Special Wall Building,  

a) Cyclic Dwell 1, b) Cyclic Dwell 3 
 
a)         b) 
 
 
 
 
 
 
 
 
 
 

Figure 8-5. Effective Stiffness as Function of Spectral Displacement of 12-story 
Special Wall Building, a) Cyclic Dwell 1, b) Cyclic Dwell 3 

 
 
a)         b) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-6. Effective Damping as Function of Spectral Displacement of 12-story 
Special Wall Building, a) Cyclic Dwell  1, b) Cyclic Dwell  3 
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a)         b) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-7. Spectral Capacity Curves of 12-story Special Wall Building,  
a) Cyclic Dwell  1, b) Cyclic Dwell  3 

 
The hysteresis loops shown in Fig. 54 exhibit an asymmetry with the portion for negative 
displacement showing “degradation” that is believed to tbe the result of numerical 
problems experienced in OpenSees during the cyclic pushover analysis.  This problem 
could not be corrected and it did not appear in the response history analysis of the 
structure.   As a result of this problem, the actual spectral capacity curve of the structure 
(see Appendix D-discrete data shown in circles) recovers at spectral displacements of 
over 30in. after a substantial drop at a spectral displacement of about 20in.  It appears that 
the results of the simplified analysis for this building are valid to spectral displacements 
of about 20in. 
 
The first modal participating factor and the first modal weight were calculated by use of 
Equations (9) and (13) as 1 1.49Γ = and 1 22565W kip= .  Detailed results for each case of 
the 12-story special wall building analyzed are shown in Appendix D. Tables 8-2 to 8-5 
tabulate results of simplified and response history analyses obtained from Haselton et al. 
(2006b). Note that in all cases the median peak roof displacement predicted by the 
simplified capacity spectrum method is well below the estimated collapse value of 77.4 
in, thereby indicating that no failure (in a median sense) is predicted by the simplified 
procedure. 
 
Table 8-2. Estimated Median Roof Displacement of 12-story Special Wall Building, 

Sa1 = 0.11 g 
 

Protocol Cycle Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Haselton et al., 2006b) 

Cyclic Dwell 1 1 2.12  
Surviving Median 2.08 
Counted Median 2.08 

(no collapses) 

 

Cyclic Dwell 3 2 2.12 
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Table 8-3. Estimated Median Roof Displacement of 12-story Special Wall Building, 

Sa1 = 0.32 g 
 

Protocol Cycle Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Haselton et al., 2006b) 

Cyclic Dwell 1 1 6.57  
Surviving Median 6.06 
Counted Median 6.06 

(no collapses) 

 

Cyclic Dwell 3 2 6.57 

 
Table 8-4. Estimated Median Roof Displacement of 12-story Special Wall Building, 

Sa1 = 1.12 g 
 

Protocol Cycle Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Haselton et al., 2006b) 

Cyclic Dwell 1 1 17.14  
Surviving Median 19.12 
Counted Median 19.31 

(4 collapses) 

 

Cyclic Dwell 3 2 18.33 

 
 
Table 8-5. Estimated Median Roof Displacement of 12-story Special Wall Building, 

Sa1 = 1.92 g 
 

Protocol Cycle Median Peak Roof Displacement (in) 
Proposed 
Procedure 

Nonlinear Dynamic Analysis  
(Haselton et al., 2006b) 

Cyclic Dwell 1 1 28.46  
Surviving Median 28.08 

Counted Median NA 
(37 collapses) 

 

Cyclic Dwell 3 2 33.57 

 
Note that the results for the case of excitation with Sa1 = 1.92 g the results of the 
simplified analysis are likely wrong due to the suspected errors in the OpenSees model as 
described previously. 
 
8.1 Calculation of Damage Predicted by Simplified Analysis and by Nonlinear  
      Dynamic Analysis 
 
Haselton et al. (2006b) reported on the damage patterns of the 12-story special wall 
building observed in the nonlinear dynamic analyses. Figure 8-8 presents the collapse 
modes observed in the dynamic analyses. The percentage figures shown in the graphs are 
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the percentage of the 60 ground motions records that resulted in the shown failure mode. 
Several different collapse modes are possible for the same structure; however, almost all 
cases are governed by a shear failure in the first story. 
 
