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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national
center of excellencein advanced technology applications thatis dedicated to the reduction of
earthquakelosses nationwide. Headquartered at the University at Buffalo, State University
of New York, the Center was originally established by the National Science Foundation in
1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses through
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Cen-
ter coordinates a nationwide program of multidisciplinary team research, education and
outreach activities.

MCEER'’s research is conducted under the sponsorship of two major federal agencies: the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is derived from the Federal Emergency
Management Agency (FEMA), other state governments, academic institutions, foreign
governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by devel-
oping seismic evaluation and rehabilitation strategies for the post-disaster facilities and
systems (hospitals, electrical and water lifelines, and bridges and highways) that society
expects to be operational following an earthquake; and to further enhance resilience by
developing improved emergency management capabilities to ensure an effective response
and recovery following the earthquake (see the figure below).
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A cross-program activity focuses on the establishment of an effective experimental and
analytical network to facilitate the exchange of information between researchers located
in various institutions across the country. These are complemented by, and integrated
with, other MCEER activities in education, outreach, technology transfer, and industry
partnerships.

This report describes the principles of operation and the development of cyclic force-displacement
relationships for three variations of multi-spherical sliding bearings: the double FP bearing, the
triple FP bearing, and the modified single FP bearing. The force-displacement relationships of de-
vices with increasingly complex behavior were determined by extending the fundamental principles
of operation that apply to sliding on a single concave surface. It was shown that each device is
capable of exhibiting displacement-dependent adaptive behavior, i.e., desirable changes in stiffness
and damping over the course of motion. These changes are determined by the relative values of each
surface’s coefficient of friction, effective radius of curvature, and displacement capacity. Since all are
predefined design parameters (aside from the inherent uncertainty and variability in the coefficient
of friction), their behavior is completely controllable by the engineer. In addition, it was shown
that in cases where multiple surfaces are of equal friction, the complexity of behavior exhibited by
these devices is reduced. This is important because bearings of smaller plan dimension can still use
familiar and proven methods of analysis and design, resulting in significant cost savings. A future
report will detail the development, experimental verification and application of tools for dynamic
analysis of structures isolated with these bearings.
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ABSTRACT

The principles of operation and mechanical behavior of three novel spherical sliding
isolation bearings are developed in this report. Their internal construction consists of
multiple concave surfaces and behavior is dictated by the different combinations of
surfaces upon which sliding can occur over the course of motion. As the surfaces upon
which sliding is occurring change, the stiffness and effective friction change accordingly.
These bearings are completely passive devices, yet exhibit adaptive stiffness and adaptive
damping. That is, the stiffness and damping change to predictable values at calculable
and controllable displacement amplitudes. The primary benefit of adaptive behavior is
that a given isolation system can be separately optimized for multiple performance
objectives and/or multiple levels of ground shaking. With the devices presented here, this
is accomplished using technology that is inherently no more complex than what is
currently used by the civil engineering profession.

In this report, the force-displacement relationships are derived based on first principles
and by extending basic theories that apply to sliding upon a single concave surface. The
theoretical behavior is validated experimentally through extensive component testing of
the various devices. It is shown that the forces and displacements at which transitions in
stiffness occur are predictable and therefore controllable in design.
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SECTION 1
INTRODUCTION

An adaptive seismic isolation system exhibits changes in stiffness and damping
properties during its course of motion. The primary benefit of this type of behavior is that
a given isolation system can be separately optimized for multiple performance objectives
and multiple hazard levels. Several novel variations of multi-spherical sliding bearings
are described in this report and are shown to exhibit adaptive behavior. The internal
construction of these devices is characterized by multiple concave surfaces upon which
sliding can occur.

Owing to this construction, the combinations of surfaces upon which sliding takes place
change with increasing displacement, resulting in desirable transitions in stiffness and
damping. Even in simpler configurations having few transitions in behavior, there are
various benefits brought about from sliding on multiple surfaces. In order for these
devices to be useful to engineers however, the forces and displacements at which the
changes in stiffness and damping occur must be predictable and based on predefined
design parameters. Accordingly, the focus of this report is on the development of
analytical models based on fundamental principles of mechanics to describe this
behavior. The theory described herein is the foundation upon which more sophisticated
models used for dynamic analysis are based.

Adaptive behavior can be used by designers to achieve characteristics in performance that
are not possible with traditional isolation systems. Current practice is to design the
structural system to resist the base shear transmitted in the design basis earthquake (DBE)
and to design the isolation system to have sufficient displacement capacity to meet the
demands of the maximum considered earthquake (MCE). This is a “Catch-22" situation
for designers; the desire to reduce displacement demand in the MCE with increased
stiffness and damping results in less than optimum performance in the DBE and vice
versa. This situation is exacerbated due to the substantial differences in the DBE and
MCE demands prescribed by code. For example, the DBE spectrum prescribed by the
ASCE/SEI 7-05 Standard is % of the MCE spectrum (2006).

Furthermore, performance of the isolation system in more frequent events of smaller
magnitude is typically not considered in the design process. Though low level shaking is
not a design issue in terms of strength or displacement capacity, it can be a performance
issue. Isolation systems designed with sufficient damping and flexibility for larger
earthquakes may not even activate in minor events, which can adversely affect secondary
system response. If the isolation system does activate, re-centering can be an issue.
Clearly, the desire to balance performance and economy presents significant challenges
to engineers designing traditional seismic isolation systems.

Multi-spherical sliding bearings help to overcome these challenges, since adaptive
behavior permits the isolation system to be separately optimized for low intensity, design
level and maximum earthquake shaking. The work in Kelly (1999) and Hall (1999)



indicates that that to control displacements in large earthquakes while still maintaining
good performance in low-to-moderate earthquakes requires designing an isolation system
that is (a) very stiff with low damping at low level shaking, (b) softens with increasing
damping in the DBE and (c) stiffens and/or increases damping in the MCE and beyond.
When properly configured, multi-spherical sliding bearings exhibit this desirable
behavior.

The devices that will be presented are distinct from other isolation systems that have
displacement-dependent behavior. First and foremost, they are totally passive devices that
exhibit adaptive behavior naturally as a result of their internal construction. To date,
adaptive (or smart) seismic isolation systems have predominantly consisted of
conventional isolation bearings used in conjunction with active or semi-active devices
having variable stiffness or damping properties. Several examples of such systems have
been reported in the literature: flat sliding systems with variable friction force (i.e.,
variable normal pressure) (Feng et al., 1993), flat sliders with a control actuator (Riley et
al., 1998), flat sliders in conjunction with a variable stiffness restoring force spring
(Nagarajaiah and Sahasrabudhe, 2006), spherical sliding bearings with a
magnetorheological damper (Lin et al., 2004), elastomeric bearings with variable-orifice
fluid dampers (Wongprasert and Symans, 2005) and so on.

In general these studies conclude that properly designed active and semi-active hybrid
systems can offer improved performance over passive systems in a wider range of
earthquakes. However, obstacles related to implementation and serious questions
regarding longevity and reliability still persist. In contrast, the multi-spherical sliding
bearings presented here are derivatives of the conventional Friction Pendulum (FP)
bearing, a mature and established seismic protective technology. These bearings exhibit
the desirable behavior of more sophisticated systems, however with technology that is
inherently no more complex than what is currently used by the civil engineering
profession. Lifetime behavior of both conventional FP bearings and other sliding bridge
bearings can be used as evidence supporting the reliability of construction and the
longevity of materials used (Constantinou et al., 2007a).

Other passive seismic isolation systems have been proposed which offer some type of
mechanically derived displacement-dependent stiffness or damping. These bearings
roughly fall into two categories: (a) devices with a displacement activated fail-safe
mechanism and (b) multi-stage devices. The caveat “mechanically derived” is included to
distinguish from elastomeric bearings, which have displacement-dependent stiffness
resulting naturally from the strain-dependency of rubber’s material properties. Systems
with adaptive behavior owing exclusively to strain-dependent material properties are
excluded from this discussion.

The devices that belong to the first category are typified by substantial stiffening at large
displacements due to engagement of some sort of restraining mechanism. Figure 1-1
shows a displacement-control and uplift-restraint device that can be installed within
clastomeric bearings (Kelly et al., 1987). The device consists of two high-strength bolts
contained in a sleeve that permits a certain amount of free movement of the bolts. The



restrainer becomes taut when the horizontal displacement of the bearing attains a
predefined value. Representative hysteresis loops from experimental testing reproduced
from Kelly et al. (1987) are shown in figure 1-2. To the best knowledge of the authors
these devices have not been employed in actual construction.
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FIGURE 1-1 Displacement Control and Uplift Restraint Device Shown (a) Fully
Extended and (b) in its Undeformed Configuration Within an Elastomeric Bearing

(after Kelly et al., 1987)

Shear Force (kips)
=

Shear Force (kips)

-1.5 -1.0 -0.5 0.0 0.5 1.0

Displacement (inches)

(2)

1.

Displacement (inches)

(b)

FIGURE 1-2 Horizontal Force-Displacement Relationship for an Elastomeric
Bearing with the Displacement Control and Uplift Restraint Device (a) Prior to
Engaging and (b) After Engaging (reproduced from Kelly et al., 1987)



Also in the first category are layered annular elastomeric springs that were developed in
Japan (Sumitomo Construction, 1990). These devices, shown in figure 1-3, have been
used as a backup system to lead-rubber isolators in at least two buildings. Figure 1-4
shows how they are implemented by Sumitomo Construction in practice. The springs are
essentially horizontal stoppers with multi-phase stiffening that act in parallel with the
isolation system. They physically engage only when the isolator deforms beyond a
certain displacement limit, causing a plunger that is attached to the structure to come into
contact with the various steel plates. Sample force-displacement data from the
manufacturer demonstrating the multi-stage stiffening is provided in figure 1-5.
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FIGURE 1-3 Multi-phase Layered Annular Elastomeric Springs Used as Backup
Devices in Japan (after Sumitomo, 1990)

In fact, even the original single concave FP bearing can be considered to be in the first
category. Single concave FP bearings manufactured by Earthquake Protection Systems
Inc. have a displacement restrainer ring on the outer edge of the spherical sliding surface
(see figure 1-6). When the slider contacts this ring at large displacement there is
substantial stiffening as the resistance mechanism changes to bearing upon the
displacement restrainer. The strength however is limited by the capacity of the welds
connecting the restrainer ring to the backing plate. This behavior was observed in the
original earthquake simulator testing of the FP bearing at UC Berkeley shown in figure 1-
7(a) (Zayas et al., 1987) and in later tests at the University of Buffalo as shown in figure
1-7(b) (Constantinou et al., 1993).
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FIGURE 1-6 Displacement Restrainer Ring of a FP Bearing
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The considerable emphasis on fail-safe devices and backup systems nearly 20 years ago
was likely due to initial conservatism associated with the implementation of new
technology. The idea is not misguided or obsolete, but rather a prudent approach in
limiting excessive isolator displacements. This practice continues today with the use of
limited moat space in the isolation system - typically the maximum total displacement per
the ASCE/SEI 7-05 Standard or larger. The idea is to prevent failure of the isolation
system by not allowing motion beyond the designated maximum displacement capacity
of the bearings. In this way, inelastic action occurs in the ductile superstructure (and if
not ductile, then strength must be sufficient) and not in the isolation system.



In events of extreme magnitude, when the isolation system impacts the barrier there are
substantial forces imparted to the superstructure over a very brief interval of time.
Analytically, the problem is exceedingly complex since it is one of dynamic impact
involving an assembly of deformable structural elements. There is certainly dynamic
amplification of the impact forces, however there may also be mitigating effects due to
detuning or high frequency vibration of the structure upon impact. This remains a largely
unexplored area in seismic isolation research.

Such uncertainty highlights the need to explicitly incorporate sufficient overstrength
and/or ductile detailing in the design of the superstructure. To some extent, the structure
must be capable of safely sustaining loads past the design level without collapse. Current
standards such as ASCE/SEI 7-05 require the superstructure of a seismically isolated
structure to be designed for the base shear in the DBE reduced by a response
modification factor, R, , of no less than 1.0 and no more than 2.0 (the factor R, is three-
eights of the appropriate R factor corresponding to the lateral force resisting system of
the superstructure). This provision results in elastic or nearly elastic performance of the
superstructure in the design event. Isolation systems that stiffen beyond the DBE or that
have fail-safe restraints can subject the superstructure to considerably larger forces than
the design level. Without adequate overstrength or ductility, substantial damage or even
collapse can occur for events beyond the design level. The extreme example of this
scenario would be a brittle masonry building designed with R, =1 and yield strength
equal to the design strength of the isolation system. Therefore, nonlinear static analysis of
the superstructure is advisable in order to verify its performance and safety for the
maximum expected isolation system shear.

Displacement-dependent isolation systems classified in the second category can be
thought of as more sophisticated than those in the first since they use multi-stage
behavior to control response rather than simply as a means of preventing failure. The first
system of this type was a composite isolator proposed by A.G. Tarics (1995) and reported
in Imbimbo and Kelly (1997). As shown in figure 1-8, the composite isolator consists of
two elastomeric bearings stacked on top of each other with one much stiffer than the
other. In this arrangement, the softer bearing (isolator A of figure 1-8) will sustain most
of the displacement up to a certain force level at which point it engages the stiffer bearing
(isolator B of figure 1-8). Beyond this point, the softer bearing is set at this fixed
displacement (d from figure 1-8) and the stiffer one deforms to sustain the rest of the
displacement. In this configuration, the isolation system readily activates and provides
adequate flexibility for lower levels of input yet has sufficient stiffness to limit
displacements in the maximum event. This is an example of adaptive bearings being able
to satisfy different performance objectives for different levels of hazard.

