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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a na-
tional center of excellence in advanced technology applications that is dedicated to the 
reduction of earthquake losses nationwide. Headquartered at the University at Buffalo, 
State University of New York, the Center was originally established by the National Sci-
ence Foundation in 1986, as the National Center for Earthquake Engineering Research 
(NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions 
throughout the United States, the Center’s mission is to reduce earthquake losses 
through research and the application of advanced technologies that improve engineer-
ing, pre-earthquake planning and post-earthquake recovery strategies. Toward this 
end, the Center coordinates a nationwide program of multidisciplinary team research, 
education and outreach activities. 

MCEER’s research is conducted under the sponsorship of two major federal agencies, the 
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), 
and the State of New York. Signifi cant support is also derived from the Federal Emer-
gency Management Agency (FEMA), other state governments, academic institutions, 
foreign governments and private industry.

The Center’s Highway Project develops improved seismic design, evaluation, and 
retrofi t methodologies and strategies for new and existing bridges and other highway 
structures, and for assessing the seismic performance of highway systems.  The FHWA 
has sponsored three major contracts with MCEER under the Highway Project, two of 
which were initiated in 1992 and the third in 1998.  

Of the two 1992 studies, one performed a series of tasks intended to improve seismic 
design practices for new highway bridges, tunnels, and retaining structures (MCEER 
Project 112).  The other study focused on methodologies and approaches for assessing 
and improving the seismic performance of existing “typical” highway bridges and other 
highway system components including tunnels, retaining structures, slopes, culverts, 
and pavements (MCEER Project 106).  These studies were conducted to:

• assess the seismic vulnerability of highway systems, structures, and components;
• develop concepts for retrofi tting vulnerable highway structures and components;
• develop improved design and analysis methodologies for bridges, tunnels, and retain-

ing structures, which include consideration of soil-structure interaction mechanisms 
and their infl uence on structural response; and

• develop, update, and recommend improved seismic design and performance criteria 
for new highway systems and structures.

iii



The 1998 study, “Seismic Vulnerability of the Highway System” (FHWA Contract 
DTFH61-98-C-00094; known as MCEER Project 094), was initiated with the objective 
of performing studies to improve the seismic performance of bridge types not covered 
under Projects 106 or 112, and to provide extensions to system performance assessments 
for highway systems.  Specifi c subjects covered under Project 094 include:

• development of formal loss estimation technologies and methodologies for highway 
systems;

• analysis, design, detailing, and retrofi tting technologies for special bridges, in-
cluding those with fl exible superstructures (e.g., trusses), those supported by steel 
tower substructures, and cable-supported bridges (e.g., suspension and cable-stayed 
bridges);

• seismic response modifi cation device technologies (e.g., hysteretic dampers, isola-
tion bearings); and

• soil behavior, foundation behavior, and ground motion studies for large bridges.

In addition, Project 094 includes a series of special studies, addressing topics that range 
from non-destructive assessment of retrofi tted bridge components to supporting studies 
intended to assist in educating the bridge engineering profession on the implementation 
of new seismic design and retrofi tting strategies.

This report presents a new roller seismic isolation bearing for use in highway bridges. The bearing 
uses rolling motions of cylindrical rollers between sloping surfaces to achieve seismic isolation. 
The bearing is characterized by a constant spectral acceleration under horizontal ground motions 
and by a self-centering capability, which are two desirable properties for seismic applications. 
The former ensures that resonance between the bearing and horizontal earthquakes will not occur 
while the latter guarantees that the bridge superstructure can self-center to its original position 
after an earthquake.  Principles of the bearing under vertical loading and earthquake excitation 
are analytically and experimentally investigated. Two prototype roller isolation bearings have 
been developed, one with and the other without a built-in friction device for supplemental energy 
dissipation. A design example of the bearing for use in a bridge in a region of high seismicity 
is presented. 
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ABSTRACT 
 

This report presents a new roller seismic isolation bearing for use in highway bridges. This new 
bearing uses rolling motions of cylindrical rollers between sloping surfaces to achieve seismic 
isolation. The bearing is characterized by a constant spectral acceleration under horizontal 
ground motions and by a self-centering capability, which are two desirable properties for seismic 
applications. The former ensures that resonance between the bearing and horizontal earthquakes 
will not occur while the latter guarantees the bridge superstructure can self-center to its original 
position after an earthquake.   
 
Analytical models for the bearings under vertical loading and horizontal and vertical ground 
motions are derived and validated with results from finite element analyses and experimental 
studies. To decrease the displacement responses of the bearing and to maintain a constant 
spectral acceleration response while keeping the cost of the bearing low, sliding friction devices 
are integrated into a roller bearing. The seismic behavior of this new seismic isolation bearing 
with different design parameters under various ground motions is analytically studied. The 
parameters include the sloping angle, the sliding friction force and the PGA levels.  
 
Two prototype roller seismic isolation bearings have been developed and their design details are 
presented in this report. The first prototype bearing does not have any built-in friction devices 
while the second prototype bearing has a unique built-in feature to achieve supplemental energy 
dissipation through sliding friction.  
 
The last part of the report presents a design example of the second prototype roller seismic 
isolation bearing to be used in a bridge in a region of high seismicity.       
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CHAPTER 1 
INTRODUCTION 

 
 
1.1 Motivation 
 
A major challenge in seismic resistant design of highway bridges is to minimize the damage to 
bridge columns to ensure structural integrity and low repairing/replacement cost. Depending on 
the type and configuration of bridges, the approach in general is to increase the load resisting 
capacity of the column or to decrease the demand or both. Our approach to decrease the seismic 
demand of the bridge column is to utilize isolation bearings, a technology developed and applied 
in recent years.   
 
Seismic isolation bearings reduce the seismic forces that act on a bridge by lengthening its period 
through the flexibility of the bearings. Most of the bridge displacements induced by earthquakes 
are then concentrated over the height of the bearings, which are designed to accommodate these 
displacements with little damage. The use of seismic isolation bearings allows for elastic yet 
economical design of bridge substructures, which means that the bridge can remain fully 
functional after an earthquake.              
 
Currently in the United States, there are two common types of seismic isolation bearings for 
bridge applications, elastomeric bearings and sliding bearings. Typical elastomeric bearings are 
low damping rubber bearings (see Figure 1-1), high damping rubber bearings and lead-rubber 
bearings (see Figure 1-2). Seismic isolation is achieved by the low shear stiffness of the 
elastomers. By using elastomers with special compound, high damping rubber bearings can 
achieve much higher energy dissipation than low damping rubber bearings. In lead-rubber 
bearings, energy dissipation is realized by yielding of the lead core. Typical sliding bearings are 
concave sliding bearings (e.g. the Friction Pendulum bearing, EPS 2007, see Figure 1-3) and flat 
sliding bearings (e.g. the EradiQuake bearing, R. J. Watson, Inc 2007, see Figure 1-4). In sliding 
bearings, seismic isolation is achieved by sliding actions. Energy dissipation is provided by 
sliding friction between contact surfaces. Constantinou et al. (2007) presents detailed 
information on these bearings. Figure 1-5 shows a bridge that was seismically isolated with 
concave sliding bearings (the Friction Pendulum bearing). 

 
The seismic isolation bearings described above typically have a certain amount of post-elastic 
stiffness to ensure low permanent displacements after a design earthquake occurs. In this report, 
a new type of bearing, called a roller seismic isolation bearing, is proposed for use in highway 
bridges. This new bearing utilizes a rolling mechanism to achieve seismic isolation.  Such a 
bearing can achieve zero post-elastic stiffness under a horizontal earthquake. This means that the 
spectral acceleration response of the bearing is independent of the magnitude and frequency 
content of the horizontal earthquake. Meanwhile, the bearing is able to self-center to its initial 
position after the earthquake.    
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Figure 1-1 Electrometric bearing  
 

 
 

Figure 1-2 Lead-rubber bearing  
 

 
 

Figure 1-3 Friction Pendulum bearing  
 

 
 

Figure 1-4 EradiQuake bearing  
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Figure 1-5 The American River Bridge, City of Folsom, California  
(courtesy of Earthquake Protection Systems) 

 
 
1.2 Brief History of Rolling Type Seismic Isolation 
 
Use of a rolling mechanism for seismic isolation can be traced back to the late 19th century. 
Touaillon (1870) was granted a US patent on a double concave rolling ball bearing for use in 
buildings. This bearing consisted of a ball in two facing concave surfaces as shown in Figure 1-6. 
Similar to existing elastomeric bearings and sliding bearings, the bearing has a certain amount of 
post-elastic stiffness depending on the radius of the concave surfaces.  
 
Lin and Hone (1993) used rolling cylindrical rods between two flat surfaces under a building for 
seismic isolation as shown in Figure 1-7. The maximum roof acceleration of the building was 
found to remain constant regardless of the frequency content of the base excitation when the 
rolling friction was smaller than 0.01. Lin’s study demonstrated that zero post-elastic stiffness 
can be achieved by using rolling between flat (straight) surfaces. However, no restoring force 
was provided in the proposed bearing, which is unacceptable according to current building codes 
or bridge specifications for seismic isolation design (CBC 2001 and AASHTO 2000).  
 
Kemeny (1997) invented a ball-in-cone seismic isolation bearing. In this type of rolling bearing, 
seismic isolation is achieved by a ball rolling between two facing conical surfaces as shown in 
Figure 1-8. Such a bearing achieves zero post-elastic stiffness if the sloping angle of the conical 
surfaces is small. Furthermore, due to the sloping surface, the bearing is self-centered by gravity 
as an earthquakes ceases. Such a rolling bearing has been successfully used to protect critical 
equipment from earthquake-induced damage (WorkSafeTechnologies 2007). However, due to 
the point contact nature, the load carrying capacity of such a bearing is much smaller than typical 
bridge bearings, which limits its use in highway bridges. 
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Figure 1-6 Double concave rolling ball bearing 
 
 

 
 

Figure 1-7 Rolling cylindrical rods between flat surfaces 
 

 
 

Figure 1-8 Ball-in-cone seismic isolation bearing 
 
 
1.3 Proposed Roller Seismic Isolation Bearing 

 
The proposed roller seismic isolation bearing utilizes a cylindrical roller rolling between two 
bearing plates with one contact surface machined to a V-shaped sloping surface and the other 
machined to a flat surface to achieve zero post-elastic stiffness under horizontal ground motions. 
The sloping surface allows gravity to act as a restoring force to self-center the bridge 
superstructure after the earthquake. Figure 1-9 shows the schematic view of the bearing. The 
bearing has a significantly larger load carrying capacity than the ball-in-cone rolling bearing due 
to a much larger contact area provided by using a cylinder instead of a ball.   
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The concept and principles of the roller seismic isolation bearing were first presented in 2000 
(Lee et al. 2000) and subsequently at the 19th US-Japan Bridge Engineering Workshop (Lee and 
Liang 2003). Details are given in Lee et al. (2005).   
 
The principles of the roller bearings are discussed in Chapter 2. Analytical models for the 
bearings under vertical loading and base excitation are derived and compared to results of finite 
element studies and experimental studies. Chapter 3 presents a new roller seismic isolation 
bearing for highway bridges that combines the roller bearing and friction energy dissipation 
devices. The seismic behavior of the bearing with different design parameters under various 
ground excitation is studied. Suggestions for selecting the design parameters are made. The last 
part of the chapter presents two equivalent linear methods, including a code-compliant method 
and a proposed method, for estimating the maximum displacement demand of the bearing. Both 
methods are compared to results from nonlinear response history analyses. Chapter 4 presents 
two prototype roller seismic isolation bearings. The second prototype bearing has built-in friction 
devices for supplemental energy dissipation. Properties and design details of the bearings are 
discussed. The experimental evaluation of the second prototype bearing is given at the end of the 
chapter. Chapter 5 presents the design procedures of the second prototype roller bearings to be 
used for bridges in areas of high seismicity. Finally, the summary and conclusions of this report 
are given in Chapter 6.     
 
    

 
 

Figure 1-9 Roller seismic isolation bearing 



 

 6 



 

 7

CHAPTER 2  
PRINCIPLES OF ROLLER SEISMIC ISOLATION BEARINGS 

 
 
The principles of the proposed roller bearing under base excitation and vertical loading are 
presented in this chapter. First, the key elements of the roller bearing are introduced. Then, 
forces acting on the components of the bearing under base excitation are derived based on 
dynamic equilibrium. Next, the governing equations of motion of the bearing are derived. 
Conditions for rolling without sliding and uplift of the bearing are analytically investigated. Then 
the vertical load-carrying capacity of the bearing is discussed. Lastly, an experimental study 
using shake tables is briefly presented and used to validate the analytical models previously 
derived.  
 
 
2.1 Key Components of Roller Bearings 
 
The key elements of the proposed roller seismic isolation bearing are cylindrical rollers and 
bearing plates. Each roller bearing consists of two rollers for seismic isolation along two 
orthogonal directions. Each roller is sandwiched between two bearing plates. At least one of the 
bearing plates has a V-shaped sloping surface in contact with the roller. The contact surface of 
the other plate can be either V-shaped sloping or flat.  
 
Figure 2-1 shows two variations of the roller bearings. As shown in the figure, a type A bearing 
has a V-shaped sloping surface at the top plate or at the bottom plate whereas a type B bearing 
has V-shaped sloping surfaces at both the plates. It can be proved that a type B bearing exhibits 
similar isolation performance to a type A bearing if the sum of the sloping angles of the two V-
shaped sloping surfaces is equal to the sloping angle of the type A bearing, that is, 
  
 1 2θ θ θ+ =  (2-1) 
 
where 1θ , 2θ  and θ  are the sloping angles and are illustrated in Figure 2-1.   
 
However, the cost of a type B bearing is higher than that of a type A bearing due to twice the 
number of the sloping surfaces and hence the cost associated with machining these sloping 
surfaces. Thus, this report focuses on type A bearings.  
 