The simplified analysis is capable of predicting a single failure mode. Figure 8-9 presents 
the damage pattern observed in the simplified analysis using the loading protocol with 3 
repeating cycles for the case of a1S  = 1.92 g ground motion. The circles in the figure 
denote locations of plastic curvature, while the large rectangle shows location of a large 
shear deformation. Evidently, the damage pattern obtained from the simplified analysis 
governs by the shear failure in the first story, which agrees well with the dominant failure 
mode (a) in Fig. 8-8. 
 

                              
(a) 73% of collapses                           (b) 22% of collapses 

           
(c) 3% of collapses                           (d) 2% of collapses 

 
Figure 8-8. Diagrams Showing Collapse Modes of 12-story Special Wall Building 

Observed in Dynamic Analysis (Haselton et al., 2006b), Rectangles: Inelastic Shears, 
Circles: Flexural Hinges    
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Figure 8-9. Damage Pattern of 12-story Special Wall Building Observed in 
Simplified Analysis at a1S  = 1.92 g (near collapse), Rectangles: Inelastic Shears, 

Circles: Flexural Hinges 
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SECTION 9 
SUMMARY OF PROPOSED NUMERICAL CYCLIC 

LOADING PROTOCOL AND ESTIMATION OF SEISMIC 
RESPONSE 

 
The three steps required to construct the proposed numerical cyclic loading protocol are 
summarized as follows: 
 
1. A preliminary monotonic pushover analysis is first conducted on the building model 

in order to establish its expected failure roof displacement of the building model (see 
Fig.4-1).  

2. The expected failure roof displacement corresponding to a fraction of the maximum 
base shear computed is established. This expected failure displacement should be 
calibrated based on the results of incremental dynamic analyses . A roof displacement 
value corresponding to 80% of the maximum base shear is suggested in the interim. 

3. The general loading sequence of the proposed numerical loading protocol is 
established as a fraction of the expected failure roof displacement (see Fig. 4-2 and 
Table 4-1). 

 
The main characteristics of the proposed numerical cyclic loading protocol are 
summarized as follows: 
  
• The total number of cycles is 21, 
• The number of primary cycles is 7. 
• The number of repeating cycles following each primary cycle is 2 (that is there is a 

total of three repeated cycles). The analysis is performed using the effective stiffness 
and damping of the second cycle of the three repeating cycles). 

• If the strength and/or stiffness degradation of the hysteretic models used stabilize 
after only two cycles, the number of repeating cycles can be reduced to two. If the 
hysteretic models used do not exhibit any strength and stiffness degradation, the 
repeating cycles can be eliminated. 

• Based on the results obtained on 3 different building structures in this study, the 
predictions of the proposed simplified capacity spectrum method are not sensitive to 
the number of repeated cycles. Therefore, the proposed numerical cyclic loading 
protocol could be simplified by considering only 7 primary cycles (cyclic dwell 1). 

 
The proposed numerical cyclic loading protocol should be implemented using a force-
based procedure with a load vector proportional to the first mode of the analyzed 
structure under elastic conditions. An increasing load vector causing a deformed shape of 
the structural system equals to its elastic first mode is applied until the roof displacement 
reaches the value prescribed in the loading protocol. This is then followed by unloading 
using a decreasing load vector and then the process is repeated in accordance with the 
proposed numerical cyclic protocol. 
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The steps required to estimate the seismic response of a nonlinear building system using a 
capacity spectrum methodology based on the proposed numerical cyclic loading protocol 
are summarized as follows: 
 
1. Perform a cyclic pushover analysis of the building model using the procedure 

described above and generate global base shear – roof displacement hysteresis loops. 
2. Based on the global hysteresis loops obtained in 1, construct a relationship between 

the secant stiffness and the equivalent spectral displacement using Equation (8). This 
relationship should be based on each last cycle considered in the loading protocol. 

3. Using the secant stiffness – spectral displacement relationship obtained in 2, construct 
a capacity curve for the building system ( da SS   vs ) using Equations (8) and (11). 