A sliding bearing that has a single sliding surface with variable curvature has also been
proposed (Pranesh and Sinha, 2000). This is essentially a variable stiffness device.
Though it is conceptually appealing and has been shown to be effective in numerical
studies, there are issues regarding practical implementation of this device (no
experimental results have been reported in the literature). A complex and dynamic
pressure distribution exists at the sliding interface between the articulated slider and the



surface of variable curvature. When sliding occurs, this results in uneven friction and
excessive wear, which severely comprises the reliability of behavior. To the knowledge
of the authors, neither this device nor the compound isolator proposed by Tarics have
been implemented in practice or tested in the laboratory.
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FIGURE 1-8 Cross Section of Composite Isolator from the Patent of A.G. Tarics

The multi-spherical sliding bearings presented here are classified in this second category.
All have multiple sliding surfaces which can be of different friction and radii of curvature
(i.e., stiffness). The initiation of sliding on each surface is controlled by the relative
values of the friction coefficients rather than by mechanical means. Motion can also be
intentionally stopped at predefined displacements on the various surfaces by
displacement restrainer rings similar to what is used in the conventional FP bearing. The
overall stiffness and friction exhibited by the bearing depend upon the individual
characteristics of the surfaces upon which sliding is occurring. Therefore, describing the
behavior requires determining on which surfaces sliding is occurring at any given time
based on the radii of curvature, friction coefficients and displacement capacities of each.
A methodology based on first principles is established in this report for doing so.

This report describes the principles of operation and the development of cyclic force-
displacement relationships for three variations of multi-spherical sliding bearing: (a) the
double FP bearing, (b) the triple FP bearing and (c) the modified single FP bearing.
Section two presents a description of these three devices and discusses the basic



principles of operation that are universally applicable. Sections three and four show the
development of the force-displacement relationships for each variation of bearing.
Section five describes the testing program undertaken to experimentally validate the
proposed force-displacement behavior. Multiple configurations of each bearing were
tested in order to more completely verify the analytical models. The results demonstrate
that there are indeed changes in stiffness and damping over the course of motion and that
these changes can be predicted using the analytical models that were developed.

A future report will detail the development, experimental verification and application of
tools for dynamic analysis of structures isolated with these bearings. The behavior of
these devices is much more complex than other isolators that are currently used.
Therefore, thorough understanding of fundamental mechanical behavior is an essential
first step before developing more sophisticated models used for dynamic analysis.
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SECTION 2
DESCRIPTION AND PRINCIPLES OF OPERATION

2.1 Introduction

This section provides a description of the basic construction of several variations of
multi-spherical sliding bearings. Principles of operation that apply to all variations of
these bearings are also discussed. These are the basic physical principles and assumptions
upon which the analytical models are founded. In many cases, they are simply a logical
extension of single FP bearing behavior. Although the force-displacement behavior of
these devices can be complex, it ultimately follows from application of these few
fundamental concepts.

Essentially, the construction of these devices consists of various arrangements of concave
plates and internal sliders. The concept is not new, in fact, the first documented isolation
system for buildings was a double concave rolling ball bearing that was patented in the
US in 1870 (Touaillon, 1870). This system was invented by Jules Touaillon and is shown
in figure 2-1. What has changed in the nearly 140 years since the patent was issued is not
an improvement on the basic concept of seismic isolation (which arguably was known of
long before 1870), but the capability to execute it using technology that exhibits
predictable and reliable behavior over the lifetime of the structure.

2.2 Construction of the Double FP Bearing

The double FP bearing consists of two facing concave stainless-steel surfaces separated
by an articulated slider as shown in figures 2-2 and 2-3. The lower and upper concave
plates have radii of curvature R, and R,, respectively, which may be unequal. The
coefficients of friction for sliding upon these surfaces are p, and p,, respectively, which
may also be unequal. The nominal displacement capacities of the slider upon the lower
and upper surfaces are d, and d,, respectively, resulting in a total nominal displacement
capacity for the entire bearing (top plate relative to bottom plate) of d, +d,. Due to the
effects of slider height and slider rotation, the actual displacement capacities are slightly
different that the nominal values. The formulation developed in this report also permits
that d, #d, as shown in figure 2-3(b), allowing for a more general description of
behavior.

The articulation of the slider is necessary for proper distribution of pressure at the sliding
interface and to accommodate different movement along the top and bottom sliding
surfaces. Previous implementation of a similar type of double concave bearing reported
by Hyakuda et al. (2001) concerned devices with internal sliders that lack articulation.
Without articulation however, the slider is subject to uneven wear and may have large
variation in its frictional properties over time.
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FIGURE 2-2 Cutaway View of the Double FP Bearing

Rz’uz_\

| — 1

(@) s

Ry, uy

Rz,uz_\

(b) +

_/

Ris by

FIGURE 2-3 Cross Section of the Double FP Bearing with Surfaces of (a) Equal
Displacement Capacity and (b) Different Displacement Capacity
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The crosshair in figure 2-3 denotes the location of the point about which the slider
rotates, which is termed the pivot point. Due to the ball-in-socket construction, the slider
of the double FP bearing is physically constrained to rotate about the center of the
spherical joint (a similar ball-in-socket articulation defines the location of the pivot point
of single FP bearings). The slider heights h and h, shown in figure 2-3 are the radial
distances between the pivot point and the lower and upper concave surfaces respectively.
The slider height appears in the equations of equilibrium because the horizontal and
vertical forces transmitted by the bearing act at the pivot point. Therefore, it is the
effective radii of curvature Ry, =R, —h and Ry, =R, —h, that appear in the equations
of equilibrium. This definition of the effective radius is investigated in greater detail and
proven more rigorously in section 2.5.2.

The double FP bearing permits simultaneous sliding on both the upper and lower concave
surfaces. Therefore, the total displacement capacity of the bearing is d, +d,, whereas the
displacement capacity of a traditional FP bearing of identical plan dimensions would be
either d, or d,. Accordingly, engineers have recognized that the primary advantage of
employing double FP bearings is the cost savings that can be achieved through their more
compact size. However, by using concave surfaces of different radii, friction and
displacement capacity, adaptive behavior and the attendant benefits in performance can
also be achieved. Until now this has remained an unexplored aspect of the device’s
behavior. Previous work on a bearing that is identical in concept to the double FP has
focused on configurations having concave surfaces of equal friction and equal radii of
curvature. This was termed the Multiple FP bearing and has been studied by Tsai et al.
(2003a, 2003b, 2005 and 2006).

2.3 Construction of the Triple FP Bearing

The triple FP bearing shown in figure 2-4 consists of two facing concave stainless steel
surfaces separated by an internal nested slider assembly. Referring to figure 2-5, the outer
concave plates have effective radii Ry, =R —h and Ry, =R,—h,, where R, is the
radius of curvature of the i" spherical surface and h is the radial distance between the
i" spherical surface and the pivot point of the articulated slider. The articulated slider
assembly consists of two concave slide plates separated by a rigid slider. Though the
innermost slider is rigid, the assembly as a whole has the capability to rotate to
accommodate differential rotations of the top and bottom slide plates. The surfaces of the
slide plates where they mate with the outer concave plates are coated with a non-metallic
sliding material. The coefficients of friction of these interfaces are p, and p,. The inner
surfaces of the two slide plates have spherical concave recesses with effective radii
R4, =R,—h, and Ry, =R, —h,. Both outer surfaces of the rigid slider are also coated
with a non-metallic sliding material characterized by coefficients of friction p, and p,.
This permits motion of the rigid slider upon the inner stainless steel surfaces of the slide
plates.

14



FIGURE 2-4 Cutaway View of the Triple FP Bearing
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FIGURE 2-5 Cross Section of the Triple FP Bearing

The nominal displacement capacities of the sliders on surfaces 1 through 4 are denoted
d, through d,(as with the double FP bearing, the actual displacement capacities are
slightly different than the nominal displacement capacities drawn in figure 2-5 due to the
effects of slider height and rotation). The unique behavior of the triple FP bearing relies
in part on the various sliders achieving the full horizontal displacement capacity of their
respective sliding surfaces during the course of motion. Therefore, the displacement
capacities d, through d, must be viewed as design parameters that significantly
influence the global behavior, not just limits of overall capacity.
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Unlike the single and double FP bearings, in the triple FP bearing, there is no mechanical
constraint defining the location of the pivot point. Instead, the pivot point corresponds to
the instantaneous center of zero rotational velocity of the slider assembly, which is not a
fixed point. The location of the center of zero rotational velocity will actually change as
sliding starts and stops on the various surfaces within the bearing. However, since the
instantaneous velocities of the top and bottom parts of the slider assembly will always be
in opposite directions, the instantaneous center of zero velocity must always lie between
them and within the slider assembly. In most cases, the slider height is small in
comparison to the radii of curvature and there is little error introduced by assuming the
center of zero rotational velocity is fixed at the mid-height of the articulated slider
assembly.

Similar to the double FP bearing, triple FP bearings permit simultaneous sliding on
multiple concave surfaces and therefore can be made much smaller than single FP
bearings while still maintaining the same overall displacement capacity. From an
economic standpoint, there is negligible difference in the cost of double and triple FP
bearings of comparable size.

2.4 Construction of the Modified Single FP Bearing

The modified single FP bearing shown in figure 2-6 is a hybrid of the conventional single
FP and triple FP bearings. Its construction is similar to the single FP bearing, but with an
intermediate slide plate. Referring to figure 2-7, the outer concave plate has effective
radius Ry, =R, —h,, where R, is the radius of curvature of the spherical sliding surface
and h 1is the radial distance between the sliding surface and the pivot point of the
articulated slider. Where it mates with the outer concave plate, the slide plate is coated
with a non-metallic sliding material with coefficient of friction p,. An articulated slider
typical of conventional FP bearings can slide within the spherical recess of the
intermediate slide plate. This recess has effective radius Ry, =R, —h, where R, and h,
are defined similar to R, and h,. At the sliding interface, the articulated slider is coated
with a non-metallic sliding material with coefficient of friction p,. The nominal
displacement capacities of surfaces 1 and 2 are d, and d, respectively. Again, the actual
displacement capacities are slightly different.

Since most of the sliding occurs on one surface, the plan dimensions of modified single
FP bearings will need to be much larger than those of the double or triple FP bearings.
For this reason among others, this variation seems less likely to see widespread
implementation in practice. However, the modified single FP bearing is studied in this
report because it is a simpler adaptation of the triple FP bearing. In fact, it can be thought
of as a triple FP bearing cut at mid-height. Certain aspects of behavior that are masked or
obscured due the complexity of the triple FP bearing’s behavior can be verified with this
simpler device.
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FIGURE 2-7 Cross Section of the Modified Single FP Bearing

2.5 Principles of Operation
2.5.1 Mechanics of Sliding on a Single Concave Surface

Prior to extending the theory to multiple concave surfaces, one must understand the
mechanics of sliding on a single concave surface, the forces acting and the underlying
assumptions. The behavior of the single FP bearing was described originally by Zayas et
al. (1987). The presentation here summarizes that original work and is intended to
introduce and explain preliminary concepts relevant to this study.
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Structural bearings are devices which support vertical load and transmit horizontal loads
in a predefined manner. When the applied horizontal force is less than the friction force
there is no motion and FP bearings have very large elastic stiffness (the behavior is not
exactly rigid due to small deformations of the bearing and sliding material). This friction
force prevents sliding of the bearing under service loading which would result in
excessive wear over time. When the applied horizontal force exceeds the friction force,
sliding initiates and the free body diagram of figure 2-8 applies.

FIGURE 2-8 Free Body Diagram the Slider of the Single FP Bearing in the
Deformed Configuration

The force-displacement relationship is derived from the equilibrium and geometry of the
slider in this displaced configuration. In this state, the forces acting on the slider are:

1. The vertical load, W , acting at the pivot point.

The horizontal force, F , transferred through the bearing.

3. The resultant friction force, F, =W , acting along the sliding interface. For
simplicity, in this report the coefficient of friction is typically expressed in the
equations of equilibrium as a single valued parameter, pn. However, in
actuality it varies as a function of several factors including most importantly
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sliding velocity and pressure (Mokha et al., 1990). For dynamic analysis, the
equilibrium equations can be used in their same form, however with p(u), a
coefficient of friction that is updated at each time step as a function of the
instantaneous sliding velocity. Note that the use of a single valued friction
coefficient is a simplification, not a limitation of the formulations presented in
this report.

4. The resultant force of normal pressure acting along the sliding interface, S .
This must be off center in order to satisfy moment equilibrium. Accordingly,
the pressure distribution on the sliding interface is not uniform.

5. Friction tractions along the spherical surface of the articulated slider, t, . Their
effect is assumed to be part of the friction force, F, , and therefore they do not
appear explicitly in the equations of equilibrium.

Considering equilibrium in the horizontal and vertical directions respectively, equations
(2-1a) and (2-1b) are obtained:

F-Ssin0—-F; cos0=0 (2-1a)
W -ScosO+F,sin6=0 (2-1b)

From geometry, U, defined as the horizontal displacement of the pivot point of the slider
is simply

u=(R-h)sin6=Ry sin0 (2-2)

where the effective radius of curvature, Ry , is the radial distance from the center of the
spherical surface to the pivot point of the articulated slider.

Combining equations (2-1a), (2-1b) and (2-2), the force-displacement relationship that
governs motion for the single FP bearing is

F
Foe (2-3)
R4 cos®  cosO

In most applications, the radius of curvature is large compared to the horizontal
displacement so that cos0 ~1 and the following simplification is made:

F :Rﬂuﬂrf (2-4)

eff
This simplification introduces less than 5% error provided that the horizontal

displacement is less than 30% of the radius of curvature. Equations (2-1) through (2-4)
are the equilibrium equations originally presented by Zayas et al. (1987).