Figure 2-2 shows three-dimensional views of the keys components of a bi-directional type A 
roller bearing. The intermediate plate has V-shaped sloping surfaces both at the top and at the 
bottom of the plate. The upper plate and the lower plate have flat surfaces in contact with the 
roller. The upper plate is secured to the bridge superstructure and the lower plate mounted on the 
pier cap or abutment. To achieve stability, at least four bearings are needed to support a bridge 
superstructure unit.   
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Figure 2-1 Variations of roller bearings  
 

 

 
 

Figure 2-2 Key components of a roller bearing 
 
 
2.2 Forces due to Base Excitation  
 
2.2.1 Static Friction and Rolling Friction Forces  
 
When a cylindrical roller rolls with an angular acceleration α  due to an imposed horizontal base 
acceleration bx , a static friction force f  and a rolling friction moment rM  arise between the 
roller and the base shown in Figure 2-3. The force f  acts along the opposite direction of the 
rolling direction so that the roller maintains a rolling motion. The value of f  increases as the 
angular acceleration of the roller increases. Once it exceeds the maximum static friction force 
that can be provided by the contact interface, the roller starts sliding. On the other hand, the 
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rolling friction moment rM  resists the rolling motion. It arises mainly due to the deformation of 
the contact surfaces.  rM  is defined as 
 
 r rM NRμ=  (2-2) 
 
where N  is the normal force between the contact surfaces; δ  is the horizontal distance between 
force N  and the centroid of the cylinder, O ; R  is the radius of the roller; and rμ  is the 
coefficient of rolling friction and is defined as 
 

 r R
δμ =  (2-3) 

 
where the values of δ  vary for different materials. For steel on steel, δ  is 0.002 in (0.05 mm), 
and for hard polished steel on hard polished steel, δ  ranges from 0.0002 in (0.005 mm) to 
0.0004 in (0.01 mm) (Avallone and Baumeister 1996).      
 
 

 
 

Figure 2-3 Contact forces between a roller and a plate in pure rolling motion 
 
 
2.2.2 Forces on the Components of a Roller Bearing 
 
In this section, forces acting on the components of a roller bearing under base excitation along 
the principal directions (see Figure 2-4) are derived. The principal directions are the rolling 
directions of the rollers. Only one roller is mobilized when rolling motion occurs along any of 
the two principal directions. As a result, only one roller and two bearing plates that sandwich the 
roller are considered in the derivation (see Figure 2-5). The upper and lower bearing plates are 
assumed to be directly fixed to a superstructure and a rigid base, respectively. The derivation is 
made first based on a condition when the roller is on the left side of the center of the lower 
bearing plate as shown in Figure 2-5a. Next, it is made for the condition when the roller is on the 
right side as shown in Figure 2-5b. Finally, a complete solution is derived to include both 
conditions. Note that the sloping angle is exaggerated in the figure for ease of presentation. In 
this research, the upper roller and the lower roller are identical. Thus, the bearing has identical 
behavior along the two principal directions. 
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Figure 2-4 Principal directions of the bearing.  
 

 
 

Figure 2-5 Positions of the roller relative to the center of the lower plate.  
 
 
Figure 2-6 shows the free body diagram of the bearing subjected to base excitation when the 
roller is on the left side of the lower bearing plate. The bearing is assumed to be subjected to a 
horizontal acceleration excitation 3x  and a vertical acceleration excitation 3z . The upper bearing 
plate is fixed to a bridge superstructure.  
 
For the superstructure, the dynamic equilibrium along the horizontal direction gives  
 
 ( )1 1 3 1 0m x x f+ + =   (2-4) 
 
where 1m  represents the tributary mass from the superstructure (including the upper bearing 
plate); 1x  is the horizontal acceleration response of the superstructure relative to the origin O ; 1f  
is the static friction force between the roller and the upper bearing plate; and ( )2sgn x  is 1 if 2x  
is positive and −1 if 2x  is negative. For the vertical direction, we have   
 
 1 1 3 1 1( ) 0m z z N m g+ − + =  (2-5) 
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where 1z  is the vertical acceleration response of the superstructure relative to O ; 1N  is the 
normal force between the roller and the upper plate; and g  is the acceleration of gravity. The 
equation of dynamic equilibrium for the roller along the horizontal direction is  
 
 ( )2 2 3 1 2 2cos sin 0m x x f f Nθ θ+ − + − =  (2-6) 
 
where 2m  and 2x  are the mass and horizontal acceleration response of the roller relative to O , 
respectively; 2f  and 2N  are the static friction force and normal force between the roller and the 
lower bearing plate, respectively; and θ  is the sloping angle. For the vertical direction, we have   
 
 ( )2 2 3 1 2 2 2sin cos 0m z z N f N m gθ θ− − + + − =  (2-7) 

 
where 2z  is the vertical acceleration response of the roller relative to O . Note that the value of 

2z  is set as positive downward. The rotational dynamic equilibrium of the roller gives  
 
 ( ) ( )1 1 2 2 2 2sgn sgn 0r rI f N x R f N x Rα μ μ− − − − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (2-8) 
 
where α , 2I  and R  are the angular acceleration, moment of inertia and radius of the roller, 
respectively. If the roller is in a pure rolling motion, compatibility requirements lead to 
 
 2 cosx R θ α= ⋅  (2-9) 

 
 2 sinz R θ α= ⋅  (2-10) 

 
 1 2x x Rα= +  (2-11) 

 
 1 2z z= −  (2-12) 
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Figure 2-6 Free body diagram of a roller bearing under base excitation: roller on the left 
 
 
Rearrange equations (2-4) to (2-12) in a matrix form gives  
 

( ) ( )

11

11

22

22

2 2

1

2

1

2

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 cos 0 sin
0 0 0 0 0 sin 1 cos
0 0 0 0 sgn sgn
0 0 1 0 cos 0 0 0 0
0 0 0 1 sin 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0

r r

xm
zm
xm
zm

I R R x R x R
fR
fR
NR
N

θ θ
θ θ

αμ μ
θ
θ

⎛ ⎞⎛ ⎞
⎜⎜ ⎟− ⎜⎜ ⎟
⎜⎜ ⎟− −
⎜⎜ ⎟− ⎜⎜ ⎟
⎜⎜ ⎟− −
⎜⎜ ⎟

− ⎜⎜ ⎟
⎜⎜ ⎟−
⎜⎜ ⎟

− − ⎜⎜ ⎟
⎜ ⎟⎜
⎝ ⎠⎝ ⎠

( )

( )

1 3

1 3

2 3

1 3

0
0
0
0
0

m x
m g z

m x
m g z

−⎛ ⎞
⎟ ⎜ ⎟− +⎟ ⎜ ⎟
⎟ ⎜ ⎟−
⎟ ⎜ ⎟+⎟ ⎜ ⎟
⎟ ⎜ ⎟=
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟

⎜ ⎟⎟
⎝ ⎠

 

 
 

By solving the system of linear equations, we have, for example, the acceleration response of the 
superstructure  

   

 ( ) ( ) ( ) ( ){

[ ] ( ) }

2 2

1 1 1 2 3 3 22 2
1 2 1

1 2 3 3 2

2 cos
2 cos sgn

2 2 cos

sin sgn

r

r

R
x m m m x z g x

I m m R m R

m m z g x x

θ

θ μ
θ

θ μ

= − + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦+ + +

+ + + −⎡ ⎤⎣ ⎦
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Since the mass of the superstructure 1m  is much larger than the mass of the roller 2m , dividing 
both the denominator and numerator by 1m  and ignoring 2 1/m m  leads to  
 

 
[ ] ( ) ( ) ( ){ }2

3 3 2 3 3 2

1

cos 1 cos sgn sin sgn
2

1 cos

r rx z g x z g x x
x

θ θ μ θ μ

θ

− + + + − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
=

+
  

 
further simplification leads to 
 

 ( ) ( ) ( )2
1 3 3 2 3 3 2

1cos sgn sin sgn
2 2r rx x z g x z g x xθ μ θ μ= − + + + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   

 
In a similar manner, the solutions for all the variables are  
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
3 3 2 3 3 2

2
3 3 2 3 3 2

3 3 21

1

2

2

1

2

1

2

1cos sgn sin sgn
2 2

1 sin sgn sin sgn
2 2

1 cos sgn
2

r r

r r

r

x z g x z g x x

x z g x z g x x

x z g xx
z
x
z

f
f

N
N

θ μ θ μ

θθ μ μ

θ μ

α

− + + + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ + − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

− + +⎡⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ ≈
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

( )

( ) ( ) ( )

( ) ( ) ( )

( )

3 3 2

3 3 2 3 3 2

3 3 2 3 3 2

1 2

tan sgn
2

1 sin sgn tan sgn
2 2

1 sgn tan sgn
2 2

sin cos sgn sin
2 2 2

r

r r

r r

r

z g x x

x z g x z g x x

x z g x z g x x
R

m x

θ μ

θθ μ μ

θμ μ

θ θ θμ

⎧ ⎫+ + −⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
⎧ ⎫− + + + + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

⎧ ⎫− + + + + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
⎡ ⎤− +⎢ ⎥⎣ ⎦

( )

( ) ( )

( ) ( )

( ) ( )

3 3

1 2 3 3

1 2 3 3

1 2 3 3

cos
2

sin cos sgn sin cos
2 2 2 2

cos sin sgn sin cos
2 2 2 2

cos sin sgn sin cos
2 2 2 2

r

r

r

x z g

m x x z g

m x x z g

m x x z g

θ

θ θ θ θμ

θ θ θ θμ

θ θ θ θμ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎡ ⎤⎜ + +⎢ ⎥⎜ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

 

 
 

When the roller is on the right side of the center of the lower bearing plate, the free body diagram 
is shown in Figure 2-7. 
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Figure 2-7 Free body diagram of a roller bearing under base excitation: roller on the right 

 
 
The matrix form for the equations of dynamic equilibrium is 
 

( ) ( )

11

11

22

22

2 2

1

2

1

2

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 cos 0 sin
0 0 0 0 0 sin 1 cos
0 0 0 0 sgn sgn
0 0 1 0 cos 0 0 0 0
0 0 0 1 sin 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0

r r

xm
zm
xm
zm

I R R x R x R
fR
fR
NR
N

θ θ
θ θ

αμ μ
θ
θ

⎛⎛ ⎞
⎜⎜ ⎟− ⎜⎜ ⎟
⎜⎜ ⎟−
⎜⎜ ⎟− − − ⎜⎜ ⎟
⎜⎜ ⎟− −
⎜⎜ ⎟

− ⎜⎜ ⎟
⎜⎜ ⎟−
⎜⎜ ⎟

− − ⎜⎜ ⎟
⎜ ⎟⎜−⎝ ⎠⎝

( )

( )

1 3

1 3

2 3

1 3

0
0
0
0
0

m x
m g z

m x
m g z

−⎞ ⎛ ⎞
⎟ ⎜ ⎟− +⎟ ⎜ ⎟
⎟ ⎜ ⎟−
⎟ ⎜ ⎟+⎟ ⎜ ⎟
⎟ ⎜ ⎟=
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟

⎜ ⎟⎟
⎝ ⎠⎠

 
 
The solutions are  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
3 3 2 3 3 2

2
3 3 2 3 3 2

3 3 21

1

2

2

1

2

1

2

1cos sgn sin sgn
2 2

1 sin sgn sin sgn
2 2

1 cos sgn
2

r r

r r

r

x z g x z g x x

x z g x z g x x

x z g xx
z
x
z

f
f
N
N

θ μ θ μ

θθ μ μ

θ μ

α

− + + − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

− + + − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

− + +⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ ≈
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

( )

( ) ( ) ( )

( ) ( ) ( )

( )

3 3 2

3 3 2 3 3 2

3 3 2 3 3 2

1 2

tan sgn
2

1 sin sgn tan sgn
2 2

1 sgn tan sgn
2 2

sin cos sgn sin
2 2 2

r

r r

r r

r

z g x x

x z g x z g x x

x z g x z g x x
R

m x

θ μ

θθ μ μ

θμ μ

θ θ θμ

⎧ ⎫− + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
⎧ ⎫− + + − + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

⎧ ⎫− + + − + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
⎡ ⎤+ −⎢ ⎥⎣ ⎦

( )

( ) ( )

( ) ( )

( ) ( )

3 3

1 2 3 3

1 2 3 3

1 2 3 3

cos
2

sin cos sgn sin cos
2 2 2 2

cos sin sgn sin cos
2 2 2 2

cos sin sgn sin cos
2 2 2 2

r

r

r

x z g

m x x z g

m x x z g

m x x z g

θ

θ θ θ θμ

θ θ θ θμ

θ θ θ θμ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎡ ⎤+ +⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤− + − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠

 

 
 

Complete solutions that includes both conditions when the roller is on the left and right sides of 
the lower bearing plate are  
 

 ( ) ( ) ( ) ( )2
1 3 3 2 3 3 2 2

1cos sgn sin sgn sgn
2 2r rx x z g x z g x x xθ μ θ μ= − + + − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (2-13) 

 

 ( ) ( ) ( ) ( )2
1 3 3 2 2 3 3 2

1 sin sgn sgn sin sgn
2 2r rz x z g x x z g x xθθ μ μ= − + + − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (2-14) 

 

 ( ) ( ) ( ) ( )2 3 3 2 3 3 2 2
1 cos sgn tan sgn sgn
2 2r rx x z g x z g x x xθθ μ μ⎧ ⎫= − + + − + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

 (2-15) 

 

 ( ) ( ) ( ) ( )2 3 3 2 3 3 2 2
1 sin sgn tan sgn sgn
2 2r rz x z g x z g x x xθθ μ μ⎧ ⎫= − + + − + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

 (2-16) 

 

 ( ) ( ) ( ) ( )3 3 2 3 3 2 2
1 sgn tan sgn sgn

2 2r rx z g x z g x x x
R

θα μ μ⎧ ⎫= − + + − + −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
 (2-17) 

 

 ( ) ( ) ( ) ( )1 1 2 2 3 2 3sin sgn cos sgn sin sgn cos
2 2 2 2rf m x x x x z gθ θ θ θμ⎡ ⎤ ⎡ ⎤= + − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2-18) 
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 ( ) ( ) ( ) ( )2 1 2 2 3 2 3sin sgn cos sgn sin sgn cos
2 2 2 2rf m x x x x z gθ θ θ θμ⎡ ⎤ ⎡ ⎤= − + − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2-19) 

 

 ( ) ( ) ( ) ( )1 1 2 2 3 2 3cos sin sgn sgn sin sgn cos
2 2 2 2rN m x x x x z gθ θ θ θμ⎡ ⎤ ⎡ ⎤= − − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2-20) 

 

 ( ) ( ) ( ) ( )2 1 2 2 3 2 3cos sin sgn sgn sin sgn cos
2 2 2 2rN m x x x x z gθ θ θ θμ⎡ ⎤ ⎡ ⎤= + − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2-21) 

 
where ( )2sgn x  is 1 if 2x  is positive (on the right side of the center of the lower bearing plate) 
and −1 if 2x  is negative (on the left side of the center of the lower bearing plate).  
 