4. Based on the global hysteresis loops obtained in 1, compute the energy dissipated per 
cycle and construct a relationship between the equivalent viscous damping and the 
equivalent spectral displacement using Equation (14). This relationship should be 
based on each last cycle considered in the loading protocol.  

5. Estimate the median elastic response spectra for various damping ratios at the site of 
the building. 

6. Plot on the same da SS   vs  graph the capacity curve obtained in 3 and the median 
elastic response spectra estimated in 5. 

7. Based on the equivalent viscous damping – spectral displacement relationship 
obtained in 4, trace a seismic demand curve by connecting the appropriate damped 
spectral ordinates corresponding to each spectral displacement value. 

8. The intersection between the seismic demand curve and the spectral capacity curve 
represents an estimate of the median seismic response of the building model.  
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SECTION 10  
CONCLUSIONS 

 
In this report, a numerical cyclic loading protocol is recommended to be used for 
quantifying building system performance based on a review of available experimental 
and numerical studies. The proposed loading protocol first consists of a preliminary 
monotonic pushover analysis in order to establish the expected failure roof displacement 
of the building model considered. The expected failure roof displacement needs to be 
calibrated based on the results of incremental dynamic analyses. A roof displacement 
value corresponding to 80% of the maximum base shear is suggested in the interim. 
 
Once the expected failure roof displacement of the building model considered is 
established, the general loading sequence of the proposed numerical cyclic loading 
protocol is established as a fraction of this expected failure roof displacement. The total 
number of cycles for the proposed loading protocol is 21, which is close to the mean 
value of 23 cycles for 11 experimental loading protocols reviewed. The proposed loading 
protocol contains seven primary cycles, which is equal to the mean number of primary 
cycles for 11 experimental loading protocols reviewed. The proposed loading protocol 
contains three repeating cycles for primary cycle. If the strength and/or stiffness 
degradation of the hysteretic models used stabilize after only two cycles, the number of 
repeating cycles can be reduced to two. Furthermore, if the hysteretic models used do not 
exhibit any strength and stiffness degradation, the number of repeating cycles can be 
eliminated. Finally, rate of amplitude increase of primary cycles of the proposed loading 
protocol agrees well with the mean rate of increase for the 11 experimental loading 
protocol reviewed. 
 
A sensitivity analysis on the influence of the number of repeating cycles of the proposed 
numerical cyclic loading protocol on the equivalent elastic lateral stiffness and viscous 
damping properties of a 4-story SMF reinforced concrete building model was 
investigated. The numerical cyclic loading protocol was implemented using a force-based 
procedure in which the load vector was proportional to the first mode shape of the 
building under elastic conditions.  Higher mode effects were disregarded.  It is found that 
the number of repeating cycles has minor influences on the effective lateral stiffness and 
energy dissipation characteristics of the building model. Based on these results, the 
proposed numerical cyclic loading protocol was used in a simplified capacity spectrum 
methodology to estimate the seismic response of the same building model. It was found 
that the recommended simplified analysis procedure under-estimated the predictions of 
nonlinear dynamic analyses by 12% to 39% across intensity levels and protocol versions 
when compared to the counted median of the response history analysis. (When compared 
to the surviving median of the response history analysis, the under-prediction across all 
levels and protocols was lesser).  The largest under-prediction occurred in the case of the 
strongest seismic input.  In the case of the least number of cycles (case of one cyclic 
dwell with a total of seven cycles) the simplified procedure under-predicted the counted 
median roof displacement response by 12% to 31% across all intensity levels.  Inspection 
of the graphs comparing the spectral capacity and the spectral demand curves for all cases 
analyzed revealed that for the case of the strongest excitation the two curves were nearly 
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asymptotic, which indicates that collapse is imminent.  Therefore, a small increase in the 
level of excitation would have resulted in prediction of collapse.  Conversely, a different 
extrapolation of results for the spectral capacity curve (one that better represents the 
available data at large displacements) would have resulted in prediction of collapse at 
lower excitation level, that is, in better agreement with the results of response history 
analysis. 
 