19



Recognizing that the friction force will always oppose motion, the cyclic force-
displacement relationship based on equation (2-4) is given in figure 2-9. Upon reversal of
motion, the bearing rigidly unloads by 2F; and slides in the opposite direction with post-
elastic stiffness of W / R, - This type of hysteretic behavior is called rigid-linear in this
report.

Horizontal Force
1

Total Displacement, U
FIGURE 2-9 Hysteretic Behavior of the Traditional Single FP Bearing
2.5.2 Rigorous Derivation of the Effective Radius of a Spherical Sliding Surface

A fundamental aspect of the behavior of spherical sliding bearings is that sliding on the
curved surface results in pendulum motion of the supported structure. This is illustrated
by figure 2-10. As the bearing displaces from position A to position E, point P at the
center of the spherical concave plate follows the circular arcing trajectory shown in the
figure. The motion of point P and accordingly the supported structure is that of a
pendulum of length R, that sweeps out angle o as the bearing displaces from position
A to position E. Therefore, it is the effective radius, R , that determines the period of
the isolation system’s motion and accordingly its stiffness. This demonstrates that R, 1is
a parameter with physical significance and is not just a mathematical construction. What
follows is a rigorous derivation of Ry based largely on the unpublished work of Mr.
Ward Turner of ExxonMobil Corporation (Turner, 2007).
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FIGURE 2-10 Ilustration of Pendulum Motion of the Supported Structure (Pivot
Point Within Boundary of Spherical Sliding Surface)

It is assumed that the top and bottom plates remain parallel as the bearing displaces
laterally and therefore motion along the curved surface is accommodated by rotation of
the articulated slider. Due to the ball-in-socket construction, the slider of single FP
bearings is physically constrained to rotate about the center of the sphere defined by this
articulation. The dimension h, related to the slider height, is the radial distance from this
pivot point to the spherical sliding surface.

As the bearing moves from position A to position E, point P at the center of the
spherical sliding surface follows the circular path marked in figure 2-10 to point P’.
Using the fixed pivot point as the origin, the coordinates of point P’ are
(Reff sina,h+ R (1 —Cos (1)) . At this point in the derivation, the values of angle o and
the radius R, remain as unknowns. The objective is to define these unknowns in terms
of R, h and 6, where R is the radius of curvature of the spherical concave surface, h is
the radial distance between the pivot point and the spherical concave surface and 0 is the
angle of rotation of the articulated slider about its pivot point. It is assumed that the
parameters R, h and 6 are known since Rand h are determined by the bearing’s
construction and O is a rotation that can be physically measured.
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FIGURE 2-11 Geometry of the Displaced Bearing (Pivot Point Within Boundary of
Spherical Sliding Surface)

An alternative geometric construction in terms of the known quantities is shown in figure
2-11. Using this description of the displaced bearing’s geometry, the coordinates of point
P" are ((R—h)sin®,R—(R—h)cos6). The two unknown quantities o and Ry, can be
determined by equating the coordinates of point P’ as expressed using the two different
geometric constructions. It is simply a system of two equations and two unknowns:

R sina =(R - h)sin@ (2-5a)
h+Ry (I-cosa)=R—(R—h)cos6 (2-5b)

which are obtained from equating the X and y coordinates respectively. From equation
(2-5b), the effective radius can be expressed as

S e

eff

When equation (2-6) is substituted into equation (2-5a), it follows that the two angles o
and O are equal and
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R, =R—h (2-7)

€

This more rigorously corroborates the previous assumptions of the effective radius which
were determined based on physical reasoning.

Equation (2-7) describes the effective radius for cases in which the pivot point lies within
the perimeter defined by the spherical concave surface. Frequently in practice, relatively
shallow sliders are used as they provide a larger contact area with more efficient use of
material. With this type of construction, it is possible to have the pivot point lie outside of
the perimeter defined by the spherical concave surface as can be seen in figure 2-12. In
this case the slider part height, h, is again defined as the radial distance from the pivot
point to the spherical sliding surface.

. 3

FIGURE 2-12 Ilustration of Pendulum Motion of the Supported Structure (Pivot
Point Outside Boundary of Spherical Sliding Surface)
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When displaced horizontally, the structure still undergoes pendulum motion as point P
at the center of the spherical surface follows the circular arcing trajectory shown in figure
2-12. Using similar geometric constructions as before, the coordinates of point P’ can be
expressed  as (Reff sino,—h+ Ry (1-cos a)) based on figure 2-12  and
(( R+h)sin®,R—(R+h)cos 6) based on figure 2-13. The slider’s pivot point is used as
the origin of the coordinate system in both cases. Equating the X and Yy coordinates,
equations (2-8a) and (2-8b) respectively are obtained:

Ry sina.=(R+h)sin® (2-8a)
—h+Ry (1-cosa)=R—(R+h)cosd (2-8b)

Y

[

FIGURE 2-13 Geometry of the Displaced Bearing (Pivot Point Outside Boundary of
Spherical Sliding Surface)

From equation (2-8b), the effective radius can be expressed as
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R, = (R+h)(1-cos6)

(l—cos oc) -9

Similar to the previous case, when equation (2-9) is substituted into (2-8a), it follows that
the two angles o and 0 are equal and

Ry =R+h (2-10)

To summarize, the effective radius determines the isolated system’s true period of motion
and is R; = R—h when the pivot point lies within the perimeter defined by the spherical
surface and is R, = R+h when the pivot point lies outside of this boundary.

2.5.3 Effect of Contacting the Displacement Restrainer

With conventional implementation of the single FP bearings, the slider will contact the
displacement restrainer only in extraordinary circumstances. This is a failsafe behavior
meant only to preserve the overall stability of the isolation system. However, with multi-
spherical sliding bearings, having the slider come into contact with the displacement
restrainer is a behavior that is intended to occur during the normal course of operation. It
is used to stop motion on one surface and in turn cause it to start on another, which is
accompanied by a change in stiffness. Therefore, understanding the behavior at contact
and beyond takes on added importance for modeling multi-spherical sliding bearings.

When the slider comes into contact with the displacement restrainer, the origin of the
force resisting motion changes from friction and gravity (caused by sliding up the
concave surface) to bearing. At the instant the slider meets the displacement restrainer,
the horizontal displacement is U =d and the horizontal force transmitted is

F:FdrzRﬂdH:f (2-11)

eff

With increasing force beyond F, , the additional resisting force from bearing on the
displacement restrainer to satisfy equilibrium is given by

I:_I:drzFr:kdr(u_d) (2_12)

where Kk, is the horizontal stiffness of the displacement restrainer. Physically, F, is the
force imparted to the displacement restrainer ring. After contacting the displacement
restrainer, upon reversal of motion sliding initiates again when the bearing has unloaded

by F. +2F, to F, —2F, .

The simplest way to model contact with the displacement restrainer is by assuming rigid-
elastic behavior, that is k;, — oo and the loading and unloading paths are the same. This
is a reasonable assumption for lightly loaded bearings and/or bearings with the
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displacement restrainer monolithically cast with the concave plate. In these cases, the
forces applied to the restrainer are well below its capacity and it acts like a rigid stop.
This type of hysteretic behavior is shown in figure 2-14(a).

In many cases however, the contact forces upon the displacement restrainer are large and
there is inelastic deformation of the ring. This type of behavior would be expected for
bearings carrying large loads and/or bearings in which the restrainer ring is welded to the
concave plate as shown in figure 1-6. For such situations, a more realistic representation
of the behavior is achieved by using a hysteretic model that captures inelastic behavior
with finite stiffness after contact. This is shown in figure 2-14(b). Zayas et al. (1989)
reported that using this type of hysteretic model resulted in better analytical predictions
of response compared to a rigid elastic model. Use of the later led to overestimation of
shear forces and underestimation of energy dissipation. Therefore, engineering judgment
should be exercised regarding which type of model to use based on the conditions of
loading and the construction of the bearing under consideration.

2.5.4 Actual Displacement Capacity of a Given Concave Surface

In figures 2-3, 2-5 and 2-7 the displacement capacity d, is drawn as the difference
between the radius of the i" concave plate and the radius of the corresponding slider. This
however is the nominal displacement capacity. The actual displacement capacity, d’, is
defined as the relative displacement of the pivot point at the instant the slider meets the
displacement restrainer. This is slightly different than the nominal displacement capacity
due to the effects of slider height and slider rotation. Throughout this report, the
equations use the notation d,, which can be taken as the nominal displacement capacity
or the actual displacement capacity at the engineers discretion.

The actual displacement capacity is calculated based on the definition sketch shown in
figure 2-15. This is for the case in which the pivot point lies within the perimeter defined
by the concave sliding surface. Following simply from geometry

d'=d-hsin6 (2-13)

!

inQ=—— 2-14
sin = h ( )

Combining equations (2-13) and (2-14) the actual displacement capacity accounting for
the effects of slider height and slider rotation is

g9 (2-15)
h
1+
R—-h
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FIGURE 2-14 Force-Displacement Relationship of a Single FP Bearing Whose
Slider has Contacted the Displacement Restrainer Assuming (a) Rigid Elastic
Behavior and (b) Non-Rigid Plastic Behavior
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FIGURE 2-15 Illustration of the Actual Displacement Capacity (d' ) of the Double
FP in Relation to the Nominal Displacement Capacity (d )
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This shows that for spherical sliding bearings in which the effect of slider height is to
shorten the effective radius, the actual displacement capacity is less then the nominal
displacement capacity. In many applications the radius is large compared to the slider
height and from equation (2-15), one can reasonably assume that d’~d. However,
bearings carrying large loads have substantial size sliders — in these cases the effect of
slider height and rotation on the displacement capacity may not negligible.

In section 2.5.2 it was demonstrated that it is possible in single FP bearings that the pivot
point may lie outside of the perimeter defined by the spherical concave surface, in which
case the effective radius is actually longer than the radius of curvature. The definition
sketch for this scenario is shown in figure 2-16. In this case the actual displacement
capacity considering the effects of slider height and slider rotation is actually larger than
the nominal displacement capacity. Now

d’=d +hsin6 (2-16)

2-17
R+h ( )

sin® =

By combining equations (2-16) and (2-17) the actual displacement capacity accounting
for the effects of slider height and slider rotation is

g-—9 (2-18)
__h

" R+h

Equation (2-18) demonstrates that using the nominal displacement capacity for single FP
bearings in cases in which Ry > R 1is actually conservative; there is a small amount of
additional displacement capacity beyond the design value. For example, as shown in
figure 2-17 the single FP bearings used in Benecia-Martinez Bridge have a nominal
displacement capacity of d=1245mm. However, using R=6198 mm and
h=315mm, the actual displacement capacity calculated using equation (2-18) is
d"=1308 mm (a 5% increase). This demonstrates that for large scale single FP bearings
with substantial size sliders, there is some conservatism associated with using the
nominal displacement capacity. Although the actual degree of conservatism in typical
building applications is likely somewhat less than in this example due to the large size of
the Benecia-Martinez Bridge bearings.

2.5.5 Effect of Concave Plate Rotation

The force-displacement behavior of single FP bearings is affected by rotation of the
spherical sliding surface. Rotations of the housing plate are accommodated through the
rotational capability of the articulated slider and do not effect behavior. An implicit
assumption that was made in formulating the equations of equilibrium is that the concave
plate is installed perfectly level. In practice however, tolerances of +0.01 radians are
typically allowed on the installation of bearings (AASHTO, 1999). Additional permanent
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FIGURE 2-16 Illustration of the Actual Displacement Capacity (d" ) of the Single
FP in Relation to the Nominal Displacement Capacity (d )
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FIGURE 2-17 Single FP Bearing Used for the Benecia-Martinez Bridge

rotations can arise over time due to creep or differential settlements. Furthermore, it is
also possible to have instantaneous rotations due to superstructure deformation under
loading and thermal effects. Accordingly, an investigation into the effects of these is
warranted.

The impact of out of level installation on hysteretic behavior was originally described by
Constantinou et al. (1991) for a flat sliding system with restoring force provided by
helical springs. In this experimental study, the sliding surface of each bearing was
accidentally installed with an inclination of 0.007 radians, each oriented in the same way.
The authors noted the effect of this was essentially a reduction in the mobilized friction
force for sliding occurring in the downbhill direction and an increase in the mobilized
friction for sliding occurring in the uphill direction. Mosqueda et al. (2004) formulated
the effects of concave plate rotation on the behavior of single FP bearings - the findings
of which are summarized herein. The basic principles that apply to single FP bearings are
then extended to double and triple FP bearings in subsequent sections.