 
2.3 Governing Equations of Motion 
 
Equation (2-13) represents the governing equation of motion for the horizontal movement the 
superstructure along the principal directions. In this report, steel rollers and steel bearing plates 
are used. The coefficient of rolling friction rμ  for a steel roller rolling on a steel plate is 
0.002/ R  (in) (equation (2-3)). The value of rμ  can be further reduced for hard polished steel 
surfaces. The radius of the roller R  in our applications is typically larger than 1 in, which means 

rμ  is smaller than 0.002. In addition, a small sloping angle θ  is used. As a result, 2cos / 2 1θ ≈  
and sin( / 2) 0rμ θ⋅ ≈ . Simplifying and re-arranging equation (2-13) leads to 
 

 ( ) ( ) ( ) ( )1 1 1 3 2 1 3 2 1 3
1 sin sgn sgn
2 rm x m z g x m z g x m xθ μ+ + + + = −  (2-22) 

 
For a pure rolling motion, the relative displacement of the superstructure 1x  is twice that of the 
roller 2x , that is,  
 
 2 12x x=  (2-23) 
 
This means the displacement capacity of a bridge superstructure seating on a roller bearing is 
twice the available travel that can be provided by the bearing plate.        
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Figure 2-8 Relationship between displacements of the roller and superstructure 
 
 
Thus, equation (2-22) can also be expressed as 
 

 ( ) ( ) ( ) ( )1 1 1 3 1 1 3 1 1 3
1 sin sgn sgn
2 rm x m z g x m z g x m xθ μ+ + + + = −  (2-24) 

 
The second term of equations (2-24) represents the restoring forces Sf  of the bearing. The third 
term represents the rolling friction force Drf . Thus, equation (2-24) can also be expressed as  
 
 ( ) ( )1 1 1 1 1 3sgn sgnS Drm x f x f x m x+ + = −  (2-25) 
 
where 

 ( )1 3
1 sin
2Sf m z g θ= +  (2-26) 

 
 ( )1 3Dr rf m z gμ= +  (2-27) 
 
If the vertical base acceleration 3z  is not considered, equations (2-26) and (2-27) become  
 

 1
1 sin
2Sf m g θ=  (2-28) 

 
 1Dr rf m gμ=  (2-29) 
 
The base shear of the bearing is  
 
 S DrV f f= +  (2-30) 
 
Figure 2-9 shows the relationship between the base shear V  and the relative displacement of the 
superstructure 1x  without the consideration of vertical base excitation. A constant “post-elastic” 
force can be observed.  
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Figure 2-9 Base shear versus relative displacements of the superstructure 
 
 
If the base excitation acts along directions 45 degrees away from the principal directions (see 
Figure 2-10), both the upper roller and the lower roller will be mobilized. As a result, the bearing 
will have the maximum magnitude of the restoring force and the rolling friction force. Under 
such a condition, the restoring force and the rolling friction force are 
  

 ( )1 3
2 sin

2Sf m z g θ= +  (2-31) 

 
 ( )1 32Dr rf m z gμ= +  (2-32) 
 
If the vertical base acceleration 3z  is not considered, equations (2-31) and (2-32) become  
 

 1
2 sin

2Sf m g θ=  (2-33) 

 
 12Dr rf m gμ=  (2-34) 
 
It can be seen from equations (2-26) to (2-34) that the values of V  are independent of the 
magnitude and frequency content of the horizontal base acceleration 3x , which eliminates the 
possibility of resonance between the bearing and base excitation. Note that the sloping angle θ  
needs to be small as previously stated to achieve this. On the other hand, a certain sloping angle 
is needed to provide a necessary restoring force to overcome the rolling friction force and hence 
to re-center the bearing. When the bearing is used in combination with sliding friction devices, 
the restoring force needs to be larger than the sliding friction force of the devices as well as the 
rolling friction force. This is discussed in detail in the next chapter. Note that equations (2-26) to 
(2-34) also show that vertical ground motions could have an effect on the responses of the 
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bearing. This is also investigated in the next chapter. Furthermore, it is demonstrated in the 
following section that there is an upper limit for the sloping angle θ  to prevent sliding of the 
roller.  
 
 

 
 

Figure 2-10 Top view of the bearing under base excitation along a direction 45 degrees 
away from the principal direction  

 
 
2.4 Conditions for Rolling without Sliding 

 
As mentioned in Section 2.2.1, once the static friction force between the roller and the bearing 
plate f  developed by an angular acceleration of the roller exceeds the maximum static friction 
force stf  that can be provided by the contact interface, the roller starts sliding. Once the roller 
slides, the principles of a roller bearing as presented in this chapter no longer hold true. 
Furthermore, the bearing may exhibit significant permanent displacements after earthquakes. 
Thus, sliding of the roller needs to be prevented.     
 
The maximum static friction force stf  is defined by  
 
 st sf Nμ=  (2-35) 
 
where sμ  is the coefficient of static friction and N  is the normal force between the surfaces in 
contact. To ensure rolling without sliding, the following equation must be satisfied. 
 
 

maxst sf N fμ= ≥  (2-36) 
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Substituting 1N  and 1f  from equations (2-20) and (2-18) into equation (2-36) for N  and f , 
respectively, leads to 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 2 3 2 3

1 2 2 3 2 3

sin sgn cos sgn sin sgn cos
2 2 2 2

cos sin sgn sgn sin sgn cos
2 2 2 2

r

s

r

m x x x x z g

m x x x x z g

θ θ θ θμ
μ

θ θ θ θμ

⎡ ⎤ ⎡ ⎤+ − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦≥
⎡ ⎤ ⎡ ⎤− − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2-37) 

 
As previously stated, the term sin / 2rμ θ  is small and hence can be ignored. Further 
simplification leads to    

 tan
2s r
θμ μ≥ +  (2-38) 

 
In a similar manner, substituting 2N  and 2f  from equations (2-21) and (2-19) into equation 
(2-36) for N  and f , respectively, also leads to equation (2-38). In other words, the sloping 
angle θ  has to satisfy  
 
 ( )12 tan s rθ μ μ−≤ −  (2-39) 
 
This equation shows the upper limit of the sloping angle θ  for rolling without sliding increases 
as the value of the coefficient of static friction sμ  increases and decreases as the value of the 
coefficient of rolling friction increases. The values of sμ  for steel on steel range from 0.74 for 
dry condition to approximately 0.1 for greasy condition (Avallone and Baumeister 1996). For a 
conservative result, the value of sμ  is taken as 0.1. The value of rμ  can be taken as 0.002 as 
previously stated. The condition for rolling without sliding is   
 
 11θ ≤  (2-40) 
 
 
2.5 Uplift of Superstructure 
 
Another premise of the derivation previously presented is that the normal forces 1N  and 2N  
have to be positive as shown by equations (2-41) and (2-42), respectively.  
 

 ( ) ( ) ( ) ( )1 1 2 2 3 2 3cos sin sgn sgn sin sgn cos 0
2 2 2 2rN m x x x x z gθ θ θ θμ⎡ ⎤ ⎡ ⎤= − − + + >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2-41) 

 

 ( ) ( ) ( ) ( )2 1 2 2 3 2 3cos sin sgn sgn sin sgn cos 0
2 2 2 2rN m x x x x z gθ θ θ θμ⎡ ⎤ ⎡ ⎤= + − + + >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2-42) 

 
In other words, the superstructure has to remain in contact with the roller. If uplift of the 
superstructure takes places, the behavior of the bearing is complicated and unpredictable and 
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large permanent displacements of the bearing may occur after earthquakes. In the two equations 
shown above, when θ  is small, 3sin / 2 xθ ⋅  becomes negligible compared to ( )3cos / 2 z gθ + . 

Moreover, 2cos / 2 1θ ≈  and sin / 2 0rμ θ ≈ . Thus, equations (2-41) and (2-42) can be simplified 
and rearranged to equation (2-43), which shows that if the magnitude of downward vertical base 
acceleration 3z −  is smaller than g , uplift of the superstructure will not occur.  
 
 3z g− <  (2-43) 

 
One can increase the level of force needed to uplift the superstructure by introducing sliding 
friction forces to the bearing. Under such a condition, the allowable downward vertical base 
acceleration is increased as shown in equation (2-44).  
 
 3 1/Dsz g f m− < +∑  (2-44) 
 
where Dsf∑  is the total sliding friction force of the friction devices. Section 4.2 presents design 
details to integrate friction devices into the bearing.    
 
 
2.6 Vertical Load Carrying Capacity   
 
2.6.1 Derivation 
 
The vertical load carrying capacity of a roller bearing can be determined using Hertz theory 
(Young and Budynas 2002). Although Hertz theory is based on the static condition of two 
contact bodies, it can be applied to rolling conditions if rolling without sliding holds true (Young 
and Budynas 2002). For a solid, elastic cylindrical roller of radius R  rolling on a flat bearing 
plate as shown in Figure 2-11, the maximum contact stress (max)cσ  is given by 
 

 (max) 0.564c
E

p
RC

σ =  (2-45) 

 

 
2 2
1 2

1 2

1 1
EC

E E
ν ν− −

= +  (2-46) 

 
where p  is the vertical load per unit length of the roller; and 1E  and 2E , and 1v  and 2v  are the 
moduli of elasticity and Poisson’s ratios, respectively, of the materials used in the two 
components in contact. The width of the contact area between the roller and plate, b , can be 
calculated by 
 
 2.263 Eb pRC=  (2-47) 
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Figure 2-11 A solid cylindrical roller in contact with a flat surface under a load per unit 
length p  

 
 
If both the roller and bearing plate are made of steel, then 1 2 sE E E= =  and 1 2 0.3v v= = . 
Equation (2-45) can then be specialized to  

 (max) 0.418 s
c

pE
R

σ =  (2-48) 

 
AASHTO (2004) Section 14.7.1.4 limits the maximum contact stress (max)cσ  in the contact 
regions at the service limit state to be 1.65 yσ .   
    
 (max) 1.65c yσ σ≤  (2-49) 
 
Substituting equation (2-49) into equation (2-48), the vertical load carried by the roller should be 
limited to  
 

 28
s

y

PEDL
σ

≥  (2-50) 

 
where D  and L  are the diameter and the length of the roller; and P  is the total factored vertical 
load applied to the roller.  
 
2.6.2 Finite Element Analysis 
 
Equation (2-50) was derived for a solid cylindrical roller on a flat, infinite thick body. However, 
a roller bearing would have one roller with a finite length on the top of a finite thick plate, which 
is supported by the other roller that is perpendicular to the roller above it. In addition, hollow 
rollers rather than solid rollers would be used to reduce the weight and cost of the rollers. This 
section presents a three-dimensional finite element study to evaluate the use of equation (2-50) in 
the design of the rollers for a roller bearing.  
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As shown in Figure 2-12, the roller bearing investigated had flat upper and lower plates. The 
bearing had two V-shaped sloping surfaces: one was located at the top and the other at the 
bottom of the intermediate plate.  
 
 

 
 

Figure 2-12 Schematic view of the roller bearing 
 
 
The bearing was made of steel with a modulus of elasticity sE  of 29500 ksi (204000 MPa) and a 
yield strength yσ  of 100 ksi (689 MPa) and carried a factored vertical load of 65 kips (289 kN). 
According to equation (2-50), the product of the diameter D  and length L  of the roller should 
satisfy 
 

 
( )

( ) ( )2 2
22

65 29500 24 in 15484 mm
8 8 100

s

y

PEDL
σ

×
≥ = = =    

 
Two identical rollers with a diameter D  of 3 in (76 mm) and a length L  of 8 in (20 mm) were 
selected. The wall thickness of the rollers was selected as 0.25 times the diameter, that is, 0.75 in 
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(19 mm). The intermediate plate should be designed with a thickness at least larger than the wall 
thickness of the roller. A thickness of 1 in (25 mm) was used in the center of the plate, that is, the 
position at the intersection of section lines A-A and B-B shown in Figure 2-12. The sloping 
angle of each of the two V-shaped sloping surfaces was selected as 4 degrees. The upper and 
lower plates were designed with a thickness of 1 in (25 mm). 
 
A three-dimensional finite element model for this roller bearing was constructed using ABAQUS 
(HKS 2002). The model was formed with eight-node solid linear elements (C3D8). The top of 
the upper plate was constrained to prevent any horizontal movements and rotations. A 65 kip 
(289 kN) load was uniformly applied on the top of the upper plate. The bottom face of the lower 
plate was fixed to the ground. Contact elements were used between each roller and the plates 
with an assumed coefficient of static friction of 0.15. The material model for the steel is shown 
in Figure 2-13. The modulus of elasticity was assumed to be 29500 ksi (204000 MPa). The strain 
hardening curve was defined with a straight line connecting the yield point and the point with a 
stress and a strain of 138 ksi (951 MPa) and 0.157, respectively.    
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Figure 2-13 Stress-strain relationship of the steel  
 
 
Two cases were investigated in terms of the position of the rollers shown in Figure 2-14. In the 
first case, the rollers were in their initial positions shown in Figure 2-14(a). In the second case, 
the rollers were placed in a position 2.5 in (51 mm) away from the center shown in Figure 2-
14(b). It can be seen that at this position the effective contact areas between the rollers and plates 
are greatly reduced as compared to those at the initial position.   
 
Results of the analyses of the two cases in terms of the Mises stress are shown in Figures 2-15 
and 2-16. For the first case, the stress in the middle portion of the rollers was larger than at the 
two sides. This is expected since the two rollers are perpendicular to each other, which limits the 
contact area that is effective for carrying the load. The maximum Mises stress was found to be 70 
ksi (483 MPa), which is 0.7 yσ , and located in the center region of the intermediate plate. The 
maximum stress in the rollers was found to be 49 ksi (338 MPa) and located in the top, middle 
region of the lower roller.  
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Figure 2-14 Positions of the rollers  
 

For the second case, the maximum Mises stress was 121 ksi (834 MPa), which exceeded the 
yield strength. The yielding regions concentrated at the ends of both rollers. Upon unloading, 
permanent deformations resulted, causing small dents at the ends of the rollers. This would 
reduce the effective length of the roller for carrying the vertical load.    
 