Similar results were obtained through the study of a 4-story reinforced concrete 
intermediate moment frame and of a 12-story special wall building. However, in the latter 
case the cyclic pushover analysis are suspected to be erroneous, which likely affected the 
results of the simplified analysis. 
 
On the basis of the results obtained in the sensitivity study on the influence of the number 
of repeating cycles, it appears that the proposed numerical cyclic loading protocol could 
be simplified by considering only 7 primary cycles (cyclic dwell 1).  
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APPENDIX A  
 MEDIAN SPECTRAL ACCELERATION VALUES FOR  

60 GROUND MOTIONS USED IN ANALYSES  
 
 

Table A-1. Median Response Spectra for 0.11g Intensity Motions 
 

  Median Sa (g) at various damping level 
T (sec) 5% 10% 15% 20% 25% 30% 40% 50% 60% 

0.1 0.163 0.138 0.130 0.123 0.122 0.120 0.103 0.090 0.080 
0.5 0.190 0.144 0.126 0.109 0.096 0.086 0.074 0.065 0.058 
1.0 0.108 0.092 0.079 0.068 0.060 0.055 0.047 0.042 0.037 
1.5 0.066 0.056 0.048 0.042 0.037 0.034 0.029 0.025 0.023 
2.0 0.047 0.036 0.033 0.029 0.026 0.024 0.021 0.018 0.016 
2.5 0.033 0.027 0.023 0.021 0.019 0.018 0.015 0.013 0.012 
3.0 0.027 0.023 0.020 0.017 0.015 0.013 0.011 0.010 0.009 
3.5 0.023 0.017 0.015 0.013 0.012 0.011 0.009 0.008 0.007 
4.0 0.017 0.013 0.011 0.010 0.010 0.009 0.008 0.007 0.006 
4.5 0.014 0.010 0.010 0.009 0.008 0.008 0.007 0.006 0.005 
5.0 0.012 0.009 0.008 0.007 0.007 0.006 0.005 0.005 0.004 

 
 

Table A-2. Median Response Spectra for 0.32g Intensity Motions 
 

  Median Sa (g) at various damping level 
T (sec) 5% 10% 15% 20% 25% 30% 40% 50% 60% 

0.1 0.488 0.437 0.404 0.391 0.381 0.368 0.314 0.276 0.245 
0.5 0.587 0.441 0.381 0.329 0.286 0.258 0.220 0.194 0.172 
1.0 0.320 0.273 0.236 0.208 0.183 0.167 0.143 0.126 0.111 
1.5 0.196 0.169 0.143 0.128 0.112 0.103 0.088 0.077 0.069 
2.0 0.138 0.111 0.096 0.087 0.079 0.072 0.061 0.054 0.048 
2.5 0.100 0.080 0.069 0.063 0.057 0.053 0.045 0.040 0.035 
3.0 0.078 0.068 0.059 0.050 0.046 0.043 0.037 0.032 0.029 
3.5 0.069 0.054 0.045 0.039 0.036 0.033 0.028 0.025 0.022 
4.0 0.049 0.041 0.035 0.032 0.029 0.027 0.023 0.020 0.018 
4.5 0.041 0.035 0.030 0.026 0.025 0.023 0.020 0.018 0.016 
5.0 0.036 0.029 0.025 0.023 0.021 0.019 0.017 0.015 0.013 
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Table A-3. Median Response Spectra for 1.12g Intensity Motions 

 
  Median Sa (g) at various damping level 

T (sec) 5% 10% 15% 20% 25% 30% 40% 50% 60% 
0.1 1.707 1.528 1.414 1.369 1.334 1.287 1.100 0.968 0.858 
0.5 2.053 1.544 1.333 1.152 1.001 0.902 0.771 0.679 0.602 
1.0 1.120 0.955 0.825 0.727 0.639 0.585 0.500 0.440 0.390 
1.5 0.686 0.591 0.500 0.448 0.392 0.360 0.308 0.271 0.240 
2.0 0.481 0.389 0.336 0.305 0.277 0.252 0.215 0.189 0.168 
2.5 0.349 0.279 0.242 0.219 0.201 0.185 0.158 0.139 0.123 
3.0 0.273 0.239 0.205 0.176 0.162 0.150 0.128 0.113 0.100 
3.5 0.242 0.190 0.156 0.137 0.125 0.115 0.099 0.087 0.077 
4.0 0.173 0.142 0.123 0.111 0.102 0.094 0.080 0.070 0.062 
4.5 0.144 0.122 0.104 0.091 0.087 0.082 0.070 0.061 0.054 
5.0 0.126 0.101 0.089 0.080 0.072 0.068 0.058 0.051 0.045 