To investigate the behavior in the inclined configuration, Mosqueda et al. (2004)
considered a single FP bearing with a counterclockwise (positive) rotation, t, about C_,
the center point of the spherical sliding surface. This is drawn in figure 2-18. Due to the
rotation, the “low spot” of the spherical sliding surface and accordingly the stable
equilibrium position of the articulated slider shifts from point C; to point C, . The shift in
the slider’s stable equilibrium position due to the rotation is displacement u, , which from
figure 2-18 is simply

U, =—Rgsint (2-19)

r
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Rotated
Level

FIGURE 2-18 Free Body Diagram of the Slider in a Single FP Bearing with
Concave Plate Having Rotation 7

The force-displacement relationship of the bearing can still be obtained from equilibrium
of the slider in the displaced configuration. As the bearing displaces from the new stable
equilibrium position, C,, the slider rotates by angle 6,. Therefore, from the free body
diagram of figure 2-18, the equations of equilibrium in the x and y directions are now

Ssin®, +F; cos6, —F =0 (2-20a)

Scos0, —F; sin6, -W =0 (2-20b)

where the forces F, W, S and F,; are defined as described in section 2.5.1. These are

the same equations of equilibrium as before except now defined with respect to angle 6, .
Based on the definition sketch, this angle is defined as:

(u —-u, ) =Ry sin0, (2-21)

The angle 0, is defined in this way because it is the force-displacement relationship with

respect to the original equilibrium position, C, that is of interest. Also note that for
motion to the right there is a sign change and angle 0, is defined as:
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(u +Uu, ) =R sin0, (2-22)

Combining the equilibrium equations with the geometric relationship as was done in
section 2.5.1 and making the small angle assumptions for both angles 6 and t, for
motion to the left:

F :ﬂujt(u—r)w (2-23)

eff

and for motion to the right:

F :ﬂu+(u+r)W (2-24)

eff

Equations (2-23) and (2-24) demonstrate that the effect of the rotation is simply a
uniform upward shift of the hysteresis loop by an amount tW with no effect on the
stiffness during sliding. This is the same as the behavior of inclined flat sliding bearings
described by Constantinou et al. (1991). However Mosqueda et al. (2004) chose, instead
of grouping the force +tW with the friction, to write this force as £uW / R and group
it with the restoring force. There is no difference in the two formulations.

Physically, the shift in the hysteresis loops is a result of the offset equilibrium position
and the fact that the force at which sliding initiates (F, = uW ) is the same regardless of
rotation. The apparent vertical shift is actually the result of a horizontal shift as shown by
figure 2-19. In other words, there would be no change in the loop if one were to plot the
force-displacement loops using the displacement with respect to the rotated initial
position, C.. The shift becomes apparent when force is plotted against u, the
displacement with respect to C, . Moreover, in order for the rotated bearing to achieve
displacements =D, the actual amplitude of the rotated bearing’s sliding motion is D tu,
depending on the direction of motion.

Equations (2-23) and (2-24) are valid for counterclockwise (positive) rotation of the
concave plate regardless of whether it’s facing upward or downward. Referring to figure
2-20, for the two types of rotations drawn on the left side of the figure, in the rotated
position it becomes more difficult to push the supported structure to the right and easier
to push it to the left. For the top branch of the loop (corresponding to motion to the right)
more force is required in the positive (right) direction, resulting in a uniform upward
shift. For the bottom branch, it requires less force to push in the negative (left) direction,
again resulting in a uniform upward shift. Similar reasoning leads to the downward shift
of the hysteresis loop for the clockwise (negative) rotation cases drawn on the right side
of the figure. The shifts in the loops are uniform as the effect of the rotation is to
introduce a constant component of the gravity force having magnitude of TW that either
adds to or subtracts from the applied horizontal force.
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FIGURE 2-19 Shift in the Force-Displacement Loop of Single FP Bearings Caused
by Concave Plate Rotation
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FIGURE 2-20 Effect of Different Types of Concave Plate Rotation on the Hysteretic
Behavior of Single FP Bearings
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This formulation can also be used to account for the effects of substructure and/or
superstructure rotation by updating the plate rotation t at each time step. This would
require an iterative or implicit formulation as the rotation of the structure elements and
the horizontal force transmitted through the bearing, F are mutually dependent. Two
situations in which incorporating the effects of rotation would improve the overall
accuracy of the analysis would be (a) when the concave plate is attached to a structural
element that experiences large rotations (such as a flexible bridge pier) or (b) when a
sliding isolation system with weak restoring force is used such as in Constantinou et al.
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(1991). In the later case, the authors noted much improved prediction of residual
displacements when the effects of rotation were incorporated into the analysis.

In most cases however, incorporating these effects into the analysis is likely unnecessary.
If the superstructure remains elastic, the rotations are typically small and the W
component is negligible. When the structure deforms inelastically leading to larger
rotations, the increased accuracy gained by accounting for the TW term is still negligible
considering the additional uncertainty in the nonlinear behavior of the structure.
Although, at their discretion, engineers may wish to incorporate the effects of rotation
along with property modification factors in the bounding analysis procedure.

2.5.6 Extension to Multiple Surfaces: Sliding Regimes and their Sequencing

The adaptive behavior of multi-spherical sliding bearings results from the different
combinations of sliding that can occur on the various concave surfaces. The approach
taken in formulating the behavior is to classify the motion into several sliding regimes,
each corresponding to a distinct combination of surfaces upon which sliding is occurring.
For each regime, the equations of equilibrium and force-displacement relationship can be
derived based on equilibrium of the bearing in the displaced configuration as was done in
section 2.5.1 for the single FP bearing. It can be shown that the stiffness during each
sliding regime 1is inversely proportional to the sum of the radii of curvature of the
surfaces on which sliding is occurring. The effective coefficient of friction is also related
to the coefficients of friction of the surfaces on which sliding is occurring.

Sequencing of the sliding regimes is determined by each surface’s coefficient of friction
and its ratio of displacement capacity to radius of curvature. Starting from rest, sliding
initiates on the i" surface when the horizontal force transmitted through the bearing, F ,
exceeds that surface’s friction force, F;. Accordingly, sliding starts first on the surface of
least friction and then initiates on successive surfaces as their friction forces are
overcome. Therefore the sequence in which motion initiates on the various surfaces is
determined based on the relative values of the coefficients of friction. Sliding is stopped
by the displacement restrainer on the i" surface when the relative displacement of the
slider on this surface, U,, becomes equal to the displacement capacity, d,. The lateral
force at the instant the slider starts to bear upon this surface’s displacement restrainer is
F,:, where F,. is defined by equation (2-11).

Therefore, for a given configuration of multi-spherical sliding bearing, the sequence of
activation and deactivation of sliding upon the various surfaces is determined by sorting
the relative values of F;, and F,; for all. There is nothing that prevents having the slider
contact the displacement on one surface before motion initiates upon another. That is, it’s

possible to have F;; < F;, however this is not desirable in most cases.
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SECTION 3
FORMULATION OF THE FORCE-DISPLACEMENT RELATIONSHIP FOR
DOUBLE FP BEARINGS

3.1 Introduction

This section demonstrates the formulation of the mechanical behavior and force-
displacement relationship for double FP bearings. The treatment is largely based on work
originally presented in Constantinou (2004) and Fenz and Constantinou (2006).
Assuming the general configuration in which the coefficients of friction on each surface
are unequal, behavior is comprised of three sliding regimes: (a) initial sliding only on the
surface of least friction, (b) simultaneous sliding on both concave surfaces after friction is
overcome on the surface of higher friction and (c) sliding on only one surface after the
displacement restrainer is contacted on the other. The behavior in each sliding regime is
derived from equilibrium and geometry of the bearing the deformed configuration. For
simpler configurations having surfaces of equal friction (which are more common in
practice) the behavior is readily obtained from simplification of the more general
formulation.

3.2 Sliding Regime I

Following the basic principles of operation described earlier, starting from rest motion
initiates when the applied horizontal force, F , exceeds the friction force on the surface
of least friction. Therefore, sliding begins on surface 1 (assuming that p, <p,) when
F =F,,. The displaced shape and free body diagrams for sliding occurring on surface 1
only are shown in figure 3-1. Based on FBD III in the figure, the following relationships
are obtained by considering equilibrium in the vertical and horizontal directions
respectively:

W +F,, sin0, —S,cos0, =0 (3-1)
F;, cos6, +S,sinO, —F =0 (3-2)

From geometry, the relative displacement of the slider on surface 1, u,, is
U, =Ry, sin0, (3-3)

Combining equations (3-1) through (3-3) and assuming that the relative displacement u,
is sufficiently small compared to the effective radius Ry, so that cos6, =1:

F- N 4, (3-4)

eff 1
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FBD II.

Fi i
i . FBDIL

FIGURE 3-1 Displaced Shape (a) and Free Body Diagrams (b) of the Double FP
Bearing During Sliding Regime I

Equations (3-1) through (3-4) are the equations of equilibrium describing sliding on a
single concave surface that were presented in section 2.5.1 and developed originally by

Zayas et al. (1987).

Since motion has not yet initiated on surface 2, displacement u, =0 and the force-total
displacement relationship for the entire bearing (based on the fact that u=u, +u,) is

38



e W

eff 1

u+F,, (3-5)

Equation (3-5) describes also the hysteretic behavior of the single FP bearing having
effective radius and friction the same as that of surface 1. As shown in figure 3-2, it is
rigid linear with post elastic stiffness inversely proportional to the effective radius of
surface 1 and strength equal to this surface’s friction force.

Sliding Regime I:
u<u

Horizontal Force
1

Total Displacement, u

FIGURE 3-2 Force-Displacement Relationship of Double FP for Sliding Regime I

3.3 Sliding Regime 11

With increasing applied horizontal force, sliding begins on surface 2 when F =F,,. This
occurs at displacement u” given by

u’ :(“z_l"ll)Reffl (3-6)

Note that equation (3-6) is obtained by solving equation (3-5) for the displacement when
F=F,.

The displaced shape and free body diagrams for the double FP bearing after sliding has
initiated on surface 2 are shown in figure 3-3. Comparing FBD III in figures 3-1 and 3-3,
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there is no change other than an increase in the displacement u,. Therefore, equation (3-
4) still governs motion on surface 1.

(@)
(b)
FBD I.
FBD II.
".31
F
" FBD IIL.

FIGURE 3-3 Displaced Shape (a) and Free Body Diagrams (b) of the Double FP
Bearing During Sliding Regime 11

Using FBD I of figure 3-3, by similar analysis of equilibrium as was performed for
surface 1, the following relationship is obtained for surface 2:
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FeY v, (3-7)

eff 2

Equations (3-4) and (3-7) govern the force-displacement relationships for the top and
bottom sliding surfaces, respectively. For the entire bearing, the force-total displacement
relationship of the bearing is determined by combining equations (3-4) and (3-7) using
the fact that the total displacement is the sum of the relative displacements on surfaces 1
and 2, u=u, +U,. This leads to

_ W u+Ff1Reﬁ1+Ff2Reﬁ2
Reffl + Reffz Reffl + Reffz

(3-8)

Using equations (3-4) and (3-7), the individual displacements on each sliding surface are

o =[ =R, (3-9)
W e
F-F
uz{ JR (3-10)
W

Equation (3-8), which was originally presented by Tsai et al. (2003a, 2003b, 2005 and
2006) except for the effect of the sliders height, is valid only when sliding is
simultaneously occurring on both concave surfaces. The hysteretic behavior described by
equation (3-8) is shown in figure 3-4. Upon reversal of motion, sliding resumes on
surface 1 when the bearing has unloaded by 2F,, and sliding resumes on surface 2 when
the bearing has unloaded by 2F;,. In the interim, sliding occurs on surface 1 only for a
distance 2u”.The resulting behavior is termed rigid bilinear; with a reduction in stiffness
occurring as motion changes from sliding on one surface to sliding on both surfaces. The
strength of the bearing during sliding regime II is derived from the second term of
equation (3-8) by dividing by the vertical load, W :

_ Ry + LRy,
Reffl + Reff2

(3-11)

e

This demonstrates that there is also an increase in the strength of the bearing that
accompanies the transition from sliding regime I to sliding regime II.

An interesting observation can be made by deriving expressions for the angles of rotation
6, and 0,. Angle 6, is the angle of rotation of the bottom part of the articulated slider
and angle 0, is the angle of rotation of the top part. Based on geometry and equations (3-
9) and (3-10), these angles of rotation are
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F-F
0, =sin”' | — |=sin"" n (3-12)
Reffl W
F-F
0, =sin' U | _gint| 12 (3-13)
Reffz W

When 0, =0,, the articulated slider moves as a rigid body without relative rotation.
Therefore, when the friction forces at the two sliding interfaces are equal - irrespective of
whether the two surfaces have equal or unequal radii - the angles of rotation are equal and
the slider does not experience relative rotation.

Sliding Regime I1:
U* <u<uUy,

Horizontal Force
1

—O— Sliding Regime II
Sliding Regime |

Total Displacement, u

FIGURE 3-4 Force-Displacement Relationship for Sliding Regime II Shown in
Comparison to Sliding Regime I

3.4 Sliding Regime 111

Assume a double FP bearing configured with p, <p, as before. From the start of sliding
regime 2 onward, with increasing displacement amplitude sliding continues
simultaneously on surfaces 1 and 2 until the slider begins to bear on one of the
displacement restrainers. The designer can control upon which surface the slider first
contacts displacement restrainer by specifying appropriate values of the displacement
capacities d, and d,. Here, it is assumed that the designer desires to have the slider
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contact the displacement restrainer of surface 1 prior to surface 2 and therefore have an
increase in friction prior to achieving the total displacement capacity to better control
displacements. To achieve this, it is necessary to have F,, <F,,. In terms of
displacement capacities this requirement can be expressed as

Re
d, <—="0d, + (1, — 1y ) Ry (3-14)

eff 2

At the instant the slider makes contact with the displacement restrainer on surface 1,
u, =d, and the total displacement is

Re
udr1=d1(1+ RﬁzJ_(Hz_M)Reﬁz (3-15)

eff 1

When the total displacement exceeds U, sliding occurs only on surface 2 and the
displaced shape and free body diagram are as shown in figure 3-5. It can be seen that the
effect of contacting the displacement restrainer is the introduction of an additional
bearing force on surface 1, F,. Therefore, for surface 1 the force-displacement
relationship is

F-N 4 +F, +F, (3-16)

eff 1

If the displacement restrainer is assumed rigid and elastic, throughout sliding regime I11
the relative displacement on surface 1 is u,=d, and the force exerted by the
displacement restrainer is

I:rl =F- I:drl (3'17)

Examining FBD I of figure 3-5, nothing has changed from sliding regime II and the
displacement u, is still given by equation (3-10). Therefore, for an assumed rigid
displacement restrainer, the force-displacement relationship is determined again by
starting with the fact that u=u, +u,. Using u, = d, and equation (3-10) for u,:

W
Reff 2

F=

(u—d,)+Fy, (3-18)
Equation (3-18) demonstrates that the effect of contacting the displacement restrainer of
surface 1 is an increase in stiffness from W / ( Ra + Reﬁz) to W/Ry, .