 

 
 

Figure 2-15 Initial design: initial position 
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Figure 2-16 Initial design: 2.5-in from the initial position 
 
 
To address this issue, we increased the length of the rollers by an amount that is equal to the 
required displacement capacity. The final length of the roller is   
 
 ' 2 rL L D= +  (2-51) 
 
where 'L  is the final length of the roller; L  is length used in equation (2-50) and is referred to as 
the initial length hereafter; and rD  is the required displacement capacity of the roller. Note that 
the required displacement capacity of the bearing (or superstructure) is 2 rD . Equation (2-51) 
ensures that the effective contact areas between the rollers and the plates when the rollers are in 
the positions corresponding to the displacement capacity of the bearing are not less than 
calculated using equation (2-50). This is illustrated in Figure 2-17. 
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Figure 2-17 Use of longer rollers 
 
 
Assume the required displacement capacity of the bearing previously investigated to be 2.5 in 
(64 mm). Thus, rD  is equal to 1.25 in (32 mm). That means the final length of the roller 'L  is 
 
 ( ) ( )' 8 2 1.25 10.5 in 267 mmL = + ⋅ = =   
 
The final design of the bearing is shown in Figure 2-18. Figures 2-19 and 2-20 show the analysis 
results. At the initial position and at the position corresponding to the displacement capacity, the 
maximum Mises stresses were 30 ksi (207 MPa) and 25 ksi (172 MPa), respectively, both of 
which were lower than the yield strength. Furthermore, in the former case, the maximum stress 
occurred in the center region of the intermediate plate. The maximum stress in the rollers was 
23ksi (159 MPa). At the position corresponding to the displacement capacity, since the rollers 
were displaced away from the center region of the intermediate plate, which has the smallest 
thickness of the plate, the maximum stress shifted to the rollers.     
 
Note that the rollers investigated herein have a ratio of the wall thickness to diameter of 0.25. A 
ratio smaller than 0.25 would cause higher stresses in the rollers. A finite element analysis must 
be conducted before a smaller ratio can be used. A ratio that is larger than 0.25 will provide a 
more conservative design.  
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Figure 2-18 Revised design 
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Figure 2-19 Revised design: initial position 
 
 

 
 

Figure 2-20 Revised design: 2.5-in from the initial position  
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2.7 Experimental Validation 
 
To validate the analytical models for the proposed roller bearings under ground excitation, 
several experimental studies were carried out and are presented in Appendix A. Select results are 
shown in this section and compared to the analytical prediction.   
 
2.7.1 Description of the Bridge Model 
 
A scaled bridge superstructure was placed on four roller seismic isolation bearings mounted on 
two earthquake simulators (shake tables) in the NEES equipment site at the University of Nevada, 
Reno. Figure 2-21 illustrates the side view of the bridge model on the north shake table. The 
shear force in each bearing was measured by a load cell placed between the bearing and the 
shake table. The test step is shown in Figures 2-22 and 2-23. The superstructure consisted of a 
concrete deck composite with two steel girders. The length and width of the superstructure was 
60 ft (18.3 m) and 8.25 ft (2.5 m), respectively. The total weight of the superstructure was 76.7 
kips (341.2 kN). The principal directions of the roller bearings coincided with the transverse and 
longitudinal directions of the superstructure. The sloping angle of the bearing was 2 degrees. 
Detailed design information of the roller bearings is presented in Section 4.1.  
 
The bridge model is a 0.4 scale to the prototype bridge. A summary of the scale factors in the 
model is presented in Table 2-1. Ground motions used were time-scaled by a factor of 0.632 
(= 0.4 ). 

 
 

Table 2-1 Scale factors for the bridge model 
 

Quantity Dimension Scale factor 

Length L 0.4 
Modulus of elasticity ML-1 T-2 1.0 

Acceleration LT-2 1.0 
Mass M 0.16 
Time T 0.632 

Displacement L 0.4 
Force MLT-2 0.16 

Stiffness MT-2 0.4 
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Figure 2-21 Side view of the bridge model on the north shake table 
 
 

 
 

Figure 2-22 Test setup  
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Roller Bearings
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Figure 2-23 Side view of the bridge model  
 
 
2.7.2 Test Results 
 
Sample experimental results under 50% of the 1994 El Centro earthquake and 100% of the 1995 
Kobe earthquake are presented here. The acceleration histories of the ground motions are shown 
in Figures 2-24 and 2-27, respectively, which were obtained from the accelerometers installed on 
the shake tables. Both the ground motions were applied in the longitudinal direction of the bridge. 
Figures 2-25 and 2-28 show the 5% damped elastic absolute acceleration response spectra for 
both ground motions. Figures 2-26 and 2-29 show the responses of the bearings under 50% El 
Centro and 100% Kobe, respectively. From Figures 2-26a and 2-29a, it can be seen that the peak 
acceleration responses of the bearings were limited to approximately 0.02 g and independent of 
the magnitude and frequency content of the horizontal ground motions. Jagged spikes in 
acceleration responses with amplitudes larger than 0.02 g can be observed in the figures. This 
may be attributed to the impacts of components of the bridge and vertical acceleration of the 
shake tables. The latter could increase the horizontal acceleration responses as explained by 
equation (2-24). The effects of vertical ground accelerations on the bearing performance are 
investigated later in Section 3.3. From Figures 2-26b and 2-29b, it is seen that the bearings had 
no permanent displacements after testing. 
 
2.7.3 Comparison between Experiment and Analytical Study 
 
According to equations (2-28), (2-29) and (2-30), the maximum base shear of the bridge model 
V  under horizontal base excitation along the principal directions of the bearing is  
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( ) ( )

1 1sin 76.7 sin 2 0.00089 76.7
2 2

1.34 0.07 1.41 kips 6.27 kN

rV mg mgθ μ= + = ⋅ ⋅ + ⋅

= + = =
  

 
where mg  is the weight of the superstructure; and rμ  was calculated by equation (2-3): 
 

 0.002 0.002 0.00089
2.25r R

μ = = =   

 
Four roller bearings were used in the bridge model. The maximum base shear for each bearing 

1V  along the principal directions of the bearing is  
 

 ( ) ( )1
1.41 0.35 kips 1.57 kN

4 4
VV = = = =   

 
The maximum absolute acceleration response A  is 
 

 1 0.35g g 0.018 g
/ 4 76.7 / 4

VA
mg

= = =   

 
This value agrees well with the maximum acceleration responses of the bearings to both the 
ground motions as shown in Figures 2-26a and 2-29a.  
 
For response-history analysis, the bridge model was simplified as a SDOF system. Equation 
(2-52) shows the governing equation of motion of the system (from equations (2-25), (2-28) and 
(2-29)):   
 

 ( ) ( )1 sin sgn sgn
2 r gx g x g x xθ μ+ + = −  (2-52) 

 
where x , x  and x  are the relative displacement, velocity and acceleration of the superstructure; 
and gx  is the shake table acceleration. Figures 2-26 and 2-29 show the comparisons of responses 
between experimental and analytical results under 50% El Centro and 100% Kobe, respectively. 
Acceleration responses from both results agree well except for responses near the end of the 
shaking when the bearing stopped rolling. Under such a condition, the effects of the flexibility of 
the bridge superstructure and connections between the superstructures and the shake tables 
became significant. These effects were not accounted for in equation (2-52). A similar trend can 
be observed for the displacement responses of the bearings.    
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Figure 2-24 Measured shake table output under 50% El Centro 
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Figure 2-25 5% damped elastic absolute acceleration spectrum of the measured 50% El 
Centro 
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Figure 2-26 Comparison of the South-East bearing responses between analytical and 
experiment under 50% El Centro 
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Figure 2-27 Measured shake table output under 100% Kobe 
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Figure 2-28 5% damped elastic absolute acceleration spectrum of the measured 100% 
Kobe 
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Figure 2-29 Comparison of the North-East bearing responses between analytical and 
experiment under 100% Kobe 
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CHAPTER 3 
ROLLER SEISMIC ISOLATION BEARINGS WITH SUPPLEMENTAL 

FRICTION ENERGY DISSIPATION 
 
 
Sliding friction devices are integrated into a roller bearing for supplemental energy dissipation to 
reduce the displacement demand. The governing equation of motion of this new roller seismic 
isolation bearing under ground excitation is presented first. Next, the seismic behavior of the 
bearing is investigated under only horizontal ground motions. The effect of vertical ground 
motions is evaluated next. The last section of this chapter presents two equivalent linear methods, 
a conventional secant stiffness method and a proposed method, to estimate the maximum relative 
displacement response of the bearing based on elastic response spectra. To validate the methods, 
predictions from both methods are compared to results of nonlinear response history analyses.       
 
 
3.1 Governing Equations of Motion 
 
To reduce the displacement responses of a roller bearing and to maintain a zero post-elastic 
stiffness under horizontal ground motions while keeping the cost of the bearing low, we propose 
to integrate sliding friction devices into a roller bearing. The design details of this new roller 
seismic isolation bearing are presented later in Section 4.2. In this chapter, we focus on the 
theoretical behavior of the bearing under ground motions.  
 
If we assume a rigid substructure, the governing equation of motion of the bearing under ground 
motions can be expressed as  
 
 ( ) ( ) ( )sgn sgn sgnS Dr Ds gmx f x f x f x mx+ + + = −  (3-1) 
 
where m  is the tributary mass carried by the bearing; x , x  and x  are the relative displacement, 
velocity and acceleration of the bearing relative to the ground; gx  is the ground acceleration 
excitation; Sf  is the restoring force defined by equations (2-26), (2-28), (2-31) or (2-33); Drf  is 
the rolling friction force defined by equations (2-27), (2-29), (2-32) or (2-34); and Dsf  is the 
sliding friction force of the bearing. One friction device is integrated into each of the two 
principal directions. The two friction devices for the two principal directions are set to produce 
the same magnitude of sliding friction force. The sliding friction force along the principal 
directions is         
 
 Ds sf Nμ=  (3-2) 

 
where sμ  is the coefficient of sliding friction; and N  is the normal force applied to the sliding 
interface. For directions 45 degrees away from the principal directions, the sliding friction force 
is 

 
 2Ds sf Nμ=  (3-3) 
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The maximum base shear of the bearing V  is   
 
 S Dr DsV f f f= + +  (3-4) 
 
AASHTO (2000) requires that the restoring force be greater than or equal to 1.05 times the 
characteristic strength of the bearing to ensure self-centering capability of the bearing. This 
means  
 
 ( )1.05S Dr Dsf f f≥ +  (3-5) 
 
and, the maximum allowable value of Dsf  is 
 

 
1.05

S
Dsa Dr

ff f= −  (3-6) 

 
where Dsaf  is the maximum allowable sliding friction force.  
 
Figure 3-1 shows the lateral force-displacement relationship of this new roller seismic isolation 
bearing under horizontal ground motions.  
 
 

 
 

Figure 3-1 Lateral force-displacement behavior of roller seismic isolation bearings with 
supplemental friction energy dissipation  
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3.2 Seismic Behavior under Horizontal Ground Motions 
 
3.2.1 Governing Equations of Motion 
 
The roller seismic isolation bearing has the minimum and maximum strengths (restoring force, 
rolling friction force and sliding friction force) along the principal directions and directions 45 
degrees away from the principal directions, respectively, as stated in Sections 2.3 and 3.1. Under 
horizontal ground motions, if a rigid substructure is assumed, the governing equation of motion 
for the principal directions, equation (3-7), can be obtained by substituting equations (2-28), 
(2-29) and (3-2) for Sf , Drf  and Dsf  in equation (3-1): 
 

 ( ) ( ) ( )1 sin sgn sgn sgn
2 r s gmx mg x mg x N x mxθ μ μ+ + + = −  (3-7) 

 
For responses along directions 45 degrees away from the principal directions, the governing 
equation of motion, equation (3-8), can be obtained by substituting equations (2-33), (2-34) and 
(3-3) for Sf , Drf  and Dsf  in equation (3-1): 
 

 ( ) ( ) ( )2 sin sgn 2 sgn 2 sgn
2 r s gmx mg x mg x N x mxθ μ μ+ + + = −  (3-8) 

 
The lateral strength and energy dissipation of the bearing per loading cycle along directions 45 
degrees are 2  larger than those along the principal directions. As a result, in estimating the 
maximum displacement response of the bearing, the properties of the bearing along the principal 
directions are used for a conservative result. On the other hand, the properties of the bearing 
along directions 45 degrees away from the principal directions are used in estimating the 
maximum base shear for substructure design.  
 
This section presents a parametric study on the seismic behavior of the roller seismic isolation 
bearings along the principal directions. For the purpose of the parametric study, a variable 
denoted as a sliding friction force ratio drQ  is introduced and defined as   
 

 Ds
dr

Dsa

fQ
f

=  (3-9) 

 
where Dsf  is equal to s Nμ ; and Dsaf  is defined by equation (3-6). The governing equation of 
motion defined by equation (3-7) can be re-rewritten as  
 

 ( ) ( ) ( )1 sin sgn sgn sgn
2 r dr Dsa gmx mg x mg x Q f x mxθ μ+ + + = −  (3-10) 

 
The diameter of the roller was assumed to be 2 in (51 mm). Thus, the coefficient of rolling 
friction rμ  was 0.001 according to equation (2-3).  
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3.2.2 Ground Motions for Parametric Study 
 
Ground motions used in the parametric study were the 28 ground motions records from Naeim 
and Kelly (1999). Information on the original ground motions are listed in Table 3.1 including 
the locations, orientation, peak ground acceleration (PGA), peak ground velocity (PGV) and 
peak ground displacement (PGD). Acceleration, velocity and displacement histories of the 
ground motions are shown in Figures B-1 to B-28 of Appendix B. The ground motions are 
classified into three groups. The first group represents near-fault effects and large ground 
velocities (Ground motions No. 1 to 16). The second group (Ground motions No. 17 to 20) is 
characterized by high-frequency, large ground accelerations. The third group represents 
moderate ground shaking (Ground motions No. 21 to 28). These ground motions are intended to 
represent a wide range of ground motion characteristics that may be encountered by a seismically 
isolated structure. Figures 3-2 and 3-3 show the 5% damped elastic absolute acceleration and 
relative displacement response spectra for the 28 ground motions, respectively. In Figure 3-3, it 
can be seen that spectral displacements for long-period structures under the first group of ground 
motions are significantly larger than those under the other two groups.         
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Table 3-1 Ground motions  
 

No. Earthquake Station Orientation
(degree) 

PGA  
(g) 

PGV 
(in/s2) 

PGD 
(in) 