 
 

Table A-4. Median Response Spectra for 1.92g Intensity Motions 
 

  Median Sa (g) at various damping level 
T (sec) 5% 10% 15% 20% 25% 30% 40% 50% 60% 

0.1 2.926 2.620 2.424 2.347 2.286 2.206 1.885 1.659 1.471 
0.5 3.519 2.647 2.286 1.975 1.717 1.547 1.322 1.163 1.031 
1.0 1.920 1.638 1.414 1.246 1.095 1.003 0.857 0.754 0.668 
1.5 1.176 1.014 0.857 0.768 0.673 0.617 0.527 0.464 0.411 
2.0 0.825 0.667 0.575 0.523 0.474 0.432 0.369 0.325 0.288 
2.5 0.599 0.479 0.415 0.376 0.345 0.317 0.271 0.239 0.212 
3.0 0.468 0.409 0.352 0.302 0.278 0.257 0.220 0.193 0.171 
3.5 0.415 0.325 0.267 0.234 0.214 0.198 0.169 0.149 0.132 
4.0 0.296 0.243 0.211 0.190 0.175 0.160 0.137 0.121 0.107 
4.5 0.247 0.208 0.178 0.156 0.149 0.140 0.120 0.105 0.093 
5.0 0.216 0.172 0.152 0.137 0.123 0.116 0.099 0.087 0.077 
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APPENDIX B 
PREDICTIONS OF MEDIAN ROOF DISPLACEMENT OF 

4-STORY SMF USING SIMPLIFIED CAPACITY 
SPECTRUM METHOD 

 

Spectral Capacity Curve: 4-Story SMF (DesA v.6)
Proposed Protocol, 1 Cyclic Dwell

"Median" of Actual Spectra, Sa (1 sec) = 0.11g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6)
Proposed Protocol, 1 Cyclic Dwell

"Median" of Actual Spectra, Sa (1 sec) = 1.12g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6)
Proposed Protocol, 1 Cyclic Dwell

"Median" of Actual Spectra, Sa (1 sec) = 1.92g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 2 Cyclic Dwell, 1st Cycle

"Median" of Actual Spectra, Sa (1 sec) = 0.11g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 2 Cyclic Dwell, 1st Cycle
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 2 Cyclic Dwell, 1st Cycle

"Median" of Actual Spectra, Sa (1 sec) = 1.12g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 5 10 15 20 25 30 35

Sd (in.)

Sa
 (g

)

Cyclic Pushover (1st cycle)
Monotonic Pushover
5% damping
10% damping
15% damping
20% damping
25% damping
30% damping
Predicted response-1st cycle

Roof displ. = 1.31x11.27 = 14.76"
Surviving median = 17.80"
Counted median  = 18.31"
(4 collapses out of 60 cases)

 
 

Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 2 Cyclic Dwell, 1st Cycle
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 2 Cyclic Dwell, 2nd Cycle

"Median" of Actual Spectra, Sa (1 sec) = 0.11g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 2 Cyclic Dwell, 2nd Cycle
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 2 Cyclic Dwell, 2nd Cycle
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 3 Cyclic Dwell, 1st Cycle

"Median" of Actual Spectra, Sa (1 sec) = 0.11g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 3 Cyclic Dwell, 1st Cycle

"Median" of Actual Spectra, Sa (1 sec) = 1.12g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle

"Median" of Actual Spectra, Sa (1 sec) = 1.12g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 3 Cyclic Dwell, 3rd Cycle
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 3 Cyclic Dwell, 3rd Cycle