Upon reversal of motion different orders of unloading are possible. Sliding resumes on

surface 1 when the bearing has unloaded to F,, —2F;, and sliding resumes on surface 2
when the bearing has unloaded by 2F,, . Therefore, if
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® lw FBD I.

FBD II.

FBD III.

FIGURE 3-5 Displaced Shape (a) and Free Body Diagrams (b) of the Double FP
Bearing During Sliding Regime I11

umax > udr] +2(“’2 _”'l ) Reff2 (3-19)

sliding resumes on surface 2 prior to surface 1. If equation (3-19) is not satisfied, motion
starts on surface 1 prior to surface 2. These different types of unloading behavior are
denoted as regimes III(a) and I1I(b) in figure 3-6. Note that if p, > p, and the slider
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Sliding Regime I1I(a):
Ugrt < Umax < Ugr + 2Regpy (K1) W
S
s
=
@ £ -
S
N
s
T
—O— Sliding Regime Ill(a)
Sliding Regimes I - 11
T
Total Displacement, u
Sliding Regime I1I(b): W
Umax > Ugrt + 2Reqy (1)) Reira T
3
15
s 9}
b) 2 4
S
N
5
T
—O— Sliding Regime II(b)
Sliding Regimes I - I1I(a)

Total Displacement, u

FIGURE 3-6 Force-Displacement Relationship (a) for Sliding Regime III(a) Shown
in Comparison to Sliding Regimes I-II and (b) for Sliding Regime III(b) Shown in
Comparison to Sliding Regimes I-111(a)
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contacts the restrainer on surface 1 prior to surface 2, equation (3-19) will always be
satisfied and there is only one order of unloading possible.

If the displacement restrainer of surface 1 has some finite value of stiffness, kj,,, then the
bearing force F,, can be expressed as

Frl = kdr1 (u1 - dl) (3-20)

Note that equation (3-20) is valid only for u, > d, and that F,, =0 otherwise. This issue
arises in modeling double FP bearings for dynamic analysis.

The equations governing the force-displacement relationship of double FP bearings for
all three sliding regimes are summarized in table 3-1.

3.5 Additional Comments
3.5.1 Behavior for Equal Friction Configurations

Thus far the behavior of the double FP bearing has been described for the most general
case in which p, #p,. However, engineers wishing mainly to take advantage of the
savings in material costs afforded by double concave bearings may elect to use p, =,
An additional benefit is that by sharing the displacements among two sliding surfaces,
there is less increase in temperature at the sliding interface during sliding motion and
accordingly less wear of the liner material.

According to equation (3-6), when p, =p, the displacement u” goes to zero. Examining
figure 3-4, one can envision that with u” =0 there is no transition in stiffness and the
hysteretic behavior collapses from rigid-bilinear to rigid-linear. Upon initiation of
motion, sliding regime II occurs instantaneously with no sliding regime 1. Physically, this
means that simultaneous sliding always occurs on surfaces 1 and 2. Prior to contacting
the displacement restrainer the behavior is identical to that of a single FP bearing having
effective radius equal to the sum of the effective radii of surfaces 1 and 2.

Double FP bearings having equal friction have become quite popular since they provide
considerable savings in material costs while still offering the same hysteretic behavior of
the single FP bearing. Engineers familiar with traditional FP bearings can still use the
same analysis methods and software as they have previously, with need only to change
the specification of the radius of curvature from Ry to Ry, +Ry,.
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3.5.2 Applicability of Series Models

Consider the lateral load path through the double FP bearing. Assuming that the load is
imposed to the bottom plate from ground motion, it travels then through the lower sliding
interface to the articulated slider, which then transfers it through the upper sliding
interface to the structure above. Since there is only a single path for the load to travel
through both of the sliding interfaces, the bearing is actually a series arrangement of
single FP bearings (analogous to a series circuit in which there is only one path for
current to flow). The load resisting elements of each sliding interface are a parallel
arrangement of (a) a velocity dependent rigid-plastic friction element (b) a spring element
accounting for the stiffness from the curvature of the plate and (c) a gap element
accounting for the finite displacement capacity of each surface. It follows that the double
FP bearing can be represented schematically as shown in figure 3-7.

1 1
Reﬁ1 Reﬂ’2
MN MNA

M, M,

-—{ ¥ ¥r —

=
=

1 1
—ld, — > d,—

FIGURE 3-7 Exact Analytical Model of the Double FP Bearing as Two Single FP
Elements in Series

The series behavior can be confirmed by tracking the force-displacement behavior of an
example double FP bearing. The bearing considered has radii of curvature
R, =1000 mm and Ry, =3000 mm. The friction coefficients are p, =0.03 and
i, =0.06. The force-total displacement relationship when the bearing is subjected to one
full cycle of motion with 150 mm amplitude is shown in figure 3-8(a). When one plots
the relative sliding displacements U, and u, against the normalized horizontal force, the
resulting decomposed loops are as presented in figures 3-8(b) and 3-8(c). The
decomposed loops for the lower and upper surfaces are identical to the loops that would
result from a single FP bearing having the corresponding radius of curvature and
coefficient of friction. This aspect of behavior has important consequences when it comes
to modeling double FP bearings for dynamic analysis.

3.5.3 Slider Offset in Displacement-Controlled Cyclic Motion
In displacement-controlled motion where the friction on the top and bottom surfaces is
unequal, the articulated slider becomes offset inside the bearing. This is evident at point

10 in figure 3-8. At this point it can be seen that there are equal and opposite
displacements, denoted u’, on the top and bottom surfaces even though the total bearing
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displacement is zero. That is, u=0 and u, =—-u, =+u’. The offset originates because
n#W, #n, - when u =0 the normalized lateral force is p,, when u, =0 the
normalized lateral force is p,, and when u=0 the normalized lateral force is p,.
Clearly, when the coefficients of friction are different these points will not be the same
and the offset originates.
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FIGURE 3-8 Total (a) and Decomposed (b) and (c¢) Hysteresis Loops for a
Configuration of Double FP Bearing Having Unequal Radii of Curvature and
Unequal Coefficients of Friction
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The magnitude of U’ can readily be calculated and expressed in a number of ways. By
setting U, =u"and u, =—U"in equations (3-4) and (3-7) respectively

P TN ]
u=——3- (3-21)
Reffl Reffz

Considering the decomposed force-displacement loops, it is clear that u’ is the distance
the slider must move as the normalized lateral force changes from p, to p, or p,. Since
the force-displacement relationship is linear with a known slope, U’ can alternatively be
expressed in terms of the effective coefficient of friction as:

0 = (1o — 1) Ry (3-22a)

= (Me —H, ) Refr (3-22b)

_

u

[SS]

Equations (3-22a) and (3-22b) establish the convention of positive U’ on the surface of
least friction. The slider advances more on the surface of least friction and lags behind on
the surface of higher friction.

Lastly, the magnitude of slider offset does not accumulate from cycle to cycle with
continuous cyclic motion. That is, after n cycles of motion, the slider offset is still u’,
not nu’. By taking a step-by-step approach and tracking displacements as was carried out
to construct figure 3-8, it can be shown that the hysteresis loops of subsequent cycles
retrace the loop obtained from the first cycle.

3.5.4 Effect of Concave Plate Rotations

Due to their doubly spherical construction, double FP bearings are likely to experience
rotations of at least one of their concave plates. For example, in bridge applications with
flexible piers, the effect of substructure rotation can be minimized when single FP
bearings are used by attaching the housing plate to the pier and the concave plate to the
girder. With double FP bearings however, one of the concave plates will have to be
attached to the flexible component and will accordingly undergo substantial rotations as
this component deforms. For this reason, concave plate rotation is an issue that warrants
particular attention for multi-spherical sliding bearings.

In general, the same fundamental principles apply for rotation of the concave plates of
double FP bearings as for single FP bearings. The effect of each plate’s rotation will be
considered individually and then combined to determine the effect on overall behavior.
Consider a double FP bearing having a bottom concave plate with rotation t, and a top
concave plate with rotation t,. Since the slider is articulated, differential rotations
T, # T, such that U, #U., can be accommodated with no additional moment transfer.
This point further supports the importance of the slider’s articulation in double FP
bearings.
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Following the same formulation as for single FP bearings, the force-displacement
relationship for rotated surface 1 is

w
Reff 1

F= u, +(},l1 7, )W (3-23)

where the last TW term is positive for motion to the right (since it requires more force to
push up the incline) and negative for motion to the left (requires less force to push down
the incline), assuming counter-clockwise rotation. Similarly, for the upper concave plate:

FoW
Reff2

u, +(p, £ 1, )W (3-24)

where the last ©,W term is positive for motion to the right (requires more force to push
against the rotation) and negative for motion to the left (requires less force) assuming
counter-clockwise rotation. Combining equations (3-23) and (3-24), for sliding regime II
when motion is occurring on both surfaces, the force displacement relationship is

= w u_l_li(ulirl)REﬁl_l—(“zitz)ReﬁszW
Reffl + Reffz Reﬁl + Reffz

(3-25)

where the signs of the tW terms are determined as just described. Equations (3-23)
through (3-25) show again that mathematically, the effect of the rotations is essentially a
modification of the effective friction force exhibited. The total hysteresis loop shifts
vertically by

(Tl Reffl + T Reffz)W

Reff] + Reff 2

5= (3-26)

when sliding is occurring on both surfaces. Furthermore, the decomposed loops of the
lower and upper surfaces translate vertically by tW and t,W respectively.

In order to illustrate the effects of concave plate rotations on the behavior of double FP
bearings, the example bearing considered in section 3.5.2 will be re-examined. Recall that
it was configured to have the bottom sliding surface with Ry, =1000 mm and p, =0.03
and the top sliding surface with R, =3000 mm and p, =0.06. The behavior will first
be investigated for the case in which the concave plates are inclined such that t, =+0.01
and 1, =+0.01. The resulting behavior is shown in figure 3-9. Due to this rotation, the
stable equilibrium position of the slider on surface 1 shifts by u,, =10 mm and shifts on
surface 2 by U, =-30 mm. As a result, the stable equilibrium position of the entire
bearing ends up shifting by u, =—40 mm.
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FIGURE 3-9 Total (a) and Decomposed (b) and (c) Hysteresis Loops for Example

Bearing with v, =+0.01 and 7, =+0.01

Starting from these modified stable equilibrium positions, sliding must initiate on surface
1 when F =pW and sliding must initiate on surface 2 when F =p,W . As a result, by
the time the slider moves to the unrotated stable equilibrium position of surface 1
(u, =0), it has actually slid a total of u,, =10 mm on this surface and the horizontal

force 1s
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F= Rﬂu” FUW =W + W (3-27)

eff 1

Equation (3-27) demonstrates that there is an upward shift of the decomposed loop of
surface 1 by tW . Similarly for surface 2, by the time the slider reaches the position
where U, =0, it has actually traveled U, =30 mm on surface 2, resulting in an upward
shift of the decomposed loop by T,W .

Since the friction coefficients and post-elastic stiffness are not affected by the rotation,
the magnitude of the displacement u” for which sliding occurs on surface 1 prior to
starting on surface 2 remains unchanged. In this case, ‘u‘ =30 mm < |url +ur2| =40 mm
and simultaneous sliding starts on both surfaces before the original stable equilibrium
position at U =0 is achieved. Due to the upward shift of both decomposed loops, the total
loop shifts upwards by s/W . There is no change in the stiffness exhibited during either
sliding phase. Also, there is still the same slider offset at zero total displacement, u’, as
described in section 3.5.3.

A second example for the same bearing is shown in figure 3-10. In this case, the lower
plate has a rotation of t, =+0.02 and the upper plate rotation remains the same at
7, =+0.01. Again the total hysteresis loop shifts upward by s and the decomposed loops
of surfaces 1 and 2 shift upward by tW and t,W , respectively. In this case however, it
is interesting to note that due to the rotation there are asymmetric displacements on the
individual sliding surfaces. That is, the amplitudes of maximum positive and maximum
negative displacement on the individual surfaces are different even though there is
symmetric amplitude of total displacement. The offsets due to rotation on the lower and
upper surfaces, denoted u/, and u/, are

TR +1,R
ur — 17 Yeff 1 27 Yeff 2 _Tl Reﬁ1 (3-283)
Reff] + Reffz

[tR. +1,R ]
TR T, effz_Tz R, (3-28b)

Reff 1 + Reff 2

In this example, from equations (3-28a) and (3-28b), u/, =—7.5 mm and u,, =7.5 mm .
The rotation induced offsets on each surface are equal in magnitude and opposite in
direction. Note that this phenomena was not observed in the previous example because
for that specific combination of radii and rotations, by equations (3-28a) and (3-28b) ,
u, =u’, =0 mm. These offsets will add to those offsets at zero total displacement
noticed during noticed during displacement-controlled testing. Therefore, during
displacement-controlled tests of rotated bearings, the offsets on the lower and upper
surfaces at zero displacement are u; +u!, and u; +u’, respectively.
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FIGURE 3-10 Total (a) and Decomposed (b) and (c) Hysteresis Loops for Example
Bearing with v, =+0.02 and 7, =+0.01

A final example is shown in figure 3-11 for the case in which the rotations are equal
magnitude but opposite in directions, t, =+0.01 andt, =-0.01. In this case, the stable
equilibrium positions are U, =-10mm, U, =30mm and for the entire bearing
U, =20 mm. As a result of these shifts, the decomposed loops of the lower and upper
surfaces translate vertically by tW and t,W respectively and the total loop translates
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vertically by s. Also, there is a rotation induced offset leading to asymmetric
displacements on the individual sliding surfaces. For this particular example,

u, =—15mm and u), =15 mm.
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FIGURE 3-11 Total (a) and Decomposed (b) and (c¢) Hysteresis Loops for Example
Bearing with T, =+0.01 and 7, =-0.01
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It has been established that concave plate rotations change the stable equilibrium position
of the slider on a given surface. This change must be taken into account when
determining the displacement capacity of that surface. Since motion is starting from an
offset position, the displacement capacities in each direction become d, +u,;, and d, —u,,.
The effect on the displacement capacity is not negligible for longer period bearings. For
example, for a 3 second period concave surface installed with an inclination of 0.01 rad
(which is within typical tolerance) the shift in the stable equilibrium position is nearly
25 mm. As a result, there is asymmetric behavior for sliding regime III in the positive
and negative directions. This is proven by solving for the total displacement when the
slider contacts the displacement restrainer, Ug,;. Assuming that the slider contacts the
displacement restrainer of surface 1 first, this displacement is

Re
Uy, =0, (1"' Rﬁz ]_(Hz _Hl)Reffz +(’51 _Tz)Reffz (3-29)

eff 1

Equation (3-29) is obtained by solving for the displacement in equation (3-25) when the
applied horizontal force is F =F,, +tW . Comparing equations (3-15) and (3-25), to
more clearly see the effect of the concave plate rotation it can be written that

udrl,rotated = udrl,level + (T] - Tz ) Reff 2 (3'30)

where Uy, e 18 Ug, given by equation (3-15).