1 230 0.436 42.80 21.73 

2 

1979 
Imperial 
Valley 

El Centro 
Array #6 140 0.376 24.84 10.59 

3 90 0.178 12.17 8.03 

4 
Hollister 

0 0.369 24.72 11.89 

5 90 0.409 37.40 10.16 

6 

1989 
Loma Prieta Lexington 

Dam 0 0.442 33.23 5.79 

7 90 0.662 35.24 12.05 

8 
1992 

Petrolia Petrolia 
0 0.589 19.02 5.98 

9 L 0.703 10.12 3.46 

10 
Lucerne Valley

T 0.665 26.93 11.10 

11 360 0.151 11.42 8.98 

12 

1992 
Landers 

Yermo 
270 0.245 20.00 16.26 

13 90 0.604 30.28 5.98 

14 
Sylmar 

360 0.843 50.75 12.83 

15 90 0.583 29.45 6.93 

16 

1994 
Northridge 

Newhall Fire 
360 0.589 37.28 12.01 

17 90 0.478 18.70 4.53 

18 
1989 

Loma Prieta Corralitos 
0 0.630 21.73 3.74 

19 90 0.883 16.46 5.63 

20 
1994 

Northridge 

Santa Monica 
City Hall 
Grounds 360 0.370 9.80 2.56 

21 305 0.271 16.65 3.62 

22 
1989 

Loma Prieta 
Oakland Outer 
Harbor Wharf 35 0.287 16.06 3.90 

23 90 0.207 3.15 0.51 

24 
1990 

Upland Pomona 
0 0.186 4.09 0.43 

25 90 0.179 3.07 0.35 

26 
1991 

Sierra Madre Altadena 
0 0.447 10.71 1.10 

27 90 0.256 8.43 2.36 

28 
1994 

Northridge Century City 
360 0.222 9.88 2.36 
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(a) Ground motion group 1  
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(b) Ground motion group 2  
 

Figure 3-2 5% damped absolute acceleration spectra for the 28 ground motions  
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(c) Ground motion group 3  
 

Figure 3-2 5% damped absolute acceleration spectra for the 28 ground motions (cont’d)  
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(a) Ground motion group 1  
 

Figure 3-3 5% damped relative displacement spectra for the 28 ground motions 
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(b) Ground motion group 2  
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Figure 3-3 5% damped relative displacement spectra for the 28 ground motions (cont’d)  
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3.2.3 Parameters for Parametric Study 
 
Parameters examined in the parametric study were the sloping angle θ , sliding friction force 
ratio drQ  and PGA levels. The ranges of these parameters are listed in Table 3-2. The smallest 
sloping angle examined was 2 degrees. A sloping angle smaller than 2 degrees is not 
recommended because with such a small sloping angle, a small error in leveling the bearings 
during on-site installation could reduce a significant portion of the restoring capability of the 
bearing. The maximum sloping angle was 8 degrees. This was to ensure that no sliding of the 
rollers would occur (see Section 2.4) and that θ  was small enough so that responses of the 
bearing would be independent of horizontal ground motions (see Section 2.3). The values of drQ  
examined ranged from 0, which means no friction devices, to 1, which means the sliding friction 
force is equal to the maximum allowable value Dsaf . For each combination of θ  and drQ , the 
bearing was subjected to the 28 ground motions scaled to various PGA levels as listed in Table 
3-2.  
 
 

Table 3-2 Parameters for the parametric study 
 

Sloping angle 

θ  (degree) 
Sliding friction 
force ratio drQ

PGA 
(g) 

2 
3 
4 
5 
6 
7 
8 

0 
0.25 
0.5 
0.75 

1 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

 
 
 
3.2.4 Results and Discussions 
 
Sample responses of four bearings ( 2θ =  or 8θ = with 0drQ =  or 1drQ = ) are presented under 
ground motions Nos. 1 (see Figure 3-4), 17 (see Figure 3-5) and 21 (see Figure 3-6), respectively, 
with a PGA of 0.5g. Each of the three ground motions belongs to one of the three categories of 
the ground motions used. Figures 3-7 to 3-12 show responses of the bearings with no friction 
device ( 0drQ = ) under the three ground motions. Under all the three ground motions, the bearing 
with a larger sloping angle showed a higher maximum absolute acceleration response (see 
Figures 3-8, 3-10 and 3-12). This is expected since a larger sloping angle would lead to a higher 
restoring force and hence a larger maximum acceleration response. For the maximum 
displacement response, it is surprisingly to see that the bearing with a sloping angle of 8 degrees 
showed a higher peak displacement response than the bearing with a sloping angle of 2 degrees 
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under ground motion No. 1 (see Figure 3-7). Note that the former had a restoring force four 
times larger than the latter. This demonstrates the uncertainty in predicting the maximum 
displacement response due to the randomness of a ground motion. Under ground motions No. 17 
and No. 21, the bearing with a sloping angle of 8 degrees showed a smaller maximum 
displacement response as expected (see Figures 3-9 and 3-11). 
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Figure 3-4 Acceleration history of ground motion No. 1 with PGA= 0.5g  
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Figure 3-5 Acceleration history of ground motion No. 17 with PGA= 0.5g  
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Figure 3-6 Acceleration history of ground motion No. 21 with PGA= 0.5g  
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Figure 3-7 Acceleration and displacement responses of bearings with θ = 2 and 8 and with 
0drQ =  to ground motion No. 1 with PGA= 0.5g  
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Figure 3-8 Hysteretic responses of bearings with θ = 2 and 8 and with 0drQ =  to ground 
motion No. 1 with PGA= 0.5g  
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Figure 3-9 Acceleration and displacement responses of bearings with θ = 2 and 8 and with 

0drQ =  to ground motion No. 17 with PGA= 0.5g   
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Figure 3-10 Hysteretic responses of bearings with θ = 2 and 8 and with 0drQ =  to ground 
motion No. 17 with PGA= 0.5g  
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Figure 3-11 Acceleration and displacement responses of bearings with θ = 2 and 8 and with 
0drQ =  to ground motion No. 21 with PGA= 0.5g  
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Figure 3-12 Hysteretic responses of bearings with θ = 2 and 8 and with 0drQ =  to ground 
motion No. 21 with PGA= 0.5g  
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Figures 3-13 to 3-18 show responses of the bearings with the maximum allowable sliding friction 
force under the three ground motions. By comparing these responses with the responses from the 
bearings with no friction device, the use of a friction device significantly decreased the 
displacement responses. This is expected since the lateral strength and energy dissipation were 
increased. Under ground motion No. 1, although the bearing with a sloping angle of 8 degrees 
has both a higher lateral strength and higher energy dissipation than that with a sloping angle of 
2 degrees, it showed a higher maximum displacement response (see Figure 3-13). This again 
shows the uncertainty in estimating the maximum displacement response. Under ground motions 
No. 17 and No. 21 (see Figures 3-15 and 3-17), the bearing with a sloping angle of 8 degrees 
exhibited a smaller maximum displacement response than the bearing with a sloping angle of 2 
degrees as expected.     



 

 51

 

0 5 10 15 20 25 30 35 40
Time (s)

-40

-20

0

20

40

R
el

at
iv

e 
di

sp
la

ce
m

en
t (

in
) θ = 2

θ = 8

0 5 10 15 20 25 30 35 40
Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4
R

el
at

iv
e 

ac
ce

le
ra

tio
n 

(g
)

θ = 2

θ = 8

(a) Relative acceleration history

(b) Relative displacement history  
 
Figure 3-13 Acceleration and displacement responses of bearings with θ = 2 and 8 and with 

1drQ =  to ground motion No. 1 with PGA= 0.5g  
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Figure 3-14 Hysteretic responses of bearings with θ = 2 and 8 and with 1drQ =  to ground 
motion No. 1 with PGA= 0.5g  
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Figure 3-15 Acceleration and displacement responses of bearings with θ = 2 and 8 and with 
1drQ =  to ground motion No. 17 with PGA= 0.5g  
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Figure 3-16 Hysteretic responses of bearings with θ = 2 and 8 and with 1drQ =  to ground 
motion No. 17 with PGA= 0.5g  
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Figure 3-17 Acceleration and displacement responses of bearings with θ = 2 and 8 and with 
1drQ =  to ground motion No. 21 with PGA= 0.5g 
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Figure 3-18 Hysteretic responses of bearings with θ = 2 and 8 and with 1drQ =  to ground 
motion No. 21 with PGA= 0.5g  
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For each parametric combination, the arithmetic mean of the maximum relative displacement 
responses and that of the maximum absolute acceleration responses to the 28 ground motions 
scaled to various PGA levels were calculated. Results for all the parametric combinations are 
shown in Figures 3-19 to 3-25. In Figures 3-19a to 3-25a, it can be seen that for a given PGA 
level, the mean maximum displacement responses of bearings without friction devices tended to 
decrease as the sloping angle increased for smaller PGA levels (0.2 to 0.3 g). This is expected as 
a larger sloping angle means a higher restoring force. However, when the PGA level increased, 
the mean maximum displacement responses tended to increase as the sloping angle increases 
under a given PGA level. This means although a larger sloping angle gives a larger restoring 
force; it tends to cause a larger maximum relative displacement response. When a friction device 
was used, for a given sloping angle, the mean maximum displacement response decreased as the 
sliding friction force ratio drQ  increased. This is expected as a higher drQ  results in higher 
strength and energy dissipation capacity of the bearing. For a given drQ , the mean maximum 
displacement responses tended to decrease as the sloping angle increases. This is because a 
larger sloping angle means a higher sliding friction force for a given drQ  and hence a lower 
maximum displacement response. This tendency became stronger when drQ  was higher. This 
study shows that in terms of reducing the maximum displacement response, a higher sloping 
angle is desirable not because it can produce a higher lateral strength by increasing the restoring 
force, but because it allows for the use of a friction device with a higher force, which also means 
higher energy dissipation. The best performance of the bearing in terms of smaller relative 
displacement responses can be achieved by having the maximum allowable sliding friction force, 
that is,    
 
 S Dr DsaV f f f= + +  (3-11) 
 
Figures 3-19b to 3-25b show the arithmetic mean values of the maximum absolute acceleration 
responses. These values were independent of the PGA levels and the ground motion used, and 
increased as the sloping angle and the sliding friction force increased as expected.    
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Figure 3-19 Mean maximum relative displacement and absolute acceleration responses 
under PGA=0.2g 
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Figure 3-20 Mean maximum relative displacement and absolute acceleration responses 
under PGA=0.3g 
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Figure 3-21 Mean maximum relative displacement and absolute acceleration responses 
under PGA=0.4g 
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Figure 3-22 Mean maximum relative displacement and absolute acceleration responses 
under PGA=0.5g 
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Figure 3-23 Mean maximum relative displacement and absolute acceleration responses 
under PGA=0.6g 
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Figure 3-24 Mean maximum relative displacement and absolute acceleration responses 
under PGA=0.7g 
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Figure 3-25 Mean maximum relative displacement and absolute acceleration responses 
under PGA=0.8g 
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3.3 Seismic Behavior under Combined Horizontal and Vertical Ground Motions 
 
3.3.1 Governing Equations of Motion 
 
Under combined horizontal and vertical ground motions and assuming a rigid substructure, the 
governing equation of motion for the principal directions, equation (3-12), can be obtained by 
substituting equations (2-26), (2-27) and (3-2) for Sf , Drf  and Dsf  in equation (3-1): 
 

 ( ) ( ) ( ) ( ) ( )1 sin sgn sgn sgn
2 g r g s gmx m z g x m z g x N x mxθ μ μ+ + + + + = −  (3-12) 

 
where gz  is the vertical ground accelerations. It can be observed that vertical ground motions 
affect the seismic behavior of the bearing by changing the restoring force and rolling friction 
force of the bearing. For responses along directions 45 degrees away from the principal 
directions, the governing equation of motion, equation (3-13), can be obtained by substituting 
equations (2-31), (2-32) and (3-3) for Sf , Drf  and Dsf  in equation (3-1): 
 

 ( ) ( ) ( ) ( ) ( )2 sin sgn 2 sgn 2 sgn
2 g r g s gmx m z g x m z g x N x mxθ μ μ+ + + + + = −  (3-13) 

 
In this section, the seismic behavior of the bearing along the principal directions is examined 
using a parametric study. For the purpose of the parametric study, equation (3-12) can also be 
expressed as  
 

 ( ) ( ) ( ) ( ) ( )1 sin sgn sgn sgn
2 g r g dr Dsa gmx m z g x m z g x Q f x mxθ μ+ + + + + = −  (3-14) 

 
where the parameters have been defined in the previous section.    
 
3.3.2 Ground Motions for Parametric Study 
 
Thirteen ground motion pairs were selected for the parametric study and are summarized in 
Table 3-3 (Naeim and Kelly 1999). Each ground motion pair contains a horizontal component 
and a vertical component. The horizontal components have been used previously in Section 3.2. 
Acceleration, velocity and displacement histories of the vertical components are shown in 
Figures B-29 to B-41 in Appendix B. The ground motions pairs can be classified into three 
groups as described in Section 3.2.2. Ground motion pairs No. 1 to No 7, No. 8 to No. 9 and No. 
10 to No. 13 are the first, second and third groups, respectively.     
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Table 3-3 Ground motion pairs 
 

No. Earthquake Station Orientation PGA  
(g) 

PGV 
(in/s2) 

PGD 
(in) 

90° 0.178 12.17 8.03 
1 Hollister 

Vertical 0.197 6.06 2.91 

90° 0.409 37.40 10.16 
2 

1989 
Loma Prieta Lexington 

Dam Vertical 0.134 10.04 5.16 

90° 0.662 35.24 12.05 
3 1992 

Petrolia Petrolia 
Vertical 0.163 8.23 5.43 

L 0.703 10.12 3.46 
4 Lucerne Valley

Vertical 0.681 14.29 3.11 

360° 0.151 11.42 8.98 
5 

1992 
Landers 

Yermo 
Vertical 0.136 5.00 1.81 

90° 0.604 30.28 5.98 
6 Sylmar 

Vertical 0.535 7.32 2.99 

90° 0.583 29.45 6.93 
7 

1994 
Northridge 

Newhall Fire 
Vertical 0.548 12.09 5.04 

90° 0.478 18.70 4.53 
8 1989 

Loma Prieta Corralitos 
Vertical 0.439 7.32 3.07 

90° 0.883 16.46 5.63 
9 1994 

Northridge 

Santa Monica 
City Hall 
Grounds Vertical 0.232 5.51 1.50 

305° 0.271 16.65 3.62 
10 1989 

Loma Prieta 
Oakland Outer 
Harbor Wharf Vertical 0.066 4.13 0.71 

90° 0.207 3.15 0.51 
11 1990 

Upland Pomona 
Vertical 0.097 1.89 0.20 

90° 0.179 3.07 0.35 
12 1991 

Sierra Madre Altadena 
Vertical 0.154 1.69 0.16 

90° 0.256 8.43 2.36 
13 1994 

Northridge Century City 
Vertical 0.115 3.43 1.26 
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3.3.3 Parameters for Parametric Study 
 
Parameters investigated in the parametric study were the sloping angle θ  and sliding friction 
force ratio drQ . The ranges of the parameters were the same as used in the previous section (see 
Table 3-2). For each combination of θ  and drQ , the bearing was evaluated under the 13 pairs of 
ground motions.  
 