"Median" of Actual Spectra, Sa (1 sec) = 1.12g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
Proposed Protocol, 3 Cyclic Dwell, 3rd Cycle
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Spectral Capacity Curve: 4-Story SMF (DesA v.6)
Arbitrary Protocol, 1 Cyclic Dwell

"Median" of Actual Spectra, Sa (1 sec) = 0.11g
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Spectral Capacity Curve: 4-Story SMF (DesA v.6) 
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Spectral Capacity Curve: 4-Story SMF (DesA v.6)
Arbitrary Protocol, 1 Cyclic Dwell

"Median" of Actual Spectra, Sa (1 sec) = 1.12g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 5 10 15 20 25 30 35
Sd (in.)

Sa
 (g

)

Cyclic Pushover (1st cycle)

Monotonic Pushover

5% damping

10% damping

15% damping

20% damping

25% damping

30% damping

Predicted response-1st cycle

Roof displ. = 1.31x11 = 14.41"
Surviving median = 17.80"
Counted median  = 18.31" 
(4 collapses out of 60 cases)

 
 

Spectral Capacity Curve: 4-Story SMF (DesA v.6)
Arbitrary Protocol, 1 Cyclic Dwell
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APPENDIX C 
PREDICTIONS OF MEDIAN ROOF DISPLACEMENT OF 

4-STORY IMF USING SIMPLIFIED CAPACITY 
SPECTRUM METHOD 

 

Spectral Capacity Curve: 4-Story IMF (DesC v.9)
Proposed Protocol, 1 Cyclic Dwell
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Spectral Capacity Curve: 4-Story IMF (DesC v.9) 
Proposed Protocol, 1 Cyclic Dwell
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Spectral Capacity Curve: 4-Story IMF (DesC v.9)
Proposed Protocol, 1 Cyclic Dwell

"Median" of Actual Spectra, Sa (1 sec) = 1.12g
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(54 collapses out of 60 cases)

 
 

Spectral Capacity Curve: 4-Story IMF (DesC v.9)
Proposed Protocol, 1 Cyclic Dwell
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Spectral Capacity Curve: 4-Story IMF (DesC v.9)
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle
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Spectral Capacity Curve: 4-Story IMF (DesC v.9) 
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle
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Spectral Capacity Curve: 4-Story IMF (DesC v.9)
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle
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(54 collapses out of 60 cases)

 
 

Spectral Capacity Curve: 4-Story IMF (DesC v.9)
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle
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APPENDIX D 
PREDICTIONS OF MEDIAN ROOF DISPLACEMENT OF 

12-STORY SPECIAL WALL BUILDING USING 
SIMPLIFIED CAPACITY SPECTRUM METHOD 

 

Spectral Capacity Curve: 12-Story Special Wall (DesWA v.26) 
Proposed Protocol, 1 Cyclic Dwell
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Spectral Capacity Curve: 12-Story Special Wall (DesWA v.26) 

Proposed Protocol, 1 Cyclic Dwell
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Spectral Capacity Curve: 12-Story Special Wall (DesWA v.26) 
Proposed Protocol, 1 Cyclic Dwell

"Median" of Actual Spectra, Sa (1 sec) = 1.12g
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(4 collapses out of 60 cases)

 
 

Spectral Capacity Curve: 12-Story Special Wall (DesWA v.26) 
Proposed Protocol, 1 Cyclic Dwell
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Spectral Capacity Curve: 12-Story Special Wall (DesWA v.26) 
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle

"Median" of Actual Spectra, Sa (1 sec) = 0.11g
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Spectral Capacity Curve: 12-Story Special Wall (DesWA v.26) 
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle

"Median" of Actual Spectra, Sa (1 sec) = 0.32g
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Spectral Capacity Curve: 12-Story Special Wall (DesWA v.26) 
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle

"Median" of Actual Spectra, Sa (1 sec) = 1.12g
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Spectral Capacity Curve: 12-Story Special Wall (DesWA v.26) 
Proposed Protocol, 3 Cyclic Dwell, 2nd Cycle

"Median" of Actual Spectra, Sa (1 sec) = 1.92g
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