To 1illustrate this, consider a double FP bearing with Ry, =R, =2000 mm,
w=un,=0.05, d=75Smm and d,>d,. The hysteretic behavior in the level
configuration and with a bottom plate rotation of 0.01 rad are compared in figure 3-12 for
a displacement amplitude of 200 mm. Based on the figure, it is observed that due to the
rotation of surface 1, the stable equilibrium position of the slider on this surface shifts by
U, =—20 mm. Therefore, the slider comes into contact with the displacement restrainer
after travelling 95 mm in the positive direction and only 55 mm in the negative
direction. As a result, the force-displacement loop for the entire bearing and the
decomposed loop for surface 1 are asymmetric. Based on equation (3-30),
Ugrirotated = Ygriieer +20 mm  in both the positive and negative directions. So whereas in
the level configuration Uy, =+150 mm, now in the inclined configuration
Uy, =+170 mm and -130 mm. Also note that even though friction on each surface is the
same, there are offsets on each surface at zero total displacement (u!, =—u!, =10 mm)
due to the rotation.
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FIGURE 3-12 Total (a) and Decomposed (b) and (c¢) Hysteresis Loops for Example
Bearing with 7, =+0.01 and 7, =0 and Slider that Contacts the Displacement

Restrainer
3.5.5 Modeling for Dynamic Analysis
Various options exist for modeling of double FP bearings in programs used for response

history analysis of seismically isolated structures. For the simplest case of Ry, =Ry,
and p, =p,, the behavior of the bearing can be modeled as that of a single FP bearing
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with radius of curvature Ry, +Ry, and coefficient of friction as determined by
experiment. The velocity dependence of the coefficient of friction is described by

n= fmax _( fmax - fmin)exp(_a’u) (3_31)

where U is the sliding velocity, f__ and f_ are the sliding coefficients of friction at
large velocity and nearly zero sliding velocity respectively and o is a parameter that
controls the transition from f__ to f_, . This relationship was proposed originally by
Mokha et al. (1990). Typically f__ is determined in the prototype bearing testing
program and the parameters f . and o are selected on the basis of available

experimental results. For example, refer to Constantinou et al. (1999 and 2007a).

When determining the velocity dependence of the coefficient of friction for each
interface, the relevant velocities are the sliding velocities on each concave surface - not
the total velocity. For double FP bearings of equal radii and friction, the sliding velocities
on each surface are equal and have magnitude U/2. Therefore, equation (3-31) still
applies provided a value a/2 is specified. This is because in both cases the value of the
exponential is exp(ocl]/ 2). For example, a value of a =100 sec/m is often used for the
composite friction material in traditional FP bearings. To model a double FP bearing with
the same type of sliding material, the value o =50 sec/m should be specified in the
analysis program.

For the general case of a double FP bearing with unequal radii and unequal friction, the
behavior can be modeled using two single concave FP bearing elements acting in series.
By defining two separate elements with the radii of curvature and coefficients of friction
of each concave surface and connecting them in series with a point mass representing the
articulated slider, the overall behavior is obtained. Velocity dependence of the coefficient
of friction is still governed by equation (3-31), though the velocities of each isolator
element represent the true sliding velocities on each surface. Accordingly, the rate
parameter oo need not be modified.

3.5.6 Values of Property Modification Factors

The concept of bounding analysis on the basis of system property modification factors or
A -factors is originally described in Constantinou et al. (1999) and employed beginning in
the 1999 AASHTO Guide Specifications for Seismic Isolation Design (AASHTO, 1999).
The method is a systematic procedure for calculating upper and lower bound values for
the mechanical properties of seismic isolators to account for aging, contamination,
history of loading, temperature and other effects.

For FP bearings, only the coefficient of friction is affected by the aforementioned effects.
The system property modification factors for double FP bearings are the same as those
for traditional FP bearings except for the contamination factor. Separate factors should be
considered for the upper and lower concave surfaces, respectively. Anticipating that the
bearings will be sealed (as unsealed bearings with a concave stainless steel surface facing
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up are not permitted in the AASHTO Guide Specifications), the contamination factors
will be A, =1.1 for the lower (upward facing) surface and A, =1.0 for the upper
(downward facing) surface. When response history analysis is performed with each
bearing explicitly modeled as two spherical sliding surfaces in series, the two different
contamination factors can be directly utilized in adjusting the properties of each sliding
surface. However, when simplified calculations are performed, a contamination factor for
the entire system is needed. This factor may be derived on the basis of equation (3-11)
that combines the contributions of the frictional forces from the two sliding interfaces:

2\ = Aot Rery + Aol R (3-32)
¢ Ry + LRy,

For the most common case of bearings with equal radii and friction,
Ao =(Agy +1ry,)/2=1.05.

3.5.7 P—A Moment Transfer

In the traditional FP bearing, the P —A moment (moment resulting from vertical load P
through the total bearing displacement A) is transferred to the structure or foundation on
the side of the concave plate. In contrast, for double FP bearings this moment is divided
among the two concave plates. The moments transferred to the top and bottom concave
plates are Pxu, and Pxu, respectively, where U, and u, are the relative displacements
on each surface. For bearings withR, = R, and p, ~ ,, the displacements u, and u,
are each effectively equal to A/2 and the moment transferred through each concave plate
is PA/2. Though double FP bearings require the boundary elements both above and
below to resist the P —A moment, the magnitude of the moment that must be resisted is
considerably less.
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SECTION 4
FORMULATION OF THE FORCE-DISPLACEMENT RELATIONSHIP FOR
TRIPLE FP BEARINGS

4.1 Introduction

This section demonstrates how the force-displacement relationship is derived for a triple
FP bearing in the fully adaptive configuration. The presentation follows that of Fenz and
Constantinou (2007a).

Referring to the nomenclature established in figure 2-5, the fully adaptive triple FP
bearing is configured as follows:

1. Large and equal effective radii for the outer concave plates and small and
equal effective radii for the inner slide plates, Ry, = Ry, > Ry, = Ry, . This
condition, when combined with appropriate specification of friction
coefficients will result in the desirable transitions in stiffness throughout the
course of motion. Note there is no hard and fast requirement that R, =R,
or Ry, =Ry, (the equations are formulated in general to account for
configurations of unequal radii), however for simplicity of manufacture these
radii will be equal in most cases.

2. The coefficients of friction are selected so that the bearing exhibits high
stiffness and low friction initially and subsequently decreases in stiffness and
increases in effective friction as the amplitude of displacement increases. This
is accomplished by using friction materials that give n, =p, <p, <p,.

3. The displacement capacities of each surface are selected so that there is
gradual stiffening at large displacement. The slider should contact the
displacement restrainer on surfaces 1 and 4 prior to surfaces 2 and 3. Provided
that motion initiates on surfaces 2 and 3 prior to surfaces 1 and 4, this is
guaranteed as long as F;, <F,, and F,;, <F,;. In terms of displacements,
this condition is d, > (p, —p, ) Ry, and dy > (p, — 13 ) Rygs -

4. Sliding should initiate on the surface of highest friction prior to the onset of
any stiffening, that is F;, <F, . In terms of displacements, this condition is
satisfied provided that d, > (p, —p, ) Ry, . This is to avoid a situation in which
the bearing stiffens, then softens, then stiffens again, which would occur if
F,, <F;,. The bearing would stiffen upon contacting the displacement
restrainer of surface 1, soften when sliding started on surface 4, and then
stiffen again upon contacting the displacement restrainer of surface 4.

The approach taken is to formulate the force-displacement behavior using these
assumptions to describe the most general configuration that can be reasonably
implemented. Subsequently, the collapse to simpler types of hysteretic behavior for
configurations of triple FP bearing having equal friction is described. Similar to the
double FP bearing having surfaces of equal friction, the simpler configurations are likely
to be more widely implemented due to their economic benefits and less complex
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behavior. However, there may be situations in which the engineer desires high
performance at the expense of a more elaborate analysis. Moreover, understanding the
behavior in the most general configuration and the influence of each design parameter
gives the confidence necessary to implement the simpler configurations in practical
applications.

Lastly, the modified single FP bearing is discussed because it is a much simpler
adaptation of the triple FP bearing but operates on essentially the same physical
principles. Although it is in itself a viable type of isolation system, its treatment in this
report is primarily as means of verification of the mechanical behavior of the triple FP.

4.2 Sliding Regime I

Sliding regime I consists of sliding on surfaces 2 and 3 and no sliding on surfaces 1 and
4. The basic principles of operation described earlier dictate that starting from rest,
motion will initiate when the horizontal force exceeds the friction force on the surface(s)
of least friction. Therefore, sliding begins on surfaces 2 and 3 when F =F,, =F,,. The
displaced shape and free body diagrams of the components of the bearing during this
regime are shown in figure 4-1.

Based on FBD III of figure 4-1(b), the following relationships are obtained by
considering equilibrium in the vertical and horizontal directions respectively:

S,+F;,sinB,-S,cosb, =0 (4-1a)
F;,cos0,+S,sin6, —F,, =0 (4-1b)

Also, from FBD IV of figure 4-1(b),

F=F, (4-2a)
W =S, (4-2b)

From geometry, the relative displacement of the slider on surface 2, u,, 1s
U, = Rg,sin0, (4-3)

Combining equations (4-1) through (4-3) and assuming that the relative displacement u,
is sufficiently small compared to the effective radius R, so that cosf, =1:

Fo Y v, (4-4)

eff 2
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FIGURE 4-1 Displaced Shape (a) and Free Body Diagrams (b) of the Triple FP
Bearing During Sliding Regime I

Equations (4-1) through (4-4) are the equations of equilibrium for the conventional single

FP bearing (Zayas et al., 1987). Similar analysis of equilibrium of FBD I and FBD II
gives for surface 3:
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FoW

eff 3

u, + Fo, (4-5)

The force-total displacement relationship for the bearing during sliding regime I is
determined by combining equations (4-4) and (4-5) based on the fact that the total
displacement U is the sum of the displacements U, and u,, as U, =u, =0, resulting in

E- W u+Ff2Reff2+Ff3Reff3 (4-6)
Rett2 + Rerr Rett2 + Retr 3

Upon reversal of motion, the bearing unloads by 2F;, (= 2F;;) and sliding initiates again
on surfaces 2 and 3. As shown in figure 4-2, the hysteretic behavior is rigid-linear with
post-elastic stiffness equal to the sum of the effective radii of surfaces 2 and 3 and
strength equal to the average coefficient of friction on these two surfaces. The behavior is
identical to a double FP bearing with concave surfaces of equal radii and equal friction.

Sliding Regime I:
umax <u* —_— T

2F, (=2F)

I

Horizontal Force
1

Total Displacement, u

FIGURE 4-2 Force-Displacement Relationship During Sliding Regime I
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4.3 Sliding Regime 11

When F =F; , motion begins on surface 1, marking the start of sliding regime II. The
transition occurs at displacement u” given by

u* =(H1_MZ)Reff2+(Hl_u3)Reﬁ3 (4-7)

Equation (4-7) is obtained by solving equation (4-6) for the displacement when F =F,,.
The displaced shape and free body diagrams for sliding regime II are shown in figure 4-3.
The rotation of the lower slide plate with respect to the lower concave plate is 0, and the
rotation of the rigid slider with respect to the lower slide plate is 0,. When the angles are
defined in this way, the relative displacements U, and u, are

U, = Ry, sin 6, (4-8a)
U, =R,sin6, (4-8Db)

From FBD IV of figure 4-3(b) the equilibrium equations of the single FP bearing are
obtained, leading to the following relationship governing motion on surface 1:

F- W o +F, (4-9)

eff 1

Although small in magnitude, rotation of the lower slide plate when sliding is occurring
on surface 1 has a significant impact on behavior. The angle that the rigid slider makes
with respect to the vertical direction 1s now the sum of angles 0, and 0,, as reflected in
the equations of equilibrium from FBD III of figure 4-3(b):

S,cos6, +F;,sin(6,+6,)—S, cos(6, +6,)—F sin6, =0 (4-10a)
S,sin(6, +6,)+F,cos(6,+6,)—S,sin6, —F;, cosd, =0 (4-10b)

Using equations (4-8) - (4-10) and the assumptions that the individual angles 0, and
0, are small so that cos0, = cos0, =1 and sin, xsin0, = 0, for surface 2 it is found that

F\)eff 1 eff 2

sz(—ul 2 J+Ff2 (4-11)

Substituting equation (4-9) into equation (4-11):
u, :(“1_”2)Reﬁ2 (4-12)

Equation (4-12) is important because it reveals that the displacement on surface 2 is
constant with magnitude equal to the value of U, when motion transitions from sliding
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regime I to sliding regime II (solve equation (4-4) for u, with F =F;,). This means that
the instant sliding starts on surface 1, it stops on surface 2.

u, — le—

i

(a) F

(b)
FBD I.
FBD II.
FBD III.
— 0,=—
F © S, FBD IV.