3.3.4 Results and Discussion 
 
Responses of one of the bearings with 4θ =  and 0drQ =  under ground motion pairs No. 2 and 
No. 4 are shown in Figures 3-26 to 3-27 and Figures 3-28 to 3-29, respectively. As shown in 
these figures, the vertical components of these ground motion pairs could significantly affect the 
maximum absolute acceleration responses. The increase in the maximum absolute acceleration 
response under ground motion pair No. 4 was significant as shown in Figure 3-29a. This is 
because the PGA of the vertical component of ground motion pair No. 4 is large with a PGA of 
approximately 0.68 g compared to the acceleration of gravity g (see equation (3-14)). Figure 3-
27a shows that the vertical component of ground motion pair No. 2 had less influence on the 
maximum absolute acceleration response. This is because the PGA of this vertical component is 
only 0.13 g compared to the acceleration of gravity g. Figure 3-26b shows that the vertical 
component of ground motion pair No. 2 had almost no effect on the relative displacement 
responses. However, the vertical component of ground motion pair No. 4 caused a significant 
increase in the maximum displacement response shown in Figure 3-28b.   
 
Responses of the bearing with 4θ =  and 1drQ =  under ground motion pairs No. 2 and No. 4 are 
shown in Figures 3-30 to 3-31 and Figures 3-32 to 3-33, respectively. For the maximum absolute 
acceleration response, similar trends to the bearing mentioned previously can be observed. 
However, the vertical components of both ground motions pairs have little influence on the 
maximum displacement response.    
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Figure 3-26 Acceleration and displacement responses of a bearing with 4θ =  and 0drQ =  to 
ground motion pair No. 2 with and without the vertical component  
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Figure 3-27 Hysteretic responses of a bearing with 4θ =  and 0drQ = to ground motion pair 
No. 2 with and without the vertical component 
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Figure 3-28 Acceleration and displacement responses of a bearing with 4θ =  and 0drQ =  to 

ground motion pair No. 4 with and without the vertical component  
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Figure 3-29 Hysteretic responses of a bearing with 4θ =  and 0drQ =  to ground motion pair 
No. 4 with and without the vertical component 
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Figure 3-30 Acceleration and displacement responses of a bearing with 4θ =  and 1drQ =  to 

ground motion pair No. 2 with and without the vertical component  
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Figure 3-31 Hysteretic responses of a bearing with 4θ =  and 1drQ =  to ground motion pair 
No. 2 with and without the vertical component  
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Figure 3-32 Acceleration and displacement responses of a bearing with 4θ =  and 1drQ =  to 

ground motion pair No. 4 with and without the vertical component 
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Figure 3-33 Hysteretic responses of a bearing with 4θ =  and 1drQ =  to ground motion pair 
No. 4 with and without the vertical component 
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Analysis results of all the parametric combinations are shown in Figures 3-34 and 3-35. The 
vertical axis of these two figures represents errors caused by not considering the vertical 
components of the ground motions, which is defined as 
 

 0 v

v

x xerror
x
−

=  (3-15) 

 
where vx  and ox  represent the mean values of the maximum responses with and without 
considering the vertical ground motions, respectively. Figure 3-34 shows that errors for the mean 
maximum relative displacement responses were within 4% for bearings with friction devices. 
The errors reduced as the ratio drQ  increased. This is because vertical ground motions have an 
influence on the restoring force Sf  and the rolling friction force Drf  but have no effect on the 
sliding friction force Dsf  (see equation (3-14)). For bearings with the maximum allowable 
sliding friction force, Dsaf , the errors reduced to be within 2%, which may be ignored in the 
design of the bearings.       
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Figure 3-34 Effects of vertical ground motions on the mean maximum relative 
displacement response 
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Figure 3-35 Effects of vertical components of the ground motions on the mean maximum 
absolute acceleration response 

 
 
For the mean maximum absolute acceleration responses, errors ranged from approximately 25% 
for bearings with no friction device to 14% for bearings with the maximum allowable sliding 
friction force (see Figure 3-35). The errors decreased approximately linearly as the value of drQ  
increased. As previously mentioned, this is because vertical ground motions have no effect on 
the portion of the maximum acceleration response contributed from the friction device. Errors 
were significant even when a friction device with the maximum allowable friction forces was 
used. Therefore, the increase in maximum acceleration response and hence the increase in the 
base shear acting on the column where the bearings seat due to vertical ground motions need to 
be considered in design.  
 
The maximum vertical acceleration demand to the bearing mZ  considering the flexibility of the 
substructure and soil may be estimated by  
 
 m vZ C g=  (3-16) 
 
where the coefficient vC  is used in MCEER/ATC (2003) to account for the increase in pier axial 
force due to vertical ground motions. The values of vC  with respect to the distance from the site 
to the fault and the magnitude of the earthquake are given in Tables 3-4 and 3-5. It is stated in 
MCEER/ATC (2003) that the impact of vertical ground motions may be ignored for bridges that 
are located greater than 31 mi (50 km) from an active fault and may be ignored for bridges in the 
Central and Eastern U.S. as well as those areas impacted by subduction earthquakes in the 
Pacific Northwest.   
 
The maximum base shear of the bearing occurs when the response of the bearing is along 
directions 45 degrees away from the principal directions. The maximum base shear including the 
effect of vertical ground motions may be estimated by  
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 ( ) ( )2 1 sin 2 1 2
2S Dr Ds v r v sV f f f mg C mg C Nθ μ μ= + + = + + + +  (3-17) 

 
Under vertical ground motions, the seismic weight of the bearings may be increased to 
 
 ( )1sv vW C mg= +  (3-18) 

 
where svW  is the seismic weight of the bearing including the effect of vertical ground motions. 
This load should be considered in the design of the roller size.   
 
 

Table 3-4 vC  for earthquakes with a magnitude 7.0 or less (MCEER/ATC 2003) 
 

Fault Distance 
Zones (mi) 0-6 6-12 12-19 19-25 25-31 

vC  0.7 0.3 0.2 0.1 0.1 

 
 

Table 3-5 vC  for earthquakes with a magnitude greater than 7.0 (MCEER/ATC 2003) 
 

Fault Distance 
Zones (mi) 0-6 6-12 12-19 19-25 25-31 

vC  0.9 0.4 0.2 0.2 0.1 
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3.4 Equivalent Linear Methods 
 
3.4.1 Secant Stiffness Method 
 
The uniform load method and the single mode spectral method of AASHTO (2000) use an 
equivalent linear method, which is referred to as the secant stiffness method herein, to obtain the 
effective period and equivalent damping of a seismic isolation system. The maximum 
displacement response of the system is then estimated from a 5% damped elastic displacement 
response spectrum based on the period and damping of the equivalent linear system. Here, the 
secant stiffness method for the roller seismic isolation bearing is examined. Note that as stated in 
Section 3.2.1, properties of the bearing along the principal directions are used to estimate the 
maximum displacement demand for a conservative result. 
  
3.4.1.1 Rigid base 
 
For the secant stiffness method, the effective period effT  of in  roller seismic isolation bearings 
working in parallel on a rigid base is  
 

 2 eff
eff

k
T

M
π=  (3-19) 

 
where M  is the tributary mass carried by in  bearings; and effk  is the effective stiffness of the 
bearings, which is defined as  
 

 ( )max i S Dr Ds
eff

i i

n f f fFk
x x

+ +
= =  (3-20) 

 
where maxF  and ix  are the maximum force and the maximum relative displacement of a lateral 
force-displacement loop of the bearings, respectively, as illustrated in Figure 3-36; and Sf , Drf  
and Dsf  are defined by equations (2-28), (2-29) and (3-2). The relative displacement between the 
roller and plate is half the value of ix  (see Figure 2-8). Also note that the effects of vertical 
ground motion are not considered in the equation because it was shown in Section 3.3 that 
vertical ground motions have little influence on the maximum relative displacement response of 
the bearing with friction energy dissipation devices. The equivalent damping β  of the bearings 
is defined as 
 

 ( )
( )2

2
2

Dr Ds

eff i S Dr Ds

f fEDC
k x f f f

β
π π

+
= =

+ +
 (3-21) 

 
where EDC  is the energy dissipation of a lateral force-displacement loop of the bearings. The 
equation shows the roller equivalent damping β   is a constant independent of the maximum 
relative displacement of the roller bearings.    
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Figure 3-36 Secant stiffness method 
 
 
3.4.1.2 Flexible base 
 
The contribution to the maximum displacement of the superstructure from the flexibility of the 
substructure and the surrounding soil is considered next. The effective stiffness effK  of the 
combined system, which consists of the bearings, a single column or a multiple-column bent and 
soils surrounding the column foundation, is  
 

 
1

1 1 1
eff

st sr c i i

hLK
k k k n k

−
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

 (3-22) 

 
where L  is the distance from the base of the column to the centroid of the superstructure; h  is 
the column height (see Figure 3-37); and stk , srk , ck  and ik  are defined as follows.  
 

( )i S Dr Ds
st

st

n f f f
k

x
+ +

= ; ( )i S Dr Ds
sr

sr

n f f f h
k

θ
+ +

= ;  

 

 ( )i S Dr Ds
c

c

n f f f
k

x
+ +

= ; S Dr Ds
i

i

f f fk
x

+ +
=  (3-23) 

 
where in  is the number of the bearings; and stx , srLθ , cx  and ix  are relative displacements of 
the center of mass of the tributary superstructure due to horizontal movements of the soils, 
rotation of the soils, deformations of the column and flexibility of the bearings, respectively. 
Note that stx , srLθ  and cx  are typically designed to be much smaller than ix  for the bearings to 
function properly. Their magnitudes are exaggerated in Figure 3-37 for ease of presentation.   
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Substituting equation (3-23) to equation (3-22) gives  
 

 ( ) ( )
max

i S Dr Ds i S Dr Ds
eff

i c st sr

n f f f n f f f
K

x x x L xθ
+ + + +

= =
+ + +

 (3-24) 

 
The effective period of the combined system effT  is  
 

 2 eff
eff

K
T

M
π=  (3-25) 

 
The equivalent damping cβ  of the combined system is 
 

 ( )
( )2

max max

2
2

Dr Ds i
c

eff S Dr Ds

f f xEDC
K x f f f x

β
π π

+
= =

+ +
 (3-26) 

 
Note that damping of the soil and the substructure is neglected in the above analysis.    

 
 

 
 

Figure 3-37 Displacements of the superstructure due to flexibility of the isolation bearings, 
column and surrounding soils (adapted from Constantinou et al. 2007) 
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3.4.2 Proposed Equivalent Linear Method 
 
A new equivalent linear method is proposed to predict the maximum relative displacement 
response of the roller seismic isolation bearing. This method is based on relative displacement, 
relative velocity and absolute acceleration spectra.  
 
3.4.2.1 Rigid base 
 
For a given relative displacement of in  roller seismic isolation bearings working in parallel on a 
rigid base, ix , the potential energy pW  stored in the bearings due to the work done by the 
restoring force of the bearings sf  is 
 

 1 sin
2p i s i i iW n f x n Mg xθ= =  (3-27) 

 
Here, we assume that this potential energy is equal to the strain energy of the bearings. As a 
result, the potential energy can also be expressed as 
 

 21
2p eff iW k x=  (3-28) 

 
This is illustrated in Figure 3-38. Substituting pW  from equation (3-27) into equation (3-28) and 
solving effk  leads to  
 

 2 sini S i
eff

i i

n f n Mgk
x x

θ
= =  (3-29) 

 
Comparing equations (3-29) and (3-20), it is seen that the effective stiffness from the proposed 
method is independent of the characteristic strength while that from the secant stiffness increases 
as the characteristic strength increases. This is because only the force related to potential energy 
is considered in the proposed method. Both the force related to potential energy and the force 
related to hysteretic energy are considered in the secant stiffness method. Substituting equation 
(3-29) for effk  in equation (3-19) leads to the effective period of the bearings. 
 
The damping of the bearings β  is determined in a way such that the inertia force, damping force 
and amount of hysteretic energy dissipation of the equivalent linear system can approach those of 
the bearings. This is accomplished by seeking the smallest value of a goal parameter λ  defined 
as 
 
 2 2 2

I D EDCλ λ λ λ= + +  (3-30) 
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where Iλ , Dλ  and EDCλ  are parameters associated with inertia force, damping force and energy 
dissipation per cycle of the bearings. The inertial force parameter Iλ  is defined as  
 

 max

max
I

F MA
F

λ −
=  (3-31) 

 
where maxF  is ( )i S Dr Dsn f f f+ + ; and A  is the absolute acceleration spectral response. 
 
The damping force parameter Dλ  is defined as  
 

 
( )

( )
2i Dr Ds eff

D
i Dr Ds

n f f M V
n f f

β ϖ
λ

+ −
=

+
 (3-32) 

 

 eff
eff

k
M

ω =  (3-33) 

 
where  V  is the relative velocity spectral response. The energy dissipation parameter EDCλ  is 
defined as  
 

 
2 22 eff i

EDC

EDC M x
EDC
πβ ϖ

λ
−

=  (3-34) 

 
 ( )4i Dr Ds iEDC n f f x= +  (3-35) 
 
 

 
 

Figure 3-38 Proposed method for computing effective stiffness 
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3.4.2.2 Flexible base 
 
The effective stiffness effK  of the combined system, which consists of the bearings, a single 
column or a multiple-column bent and soils surrounding the foundation, is defined by equation 
(3-22) with stk , srk  and ck  defined by equation (3-23) and ik  defined by equation (3-29). The 
effective period of the combined system is calculated by equation (3-25). The equivalent 
damping of the combined system cβ  is chosen with the same method as described by equations 
(3-30) to (3-35).  
 
3.4.3 Comparison with Results from Nonlinear Response History Analyses 
 
The secant stiffness method and the proposed equivalent linear method were used to predict the 
mean maximum relative displacement responses of the roller seismic isolation bearings under the 
28 ground motions presented in Section 3.2. The design parameters of the bearings and the PGA 
levels of the ground motions examined were the same as listed in Table 3-2. 
 