FIGURE 4-3 Displaced Shape (a) and Free Body Diagrams (b) of the Triple FP
Bearing During Sliding Regime 11
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Inspection of FBD I and FBD II of figure 4-3(b) shows that there is no change from FBD
I and FBD II of figure 4-1(b), other than that the angle 0, is larger due to the increase of
displacement U, . Therefore, there is no sliding on surface 4 and motion on surface 3 is
still governed by equation (4-5). So with sliding occurring on surfaces 1 and 3 only, the

force-total displacement relationship for sliding regime II determined based on equations
(4-5), (4-9) and (4-11) is

B W u+FfI(Reﬁ]_Reﬁ2)+Ff2Reff2+Ff3Reff3
Reffl + Reff3 Reffl + Reff3

(4-13)

This relationship is shown in figure 4-4. Upon reversal of motion, the bearing unloads by
2F;, (=2F;;) and motion resumes on surfaces 2 and 3. Motion continues on surfaces 2
and 3 for a distance of 2u” until the bearing has unloaded by 2F, , at which point sliding
starts again on surface 1 and stops on surface 2. Sliding then continues on surfaces 1 and
3. In comparison to sliding regime I, transition to sliding regime II is accompanied by a
reduction in stiffness and an increase in effective friction.

Sliding Regime 1II:
u* < umax < y** W i

Horizontal Force
1

—O— Sliding Regime II
Sliding Regime 1

Total Displacement, u

FIGURE 4-4 Force-Displacement Relationship During Sliding Regime II Shown in
Relation to Sliding Regime I
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4.4 Sliding Regime 111

Sliding initiates on surface 4 when F =F,,, which occurs at displacement u™ given by
u™ =u*+(H4_H1)(Reﬁ1+Reff3) (4-14)

Equation (4-14) is obtained by solving equation (4-13) for the displacement when
F =F,,. The displaced shape and free body diagrams for sliding regime III are shown in
figure 4-5. Displacements U, and U, and angles 0, and 0, are defined as before; the
rotation of the upper slide plate with respect to the outer upper concave plate is 6, and
the rotation of the upper slide plate with respect to the rigid slider is 0,. When the angles
are defined in this way, the relative displacements u; and u, are

U; = R ;s1n 0, (4-15a)
U, = Ry, sin0, (4-15b)

By inspection of FBD III and FBD IV of figure 4-5(b), it is clear that nothing has
changed from sliding regime II to sliding regime III for the bottom parts of the bearing,
except for an increase in displacement U,. Therefore, motion on surface 1 is still
governed by equation (4-9) and motion on surface 2 is still governed by equation (4-11).
From similar analysis of equilibrium of FBD I and FBD II of Figure 4-5(b) as was done
for FBD III and FBD IV of Figure 4-3(b), it follows that for surface 4:

F= w +F, (4-16)
Reff4
and for surface 3:
F=w| = % | p (4-17)
Reff3 eff 4
u, :(H4_H3)Reﬁ3 (4-18)

Equation (4-18) demonstrates that as soon as sliding starts on surface 4, it stops on
surface 3. This can be proven by solving equation (4-5) for u, with F =F,,. For sliding
on surfaces 1 and 4, the force-total displacement relationship for sliding regime III
determined by combining equations (4-9), (4-11), (4-16) and (4-17) is

E— W u+Ffl(Reffl_Reffz)+Ff2Reff2+Ff3Reff3+Ff4(Reff4_Reff3)
Reit1 + R4 Ry, +R

eff 1 eff 4

(4-19)
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(b) FW
| Fi4 FBDI.

FBD II.

FBD III.

FBD IV.

FIGURE 4-5 Displaced Shape (a) and Free Body Diagrams (b) of the Triple FP
Bearing During Sliding Regime 111

This relationship is shown in figure 4-6. Compared to regimes I and II, transition to
sliding regime III is accompanied by a reduction in stiffness and an increase in effective
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friction. When motion reverses, the bearing unloads by 2F,,(=2F;;) and sliding
resumes on surfaces 2 and 3. Motion continues on surfaces 2 and 3 for a distance of 2u”
until the bearing has unloaded by 2F;,, at which point sliding starts on surface 1 and
stops on surface 2. From this point, motion continues on surfaces 1 and 3 for a distance of
2u™ —2u” until the bearing has unloaded by 2F,,. At this point, motion resumes on
surface 4 (and stops on surface 3) and sliding on surfaces 1 and 4 occurs.

Sliding Regime III:

u** < Ljmax < udrl —W
2F
2

Horizontal Force
1

—O— Sliding Regime III
Sliding Regimes I - 11

Total Displacement, u

FIGURE 4-6 Force-Displacement Relationship During Sliding Regime III Shown in
Relation to Sliding Regimes I-and 11

4.5 Sliding Regime IV

Stiffening behavior of the triple FP bearing at large displacements is achieved by
stopping motion on surfaces with large effective radius and forcing it to occur on surfaces
with smaller effective radius. Sliding regime IV begins when the motion changes from
sliding on surface 1 and 4 to sliding on surfaces 2 and 4, which occurs when contact is
made with the displacement restrainer on surface 1. At this point, the displacement on
surface 1 is U, = d, and the horizontal force, F,, , is

W
drl — d1 + Ffl (4-20)

eff 1
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The transition between sliding regimes occurs at a total displacement of U, , given by

R
Ug =U" +d, (1"' Sl ]_(“4 _”1)(Reff1 + Reff4) (4-21)
eff 1

Equation (4-21) is obtained by solving equation (4-19) for u with F=F,, . The
displaced shape and free body diagrams for motion during regime IV are given in figure
4-7. In FBD III and FBD 1V of figure 4-7, it is shown that the effect of the displacement
restrainer contacting the slider on surface 1 is to introduce an additional force on the
slider, F,, . It is assumed that the displacement restrainer is rigid, and therefore from FBD
IV of figure 4-7, the force displacement relationship governing motion on surface 1 is

F- WV 44k +F, (4-22)

eff 1

There is no additional displacement on surface 1 and equilibrium is maintained by an
increase in the restrainer force, F,,, as the applied horizontal force, F, is increased.
Using FBD III and FBD IV of figure 4-7(b), the force displacement relationship
governing motion on surface 2 is

F:W(i+ = J+Ff2 (4-23)

F\)eff 1 eff 2

This demonstrates that sliding resumes on surface 2 when the displacement restrainer is
contacted on surface 1. Equation (4-23) is simply equation (4-11) with u, =d,. Nothing
has changed on the upper surfaces so motion on surfaces 3 and 4 is still governed by
equations (4-17) and (4-16) respectively. Therefore, with sliding occurring on surfaces 2
and 4 the force-total displacement relationship is

F =L(u—ud”)+£dl+F“ (4-24)
Reffz + Reff4 Reffl

This relationship is shown in figure 4-8. Upon reversal of motion, the bearing unloads by
2F, (=2F;,) and motion resumes on surfaces 2 and 3. As described in figure 2-10, after
the slider contacts the displacement restrainer on surface 1, motion will not start on this
surface until the bearing has unloaded by F,, +2F;, to

FoW

dl - Ffl (4-25)

eff 1
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(a)

()

FBD I.

FBD II.

FBD IIl.

FBD IV.

FIGURE 4-7 Displaced Shape (a) and Free Body Diagrams (b) of the Triple FP
Bearing During Sliding Regime IV

Sliding resumes on surface 4 when the bearing has unloaded by 2F,,. The order in which
sliding resumes is determined by comparing the quantities F, +2F;, and 2F,, . It can be
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shown that for sliding regime IV, if the magnitude of the maximum total displacement,
u,_. , satisfies the following

Unnax = Uari +2(H4 1y )(Reffz + Reff4) (4-20)

then upon unloading, motion will initiate on surface 4 prior to surface 1
(2Ff <K, +2F, ) If equation (4-26) is not satisfied, then motion will initiate on surface
1 prior to surface 4 (Fr1 +2F;, <2F, 4). This demonstrates that it is possible to have
different types of unloading behavior depending on the maximum displacement achieved.
However, based on equation (4-28) that follows, one can show that for the typical
configuration with d, =d, and Ry, =R, equation (4-26) cannot be satisfied prior to
the start of sliding regime V. Therefore, motion will start on surface 1 prior to surface 4
for standard configurations of triple FP bearing.

Sliding Regime IV:

udrl < umax < |Jdr4

Horizontal Force
1

—O— Sliding Regime IV
Sliding Regimes I - 111

Total Displacement, U

FIGURE 4-8 Force-Displacement Relationship During Sliding Regime IV Shown in
Relation to Sliding Regimes I-111

4.6 Sliding Regime V

Sliding regime V begins when the motion changes from sliding on surface 2 and 4 to
sliding on surfaces 2 and 3, which occurs as contact is made with the displacement
restrainer on surface 4. This is accompanied by further stiffening. The displaced shape
and free body diagrams are shown in figure 4-9. At the transition point, the relative
displacement on surface 4 is u, =d, and the horizontal force, F,,,, is
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(b) F

FBD I.

FBD II.

FBD IIl.

1 F, FBD IV.

FIGURE 4-9 Displaced Shape (a) and Free Body Diagrams (b) of the Triple FP
Bearing During Sliding Regime V
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W
Fas =4+ Fyy (4-27)

eff 4

The transition between sliding regimes occurs at a total displacement of u,,,, given by

d d
Uy, = Uy, + KR_4 + w]— [R_1+ Hlﬂ(Reﬁ 2+ Ry (4-28)
eff 4 eff 1

From similar analysis of equilibrium of FBD I and FBD II of figure 4-9(b) as was done
for FBD III and FBD IV of figure 4-7(b), it follows that for surface 4:

W

F= d,+F,,+F, (4-29)
eff 4
and for surface 3
F:W( d, 4 ]Jr F., (4-30)
Reff4 eff 3

As with the bottom part of the bearing, equation (4-30) reveals that sliding resumes on
surface 3 the instant contact is made with the displacement restrainer on surface 4.
Nothing has changed on the lower part of the bearing, motion is still occurring on surface
2 with the slider bearing on the displacement restrainer on surface 1. Therefore,
combining the force displacement relationships for surfaces 1 through 4 gives

F:L(u—udr4)+id4+ﬁ4 (4-31)
Reffz + Reff3 Reff4

This is shown in figure 4-10. When the motion reverses, the bearing will unload by
2F;, (=2F;;) and sliding will occur on surfaces 2 and 3. Motion resumes on surface 1
when the bearing unloads to F,, —2F;, and motion resumes on surface 4 when the
bearing unloads to F,,—2F,,. Since the former is always larger than the latter
(assuming the standard configuration), when the bearing unloads from maximum
displacement u_, > U, , sliding will initiate on surface 1 prior to surface 4.

The equations governing the force-displacement relationship of triple FP bearings for all
five sliding regimes are summarized in table 4-1.
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Sliding Regime V: v

umax > udr4 R +R / T

Horizontal Force
1

—O— Sliding Regime V
Sliding Regimes I - IV

Total Displacement, u

FIGURE 4-10 Force-Displacement Relationship During Sliding Regime V Shown in
Relation to Sliding Regimes I-1V

4.7 Additional Comments
4.7.1 Behavior in the Case of Equal Friction

Thus far, the behavior of the triple FP bearing has been described for the fully adaptive
configuration of properties in which p, =p, <p, <p,. In this case there are multiple
sliding phases and accordingly multiple changes in stiffness. However it can be shown
that in simpler configurations the hysteretic behavior of the triple FP will collapse to that
of the double FP or even the single FP. This is due to the fact that when friction is equal
on two surfaces i and j, sliding starts simultaneously on each and theoretically they
behave as a single surface having effective radius Ry = Ry + Ry . For the time being,
these simpler configurations are the most likely to be implemented by practicing
engineers.

Consider a triple FP bearing in which p, =p, <p, =p,. For displacements u<u’,
sliding occurs only on surfaces 2 and 3 and the behavior is indistinguishable from sliding
regime [ of the standard configuration as described in section 4.2. The fundamental
principles of operation must hold regardless of the relative values of the friction
coefficients. Therefore, with increasing lateral force sliding will start on surface 1 when
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F =F,,. However at this same point, F =F,, and motion simultaneously starts on
surface 4. By inspection, when p, =p,, equation (4-14) gives u”™ =u". This means that
the displacement range in which sliding regime II applies (from u” to u™) goes to zero
and the behavior immediately transitions from sliding on surfaces 2 and 3 to sliding on
surfaces 1 and 4 (from sliding regime I to sliding regime III). The hysteretic behavior
shown prior to any stiffening is shown in figure 4-11(b). It is rigid-bilinear with large
unloading stiffness prior to the transition to sliding on surfaces 1 and 4. Finally, it should
be noted that for p, =p, when the ratios d, /Ry, and d,/Ry, are the same, based on
equation (4-28) u,, =U,, and the slide plates contact the displacement restrainers on
surfaces 1 and 4 simultaneously.

The behavior further collapses in the case where all coefficients of friction are equal,
W, =W, =p, =,. Based on equations (4-7) and (4-14), it is clear that u™ =u"=0,
meaning that sliding regime III governs instantaneously upon initiation of motion. This is
further corroborated by examining equations (4-12) and (4-18); when the friction
coefficients are equal U, =U, =0 indicating that there is no sliding on surfaces 2 and 3. In
this case, prior to contacting the displacement restrainer there are no transitions in
stiffness and the behavior is analogous to that of the single FP bearing. This is shown in
figure 4-11(c). Similar to the previous case, when the ratios d, /Ry, and d, /Ry, are the
same, based on equation (4-28) u,, =U,, and the slide plates contact the displacement
restrainers on surfaces 1 and 4 simultaneously.

This last configuration is purely academic since it is in practice very difficult to achieve
coefficients of friction that are exactly equal. If this were attempted, due to natural
variability of material properties it would be uncertain whether p, >pu, or whether
u, >u, (and equally whether p, >p, or p, >p,). Therefore it would not be possible
with any certainty to predict whether in practice sliding will initiate on the outer concave
surface or the recess of the slide plate. There are considerably different values of stiffness
associated with each of these possibilities. In this case, the designer should just use the
double FP bearing with concave surfaces of equal friction.

4.7.2 Applicability of Series Models

One important result from the analysis of double FP bearings was that the overall
behavior could be obtained by considering two single FP elements acting in series. This
aspect of behavior has important implications for dynamic response history analysis.
Even double FP bearings of unequal friction can be modeled with the existing analytical
formulations used for single FP bearings in software used for analysis of seismically
isolated structures. This means that these novel devices having unique behavior can be
modeled without having to revise the current software.

With this knowledge, it is tempting to assume that triple FP bearings can be modeled
using three or four single FP elements connected in series. However, this is not the case.
The behavior of the triple FP bearing is not that of a series arrangement of single FP
bearings. This is due to the fact that the series model is incapable of reproducing the
sliding-stopping-sliding behavior that the innermost sliding surfaces exhibit throughout
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(a)

(b)

(©)

FIGURE 4-11 Collapse of Adaptive Triple FP Bearing’s Behavior to Simpler Cases

Horizontal Force Horizontal Force

Horizontal Force

Fully Adaptive
My = My < Hy < My

T

Displacement

Collapsed to Double
My = My <My = My

effl eff4

eff2 eff3

[Assumed thatF  <F, ... Fy,l]

T

Displacement

Collapsed to Single
Hy = Hy = Uy = Ly
R« TR

effl eff4

[Assumed thatF , <F ... Fy,l

Displacement

in Configurations of Equal Friction

the course of motion. The result of this limitation is that the stiffness is under-predicted
by the series model when sliding is occurring on the outer concave surfaces because it
permits simultaneous sliding on both surfaces 1 and 2 (and 3 and 4). In actuality,

simultaneous sliding cannot occur on surfaces 1 and 2 (and 3 and 4).
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This has important implications in modeling triple FP bearings for dynamic analysis. It is
shown elsewhere (Fenz and Constantinou, 2007b) that though the true behavior of the
triple FP is not that of a series arrangement of single FP bearings, it is similar. Series
models can be used to model the behavior provided that the input parameters are
modified appropriately. This is beyond the scope of the current report and is discussed
elsewhere in greater detail (Fenz and Constantinou, 2007b).

4.7.3 Actual Forces at which the Slider Contacts the Displacement Restrainer on
Surfaces 2 and 3

For the fully adaptive configuration of triple FP bearing that has been described in this
section, forces F,, and F,; are not actually the forces at which the slider contacts the
displacement restrainer on surfaces 2 and 3. This is because motion on these surfaces is
interrupted when sliding initiates on surfaces 1 and 4, respectively. Based on equation (4-
23), the actual force at which the slider contacts the displacement restrainer of surface 2
is

F:W(LL}FWZFW;_IW )

eff 1 eff 2 eff 1

A similar expression can be derived based on equation (4-30) for surface 3. The forces
F,, and F,, determined using equation (2-5) are the forces at which the slider would
contact the displacement restrainer if sliding did not yet initiate on surfaces 1 and 4. They
are not physically meaningful, but instead are needed for initial checking of the
configuration and determining the sequencing of regimes.

4.7.4 Slider Offsets in Displacement-Controlled Tests

In previous work on the double FP bearing, it was observed that the slider becomes offset
within the bearing during displacement controlled harmonic tests when friction is
different on the upper and lower surfaces (Fenz and Constantinou, 2006). This means at
zero total displacement the individual displacements on each surface are equal and
opposite rather than both zero.

The same phenomenon occurs in the triple FP bearing. The offset occurs because the
effective coefficient of friction (the normalized horizontal force at zero total
displacement) is different from the coefficients of friction on the individual sliding
surfaces (the normalized horizontal force at zero relative displacement). The magnitudes
of the individual offsets are functions of the difference between the effective friction and
the individual coefficients of friction, and therefore depend on both the configuration of
the bearing and the amplitude of the motion. Explicit expressions for the individual
offsets are not included in this report, however they can be determined by tracking the
total force-displacement loops and monitoring the relative displacements as motion
progresses. It is emphasized that slider offset is related to displacement controlled testing
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and is different from the phenomenon of permanent total displacements at the end of
earthquake excitation.

4.7.5 Effect of Concave Plate Rotations

Due to their doubly spherical construction, triple FP bearings (like double FP bearings)
are more susceptible to the concave plate rotations than single FP bearings. Assume a
triple FP bearing in the standard configuration having the bottom concave plate and top
concave plate with counter-clockwise (positive) rotations +t, and +t, respectively. Due
to this rotation the “low spot” or stable equilibrium position on the lower and upper
concave plates changes by U, =—R,sint, and U, =—Ry,sint, as described by figure
2-18. When the slide plates are in the stable equilibrium position, they are themselves
level although the concave plates are inclined. This is demonstrated in figure 4-12. Since
the slide plates are level, the rotations of the inner surfaces zero (1, =1, =0) and there is
no relative offset of the rigid slider on these surfaces (u,, =u,, =0).

Uy

ur1

FIGURE 4-12 Stable Equilibrium Position of Triple FP Bearing Having Concave
Plate Rotations of +t, and +t,

For the fully adaptive triple FP bearing described in section 4.1, starting from the new
stable equilibrium position motion starts on surfaces 2 and 3 simultaneously when the
friction force is exceeded. Sliding occurs on surfaces 2 and 3 only provided that the
friction force on the surface of next higher (surface 1) is not overcome. Accordingly, the
displacements on each surface are

U, =U, =—Ry,sinT, (4-33a)
F

u, = (W_ Hz] Reir2 (4-33b)
F

u, = (W - Hsj Retr 3 (4-33¢)

U, =u, =—Ry,sint, (4-33d)

Combining equations (4-33a) through (4-33d), the force-displacement relationship for
sliding regime I is

81



F..R., +F,.R
Retr2 + Rert 3 Retr2 + Rerr3

Equation (4-34) demonstrates that provided F <F,,, sliding occurs on the innermost
surfaces with no effect on the strength or stiffness caused by the rotation. The only effect
of the rotation during sliding regime I is that the bearing now oscillates about the inclined
stable equilibrium position at U=U_ +U,,.

Since the rotation has no effect on friction, sliding on surface 1 (the surface of next
higher friction) starts when the horizontal force is F =F,, - the same as in the level
configuration. However, due to the rotation, the sliding motion on this surface starts from
the offset stable equilibrium position at u, =u,,. Since the stiffness exhibited by this
surface remains the same, starting from this offset position will result in a vertical
translation of the decomposed hysteresis loop. After motion starts on surface 1, but prior
to motion starting on surface 4, the individual displacements on each surface are

F
u1 :(W_MljReﬁl +ur1 (4-353)
u, = (“1 - ”2) Rett 2 (4-35b)
F
u, = [W - H3j Retts (4-35c¢)
u,=u, =—Ry,sint, (4-35d)

Combining equations (4-35a) through (4-35d), the force-displacement relationship for
sliding regime 1II is

Ffl(Reffl _Reﬁ2)+ Fszeffz + Ff3Reff3

Reff 1 + Reff 3

3 W
Reﬁl + Reff 3

(u—u,—u,)+

rl

(4-36)

Comparing equations (4-13) and (4-36), it is clear that the behavior is similar in the level
and inclined configurations except that the stable equilibrium position changes from
u=0 to u=u, +u,. As a result, there is a vertical shift in the hysteresis loops (up or
down depending on the magnitude and direction of the rotation) as well.

Similarly, when the horizontal force exceeds the friction force on surface 4, sliding stops
on surface 3 and starts on surface 4 with force-displacement relationship

B w
Reff 1 + Reff 4

Ffl(Reffl - Reﬁ2)+ FioRer + FrsReps + Ff4(Reff4 _ReffS)
Reffl + Reff4

(u—u, —u,)+

(4-37)
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Again, when equations (4-19) and (4-37) are compared it is clear that the effect of the
rotation for sliding regime III will be a vertical shift due to the change in the stable
equilibrium position.

The behavior for sliding regime IV is described here assuming that the slider still makes
contact with the restrainer of surface 1 prior to surface 4. However due to the rotation, it
is possible in certain configurations that the sequencing can be reversed from what would
be expected if the concave plates were installed without rotation. For example, in the
standard fully adaptive configuration a level bearing will have the slider contact surface 1
prior to surface 4. However, for certain combinations of rotations, it is possible that the
slider may contact the displacement restrainer of surface 4 prior to surface 1 in one
direction of motion.

The order in which the displacement restrainers are contacted is determined by
comparing the relative values of F; +tW for surfaces 1 and 4 in each direction of
motion. For example, if surface 1 has a positive (counter-clockwise) rotation and surface
4 has a negative (clockwise) rotation, then the order in which the surfaces are contacted

are determined by comparing

For = —W d+F;, +tW (4-38)
Reffl
and
Fdr4:id4+Ff4—r4W (4-39)
Reff4

for motion in the positive direction. The minimum of equations (4-38) and (4-39)
determines upon which surface the displacement restrainer is first contacted. For motion
in the negative direction, the order is determined by comparing

Fii :ﬂd1 +F, —tW (4-40)
Reffl
and
w
Fy,=—d,+F ,+tW (4-41)
Reff4

The minimum of equations (4-40) and (4-41) determines upon which surface the
displacement restrainer is first contacted.

Assuming that the slider still makes first contact with the restrainer of surface 1, the total

displacement at which this occurs is determined by solving equation (4-37) for the
displacement when F = F, as determined by equation(4-38). It is found that
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sk Re
Ugry =U +d1{1+ RMJ_(M_M)(Rem+Reff4)+ur1+Ur4+71(Reff1+Reff4) (4-42)

eff 1

where U™ is given by equation (4-14). Equation (4-42) is essentially (4-21) with slight
modification as a result of the rotation. It reflects the asymmetry in the force-total
displacement loop that results from the displacement capacity of surface 1 being d, +u,,
in one direction and d, —u,, in the other.

After the slider contacts the displacement restrainer on surface 1, the force displacement
relationship becomes

F:U—U”—Ur4w+FszeffZ_(Ff4_Ff3)Reﬁ3+Ff4Reff4+ d, ReffZW
Reff 2 + Reff 4 Reffz + Reff 4 Reffz + Reff 4 Reffl
(4-43a)
7,R
F= I:Ievel + = W (4-43b)
eff 2 + Reff4

In comparison to the level configuration, this demonstrates that there is a vertical shift of
the total hysteresis loop by an amount (r 2Reie W ) / ( Rei, + Reg 4) .

For sliding regime V there will be asymmetry in the force-total displacement loop due to
the fact that the displacement capacity on surface 4 becomes d, +U,_, in one direction and
d,—u,, in the other direction. The slider will meet the displacement restrainer when
F =F,, +t,W . The displacement when this occurs is

Ugrg = Uy + {LJFMJ_[ 4 +Hl] (Reffz + Reff4)+ur4 +174(Reff2 + Reff4) (4-44)
Reff4 Reffl

where Uy, is that of the level configuration as given by equation (4-21). Comparing

equations (4-44) and (4-28), it can be seen that Uy, e = Ugra roaed +Urs T Ty (Reff2 + Ry 4),

which again results in asymmetry of the hysteresis loop. After contact is made with the

displacement restrainer of surface 4, motion continues on surfaces 2 and 3 with force-

displacement relationship given by

F:L(u—udr4)+Rid4+Ff4+r4W (4-45)

Reffz + Reﬁ4 eff 4

where U, is given by equation(4-44).

84



4.8 Behavior of the Modified Single FP Bearing

The modified single FP bearing is similar in construction to the conventional FP bearing,
but with an intermediate slide plate. It is essentially a simpler adaptation of the triple FP
bearing. Therefore, its behavior is less complex than that of the triple FP bearing, but
exhibits the same characteristics of motion.

In the standard configuration of R, > Ry, and p, > p, (with reference to figure 2-7),
the force-displacement relationship of the modified single FP is composed of three
sliding regimes: (I) initial sliding only on surface 2 with high stiffness and low friction,
(IT) sliding only on surface 1 with a decrease in stiffness and an increase in friction, and
(IIT) stiffening as the slide plate contacts the displacement restrainer of surface 1 and
sliding on surface 2 resumes. This configuration will readily activate and re-center well in
minor events, provide sufficient flexibility and damping for more severe shaking and then
stiffen substantially before the maximum displacement capacity of the bearing is
achieved.

Upon application of horizontal force F , motion will initiate on surface 2, the surface of
least friction when F =F,,. Since sliding occu