The proposed equivalent linear method used the mean absolute acceleration, mean relative 
velocity and mean relative displacement response spectra that were constructed with a range of 
equivalent damping ratios as shown in Figures 3-39, 3-40 and 3-41, respectively.  
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Figure 3-39 Mean absolute acceleration spectra for the 28 ground motions normalized by 
PGA  
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Figure 3-40 Mean relative velocity spectra for the 28 ground motions normalized by PGA 
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Figure 3-41 Mean relative displacement spectra for the 28 ground motions normalized by 
PGA 

 
 
In the secant stiffness method, the 5% damped elastic mean relative displacement spectrum of 
the 28 ground motions as shown in Figure 3-41 was used. For a given effective period, the 
corresponding spectral value ,5%dS  was obtained from Figure 3-41 and multiplied by the PGA 
level. For bearings with an equivalent damping ratio other than 5%, the mean spectral 
displacement value dS  was obtained by modifying the value of ,5%dS  with the damping 
coefficient B  (AASHTO 2000).  
 

 ,5%d
d

S
S

B
=  (3-36) 



 

 74

where B  is the damping coefficient defined in Table 3-6. If damping exceeded 30%, B  of 1.7 
was used (AASHTO 2000). Chapter 5 of this report presents a case study where the secant 
stiffness method is used to predict the maximum displacement response of the bearings.  
 
 

Table 3-6 Damping coefficient B  (AASHTO 2000) 
 

Damping  
(percentage to critical) ≤2 5 10 20 30 

B  0.8 1.0 1.2 1.5 1.7 

 
 
The mean relative displacement predicted by the equivalent linear methods for each combination 
of sloping angle θ , sliding friction force ratio drQ  and PGA level are compared to that predicted 
by the corresponding nonlinear responses history analysis that has been presented in Section 3.2. 
The error of the response predicted by the equivalent linear methods to that calculated by 
nonlinear response history analyses is defined as 
 

 eq exact

exact

x x
error

x
−

=  (3-37) 

 
where eqx  and exactx  represent responses predicted by the equivalent linear methods and 
nonlinear response history analyses, respectively.  
 
Figures 3-42 to 3-48 show errors of mean maximum relative displacement responses predicted 
by the two equivalent linear methods for all the parametric combinations. From these figures, it 
is seen that the error tended to decrease when the PGA level increased or damping decreased. 
This implied that the error might be strongly correlated to the mean maximum displacement 
response. All the errors were plotted together in Figure 3-49 versus the corresponding mean 
maximum relative displacement from nonlinear response history analyses.  
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Figure 3-42 Errors of prediction by the proposed method and secant stiffness method 
under PGA=0.2g 
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Figure 3-43 Errors of prediction by the proposed method and secant stiffness method 
under PGA=0.3g 
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Figure 3-44 Errors of prediction by the proposed method and secant stiffness method 
under PGA=0.4g 
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Figure 3-45 Errors of prediction by the proposed method and secant stiffness method 
under PGA=0.5g 
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Figure 3-46 Errors of prediction by the proposed method and secant stiffness method 
under PGA=0.6g 
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Figure 3-47 Errors of prediction by the proposed method and secant stiffness method 
under PGA=0.7g 
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Figure 3-48 Errors of prediction by the proposed method and secant stiffness method 
under PGA=0.8g 
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Figure 3-49 Errors of prediction by the proposed method and secant stiffness method for 
all the bearings 

 
 
It was found that both methods produced a similar trend of results. When the maximum 
displacements were small, both methods tended to overestimate the responses, thus leading to 
conservative results. Since the maximum displacements were small, this did not cause excessive 
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displacement demand to the bearings. On the other hand, they tended to underestimate the 
responses when the maximum displacements were moderate or large. From these figures, it is 
clear that the proposed method provided better prediction of the maximum relative displacement 
responses. The errors generally fell within positive 10% to negative 20% for the proposed 
method while positive 10% to negative 40% for the secant stiffness method. To be conservative, 
the maximum displacement demand for the roller seismic isolation bearings may be increased by 
20% and 40% for the proposed equivalent linear method and secant stiffness method, 
respectively.    
 

 ' 1.2 Proposed Method
1.4 Secant Stiffness Method

d
d

d

S
S

S
⎧

= ⎨
⎩

 (3-38) 

 
where '

dS  is the design displacement demand for the roller seismic isolation bearings; and dS  is 
the displacement spectral values. 
  
The effective periods and damping of the bearings predicted by the proposed method and the 
secant stiffness method are shown in Figures 3-50 to 3-56. In Figures 3-50a to 3-56a, it can be 
seen that the effective periods predicted by both methods increased as the maximum 
displacement increased. This is expected as the effective stiffness is defined to be inversely 
proportional to the maximum displacement (see equations (3-20) and (3-29)). Moreover, it can 
be observed that the secant stiffness resulted in a larger effective period than the proposed 
method. This is expected since the denominator of equation (3-20) is smaller than that of 
equation (3-29) for the values of drQ  investigated. Note that although the secant stiffness method 
led to a larger effective period, Figure 3-41 shows that it did not necessarily mean a larger 
displacement response for a given damping for periods examined.    
 
Figures 3-50b to 3-56b show that the equivalent damping from the secant stiffness method 
remained constant for a given value of drQ . This was previously explained when equation (3-21) 
was introduced. For bearings with no friction device, both methods produced zero equivalent 
damping for most of the cases. For bearings with a friction device, the equivalent damping from 
the proposed method tended to decrease as the maximum displacement demand increased. It was 
also found that the equivalent damping from the proposed method was lower than that from the 
secant stiffness method. This in part explains why the proposed method was more likely to 
predict a higher maximum displacement demand than the secant stiffness method.     
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Figure 3-50 Effective periods and damping ratios for a sloping angle of 2 degrees 
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Figure 3-51 Effective periods and damping ratios for a sloping angle of 3 degrees 
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Figure 3-52 Effective periods and damping ratios for a sloping angle of 4 degrees 
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Figure 3-53 Effective periods and damping ratios for a sloping angle of 5 degrees 
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Figure 3-54 Effective periods and damping ratios for a sloping angle of 6 degrees 
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Figure 3-55 Effective periods and damping ratios for a sloping angle of 7 degrees 
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Figure 3-56 Effective periods and damping ratios for a sloping angle of 8 degrees 
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CHAPTER 4 
PROTOTYPE ROLLER SEISMIC ISOLATION BEARINGS 

 
 
In this chapter, two prototype roller seismic isolation bearings are presented. The first prototype 
bearing does not have any built-in friction devices. The second prototype roller bearing has 
several improvements over the first prototype bearing, including unique built-in friction 
mechanisms for supplemental energy dissipation.  
 
 
4.1 The First Prototype Roller Seismic Isolation Bearing 
 
4.1.1 Mechanical Properties  
  
A schematic view of the first prototype bearing is shown in Figure 4-1. Both the upper and lower 
rollers of the bearing have a diameter D  of 4.5 in (114.3 mm), a wall thickness t  of 0.75 in 
(19.05 mm) and a final length 'L  of 17 in (431.8 mm). The design displacement capacity of the 
bearing 2 rD  is 8 in (203 mm).  The rollers and plates are made of AISI 1045 hot rolled steel 
with a yield strength yσ  of 75 ksi (517 MPa). The vertical force capacity P  of the bearing is 
listed in Table 4-1 and was calculated by equations (2-50) and (2-51). 
 
The two sloping surfaces are designed at the intermediate plate: one at the top face and the other 
one at the bottom face. The sloping angle θ  is 2 degrees. The restoring forces Sf  for responses 
along the principal directions and along directions 45 degrees from the principal directions under 
horizontal ground motions were computed by equations (2-28) and (2-33), respectively. And, the 
rolling friction forces Drf  were calculated by equations (2-29) and (2-34), respectively. Results 
are listed in Table 4-1. The coefficient of rolling friction rμ  was calculated by equation (2-3) 
with δ  equal to 0.002 in (0.05 mm).  
 
The thickness of the intermediate plate at the intersection of section lines A-A and B-B as shown 
in Figure 4-1 is 1 in (25 mm), which is linearly changed to 1.32 in (34 mm) at the edges of the 
plate along section line A-A for the top face of the plate and along section line B-B for the 
bottom face of the plate. The upper and lower plates have a thickness of 1 in (25 mm). The 
bearing is free to rotate until the upper plate touches the intermediate plate or until the 
intermediate plate touches the lower plate. The rotation under such conditions is 0.42 rad. The 
experimental studies on this prototype roller bearing are presented in Section 2.7 and Appendix 
A. 
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Table 4-1 Design parameters of the first prototype roller bearing 
 

Vertical force capacity P  (kips) 60 

Principal 0.017 Restoring force  
Sf  ( mg *) 45  0.025 

Principal 0.0009 Rolling friction force  
Drf  ( mg ) 45  0.0013 

Displacement capacity (in) 8 

Rotational capacity (rad) 0.42 

* seismic weight carried by the bearing 
 

 
 

Figure 4-1 Schematic view of the first prototype roller bearing 
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4.1.2 Components 
 
The design details of the first prototype roller bearing are illustrated in Figure 4-2. Figure 4-3 
shows the photos of various components of the bearing. The materials and functions of each 
component shown in the figure are presented as follows.  
 
1. Lower plate: a flat steel plate. The lower roller is designed to roll between this plate and the 

intermediate plate. This plate is secured to the top of a pier cap or abutment.   
 
2. Guide wall: a steel angle with the exterior face strengthened by welded stiffeners. A 

stainless steel plate is welded to the interior face of the wall that was in contact with the side 
of the roller guide (see item 8). The function of the wall is to guide the movement of the 
roller.  

 
3. Lower protection wall: a wall consisting of a steel plate and rubber sheets. It is used to seal 

the room formed by the intermediate plate, lower roller and lower plate to prevent entry of 
outside substances that might cause corrosion or interfere with the rolling motion of the roller.   

 
4. Upper protection wall: a wall protecting the room formed by the upper plate, the upper 

roller and the intermediate plate. The wall will fall off automatically, if the displacement of 
the upper roller relative to the intermediate plate is large enough for this wall to hit the ends 
of the intermediate plate.  

 
5. Upper plate: a flat steel plate. The upper roller is sandwiched between this plate and the 

intermediate plate. It would be secured to the bottom of the superstructure. 
   
6. Intermediate plate: a steel plate with welded steel walls along its perimeter. The walls are 

used to stop the roller from rolling out of the plate. Each of the top and bottom faces of the 
plate is machined into a V-shaped sloping surface.   

  
7. Upper roller: a seamless steel tube.  
 
8. Roller guide: a steel block attached to the ends of the shaft (see item 13). One face of the 

block is in contact with the guide wall so that the roller moves only in parallel with the 
direction of the guide wall. The interface between the roller guide and guide wall has a 
lubricated layer of DU material (see item 12) to reduce interface friction.  

 
9. Sweeper device: a device consisting of a steel plate with brooms attached to it. The device is 

located close to each side of the roller. Its function is to sweep debris, if any, away from the 
course of the rolling rollers.     

 
10. Lower roller: a seamless steel tube.  
 
11. Sleeve: a tubular piece made of aluminum alloy attached to the inner face of the roller body. 

It rotates together with the roller body relative to the shaft (see item 13). The interface 
between the sleeve and shaft is filled with a lubricated layer of DU material (see item 12).      



 

 86

12. DU bearing material: a self-lubricating bearing material consisting of a steel backing, 
porous bronze inner-structure and PTFE-lead overlay that provide the contact interface with 
low friction. 
 

13. Shaft: consisting of several aluminum alloy pieces. It connects the roller body to the roller 
guide. When the roller body rolls relative to the shaft, it moves the shaft along the rolling 
direction. Consequently, the roller is guided by the roller guides located at two ends of the 
shaft.       

 
 
 

 
 
 

Figure 4-2 Design details of the first prototype roller bearing 
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Figure 4-3 Photos of the first prototype roller bearing 
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4.2 The Second Prototype Roller Seismic Isolation Bearing 
 
4.2.1 Mechanical Properties  
 
The design parameters of the bearing are listed in Table 4-2. The schematic view of the bearing 
is shown in Figure 4-4. The second prototype roller bearing has several improvements over the 
first prototype roller bearing. First of all, it has built-in devices for supplemental friction energy 
dissipation. In addition, the friction devices could also act to lock the bearing under wind and 
braking forces and under uplift of the superstructure due to vertical ground motions. Second, the 
rollers are not guided by the roller guides as seen in the first prototype roller bearing. Tests have 
shown that the interfaces between the ends of the roller and guide walls in the first prototype 
roller bearing may produce unexpected large friction forces, which could interrupt the rolling 
action of the rollers. A gap is designed between each end of the roller and the side wall (see 
Figure 4-4) in the second prototype bearing. Third, excessive rotations of the superstructure are 
prevented in this bearing by the side walls. The superstructure is allowed to rotate only until the 
gaps between the side walls and the bearing plates are exhausted. Lastly, this bearing has an 
option of adding shear keys to resist wind and braking forces in addition to the previously 
mentioned friction forces.  
 
Both the upper roller and the lower roller of the prototype bearing have a diameter D , a wall 
thickness t  and a final length 'L  of 4.92 in (125 mm), 1.06 in (27 mm) and 8.19 in (208 mm), 
respectively. The design displacement capacity of the bearing, 2 rD , is 3 in (76.2 mm). The steel 
used for the rollers and plates has a yield strength yσ  of 175 ksi (1207 MPa). The vertical force 
capacity P  is listed in Table 4-2 and was calculated using equations (2-50) and (2-51).      
 
The rotational capacity of the bearing is 0.06 radians, which is determined by the 0.4 in (10 mm) 
gap between the side walls and the upper and lower plates.  
  
Both the upper plate and the lower plate of the bearing have a thickness of 1.18 in (30 mm). The 
intermediate plate has a thickness of 1.18 in (30 mm) at the intersection of section lines A-A and 
B-B. The thickness is gradually increased towards the edges of the plate along line A-A at the 
top face of the plate and along line B-B at the bottom face of the plate to form two V-shaped 
sloping surfaces with a sloping angle of 5 degrees. The restoring forces Sf  for responses along 
the principal directions and along directions 45 degrees from the principal directions were 
calculated by equations (2-28) and (2-33), respectively. And, the rolling friction forces Drf  were 
computed by equations (2-29) and (2-34), respectively. Results are listed in Table 4-2. The 
coefficient of rolling friction rμ  was calculated by equation (2-3) with δ  of 0.002 in (0.05 mm).  
 
The sliding friction force for energy dissipation along each of the two principal directions of the 
bearing is generated by the corresponding pair of friction interfaces (see Figure 4-4) that are 
parallel to the rolling direction and located at two parallel outer faces of the side walls. There are 
two pairs of friction interfaces for rolling along the two principal directions of the bearing. If the 
bearing is displaced along one principal direction, only one pair of friction interfaces will be 
mobilized; if the bearing is displaced along directions 45 degrees away from the principal 
directions, both pairs of friction interfaces will be mobilized. Under such a condition, the bearing 
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will have the maximum friction force. Assume that the friction forces for the rolling directions of 
the upper roller and the lower roller are 1s Nμ  and 2s Nμ , respectively. The maximum friction 
force Dsf  is  
 

 ( ) ( )2 2
1 2Ds s sf N Nμ μ= +  (4-1)  

 
where sμ  is the coefficient of sliding friction; and 1N  and 2N  are normal forces applied to the 
friction interfaces. Note that the two friction forces can be designed to be different by applying 
different normal forces to the two pairs of friction interfaces. They are equal in this prototype 
bearing. Thus, the maximum friction force is defined by equation (3-3).  
 
The normal forces of the friction interfaces are achieved by screws. The mechanism is presented 
in the next section. The relationship between the torque T  applied to a screw and the resulting 
normal force bN  to the friction interface may be expressed as 
 
 ( )0.159 0.531bT N t dμ= +  (4-2)  
 
where t  and d  are the pitch and the diameter of the screw, respectively; and μ  is the coefficient 
of friction between the threads (Oberg et al. 2000). For each rolling direction, there are two 
friction interfaces. Normal forces for each interface are generated by three screws. As a result, 
the total normal force N  for each rolling direction is 
 
 6 bN N=  (4-3)  
 

Table 4-2 Design parameters of the second prototype roller bearing  
 

Vertical force capacity P  (kips) 210 

Principal 0.044 Restoring force  
Sf  ( mg *) 45  0.062 

Principal 0.0008 Rolling friction force  
Drf  ( mg ) 45  0.0011 

Principal s Nμ  Sliding friction force Dsf  
( mg ) 45  2 s Nμ  

Displacement capacity (in) 3 

Rotational capacity (rad) 0.06 

* seismic weight carried by the bearing 
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Figure 4-4 Schematic view of the second prototype roller bearing 
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4.2.2 Components 
 
The design details of the bearing are shown in Figure 4-5. The materials and functions of the 
components identified in the figure are presented below. Figure 4-6 shows the photos of the 
bearing and its components.   
 
1. Upper plate: a flat alloy steel plate. It is secured to the superstructure.  
 
2. Reaction wall: a steel angle with the exterior face strengthened by welded stiffeners. There 

are two pairs of reaction walls for each of the two rolling directions. One pair of the reaction 
walls is fixed to the upper plate and the other fixed to the lower plate. Each pair of the 
reaction walls has a friction plate (see item 8) attached to one of the walls. Three screws (see 
item 10) anchored at that wall are turned to push the friction plate against the matching face 
of the side walls (see item 7). By doing this, the friction plate applies a normal force to the 
matching face of the side walls. For force equilibrium, the same amount of normal force is 
generated between the other reaction wall and the matching face of the side walls.       

 
3. Upper roller: a seamless alloy steel tube. The upper roller is designed to roll between the 

upper and intermediate plates. The rollers do not touch the side walls as seen in the first 
prototype bearing. The reason for this has been explained in Section 4.2.1.  

 
4. Intermediate plate: a flat alloy steel plate, which has the top face machined to a V-shaped 

sloping surface and the bottom face machined to an inverted V-shaped sloping surface.  
 
5. Lower roller: a seamless alloy steel tube designed to roll between the intermediate and the 

lower plates.  
   
6. Lower plate: a flat alloy steel plate. It is anchored to the top of the pier cap or abutment.  
 
7. Side walls: four steel plates welded to each other and to the four edges of the intermediate 

plate. As previously mentioned, the side walls have multiple functions. They limit the 
displacements of the rollers and the rotation of the superstructure. Moreover, supplemental 
energy dissipation is generated through relative displacements between the side walls and 
reactions walls.      

 
8. Friction plate: a steel plate located between one of each pair of the reaction walls and the 

matching face of the side walls. The face of the plate in contact with the matching face of the 
side walls is plated with a layer of hard chromium for wear resistance.    

 
9. Hard chromium layer: plated to the faces of the friction interfaces for wear resistance, 

including the interface between the side walls and friction plates as well as that between the 
side walls and reaction walls.    

 
10. Fastener for normal force: consisting of a steel hexagon socket set screw and a steel hex 

nut. Three fasteners are used to apply a normal force to each friction plate. The amount of 
normal force depends on the torque applied to the screw.  
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11. Fastener for fixing friction plates: used to prevent relative movement between the friction 
plate and reaction wall.   

 
12. Shear keys: a tapered steel bar used to prevent rolling of the bearing under wind loads and 

braking forces in addition to the static friction force provided by the friction interfaces. The 
capacity of the keys is adjusted through the size of the critical section of the key.    

 
13. Temporary fasteners: used to fix the bearing for transporting.  
 
14. Protective rubber sheets: used to cover the gaps between the side walls and the upper and 

lower plates to keep duct and moisture from contaminating the rolling surfaces.      
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Figure 4-5 Design details of the second prototype roller bearing 
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Figure 4-5 Design details of the second prototype roller bearing (cont’d) 
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Figure 4-5 Design details of the second prototype roller bearing (cont’d) 
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Figure 4-6 Photos of the second prototype roller bearing 
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4.2.3 Testing of the Bearing 
 
Pilot tests were carried out to validate the performance of the bearing. The bearing was first 
subjected to monotonic vertical loading twice up to 1.5 times the design vertical load, 315 kips 
(1400 kN), to examine the load carrying capacity. Next, the vertical load was maintained for 900 
min. to examine the creep behavior of the bearing. Finally, the bearing was subjected to lateral 
cyclic loading along the principal directions under a constant design vertical load to investigate 
the lateral force-displacement responses.  
 
Figure 4-7 shows the testing apparatus. The cyclic loading was achieved by moving the lower 
part of the machine, where the lower plate of the bearing was anchored, relative to the upper part 
of the machine, where the upper plate was secured. Figure 4-8 shows the bearing at a lateral 
displacement of 3 in (76 mm). The vertical force-displacement responses to the monotonic 
vertical loading are shown in Figure 4-9. The bearing showed a smaller stiffness in the early 
stage of loading. This was likely due to closing of small gaps that existed between components 
of the bearing. When the load was larger than 90 kips (400 kN), the bearing exhibited a linear 
relationship between the force and displacement up to the maximum applied load. The design 
vertical displacement corresponding to the design vertical load, which is 210 kips (935 kN), was 
0.056 in (1.44 mm).  
 
 

 
 

Figure 4-7 Test setup  
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Figure 4-8 Bearing at a displacement of 3 in 
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Figure 4-9 Force-displacement responses to vertical loading 
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The bearing showed very small creep displacements within the time of the sustained loading (see 
Figure 4-10). The maximum change of the vertical displacement was approximately 0.0006 in 
(0.015 mm), which was only 1.5% of the design vertical displacement.  
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Figure 4-10 Change in the vertical displacement under sustained vertical loading 
 
 
After the creep test, the bearing was unloaded from 315 kips (1400 kN) to the design vertical 
load, 210 kips (935 kN) and was subjected to lateral cyclic loading along each of the principal 
directions with a displacement amplitude of 4.7 in (120 mm). A sample test result is shown in 
Figure 4-11.  
 
As identified in the figure, the measured restoring force Sf  is 9.4 kips (42 kN). According to 
Table 4-2, the theoretical value of Sf  is   
 
 ( ) ( )0.044 mg 0.044 210 9.2 kips 41 kNSf = = ⋅ = =   
 
This value agrees well with the measured value. According to Table 4-2, the theoretic value of 
the rolling friction force is  
 
 ( ) ( )0.0008 mg 0.0008 210 0.2 kips 0.9 kNDrf = = ⋅ = =   
 
A torque T  of 52 lb-ft (71 N-m) was applied to each screw used to produce a normal force to the 
friction interface. The screw had a diameter of 0.787 in (20 mm) and a pitch of 0.04 in (1 mm). 
According to equation (4-2), the normal force bN  produced by each screw with that torque is 
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( ) ( ) ( ) ( )52.4 12 9107 lb 9.1 kips
0.159 0.531 0.159 0.04 0.531 0.15 0.787b

TN
t dμ

×
= = = =

+ ⋅ + ⋅ ⋅
  

 
The total normal force for each rolling direction is (see (4-3)) 
 
 ( )6 6 9.1 54.6 kipsbN N= = ⋅ =   
 
Assume a coefficient of friction of 0.1 for the friction interfaces. The theoretical value of the 
friction force Dsf  along the principal directions is (Table 4-2) 
 
 ( ) ( )0.1 54.6 5.46 kips 24 kNDs sf Nμ= = ⋅ = =   
 
The theoretical value of the sum of Drf  and Dsf   is  
 
 ( ) ( )0.2 5.46 5.7 kips 25 kNDr Dsf f+ = + = =   
 
The measured value of the sum of Drf  and Dsf  is approximately 4.7 kips (21 kN) as shown in 
Figure 4-11. The error is approximately 21%. It may result from uncertainties associated with the 
coefficient of friction between the threads of the screws μ  and that at the friction interfaces sμ .  
 
A comprehensive testing program is in progress at the time of this writing to further characterize 
the bearing. It will be conducted to investigate the behavior of the bearings with different design 
parameters including the sloping angle, sliding friction force, loading frequency, direction of 
loading and displacement amplitude. 
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Figure 4-11 Force-displacement responses to lateral cyclic loading 
 

 
 
 



 

 102 



 

 103

CHAPTER 5 
CASE STUDY 

 
 
Design procedures to implement roller seismic isolation bearings in a bridge in a region of high 
seismicity are given in this chapter. The design procedures are primarily based on the results 
presented in this report and AASHTO specifications for LRFD bridge design (AASHTO 2004) 
and for seismic isolation design (AASHTO 2000).    
 
 
5.1 Description of the Bridge 
 
The bridge site is assumed to be located at 37.8° N latitude and 122.45° W longitude in the San 
Francisco area of California. The approximate location of the bridge is shown in Figure 5-1. Also 
indicated in the figure is the San Andreas Fault, which is the nearest fault to the bridge. The site 
is assumed to have a soil profile of type I, which is defined in AASHTO (2004). A typical 
continuous superstructure unit of the bridge consists of two 150 ft (45.7 m) spans over three 
columns as shown in  
Figure 5-2.            
 
 

 
 

Figure 5-1 Bridge location 
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Figure 5-2 A typical continuous unit of the bridge 
 
The bridge is designed with prestressed concrete box girders and reinforced concrete columns. 
The tributary dead load, vehicular live load, wind load and braking force for each column is 
assumed to be  2800 kips (12455 kN), 650 kips (2891 kN), 87.5 kips (389 kN) and 35 kips (156 
kN), respectively. The lateral stiffness of the column ck  is assumed to be 1400 kips/in (245 
kN/mm).  
 
 
5.2 Design Procedures  
 
5.2.1 Vertical Load Carrying Capacity  
 
5.2.1.1 Vertical factor loads and seismic weight.  
 
Based on strength limit state I in AASHTO (2004), the factored vertical load of the bearings is 
 
 1.75v pQ DC LLγ= +  (5-1) 

 
where vQ  is the factored vertical load; pγ  is a load factor that ranges from 1.25 to 0.9; DC  is 
the dead load; and LL  is the vehicular live load. Here, the value of pγ  is conservatively assumed 
to be 1.25. The factor vertical load vQ  for each column is 
 
 1.25 2800 1.75 650 4638 (kips) ( 20630 kN)vQ = ⋅ + ⋅ = =   
 
Based on extreme event limit state I in AASHTO (2004), the tributary seismic weight for each 
column W  is 
 
 p EQW DC LLγ γ= +  (5-2) 
 
where pγ  is taken as 1.0; and EQγ  is assumed to be 0.5 as suggested by AASHTO (2004). The 
value of W  is 
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 ( ) ( )1.0 0.5 2800 0.5 650 3125 kips 13900 kNW DC LL= + = + ⋅ = =   
 
Since the distance from the bridge site to the nearest fault is less than 31 mi (50 km), the effect of 
vertical ground motions on the design vertical load for the bearings need to be considered (see 
Section 3.3.3). The distance of the site to the nearest fault, i.e., the San Andreas Fault, is 
approximately 4 mi (6 km), as identified in Figure 5-1. Based on Tables 3-4 and 3-5, 0.9 is 
conservatively selected for the coefficient vC  to be used in equation (3-18). 
 
The tributary seismic weight considering the effect of vertical ground motions svW  (equation 
(3-18)) for each column is  
 
 ( ) ( ) ( )1 1.9 3125 5938 kips 26410 kNsv vW C W= + = ⋅ = =   
 
Since the value of svW  is larger than that of vQ , svW  is used as the design vertical load of the 
bearings in each column.  
 
5.2.1.2 Diameter of rollers and thickness of bearing plates.  
 
Each column of the bridge has four roller seismic isolation bearings. There are eight bearings for 
each continuous unit: four on the interior column and two on each of the two exterior columns. 
The design vertical load for each bearing is 1485 kips (6603 kN), one-fourth the value of svW . 
Steel rollers and steel bearing plates with a yield strength of 240 ksi (1655 MPa) are used. 
According to equation (2-50), the product of the diameter of the rollers and the initial length L  
should satisfy   
 

 ( ) ( )2 2
2 2

/ 4 1485 29500 95 in 61290 mm
8 8 240
sv s

y

W EDL
σ

⋅
≥ = = =

⋅
  

 
Rollers with a diameter D  of 8 in (203 mm) and an initial length L  of 12 in (305 mm) are used. 
Note that L  is not the final length of the roller, which will be determined later after the 
displacement capacity of the bearing is determined.  
 
The wall thickness of the roller is taken as 0.25 of the diameter (see Section 2.6.2), namely, 2 in 
(51 mm). The thickness of the upper and lower plates and the center of the intermediate plate are 
taken as the same value as the wall thickness of the rollers. The length of the roller is determined 
later after the maximum displacement demand of the roller under the maximum probable 
earthquake is determined.    
 
5.2.2 Sloping Angle and Characteristic Strength  
 
To avoid sliding of the rollers, the sloping angle of the bearing θ  is set as smaller than 11 
degrees (see equation (2-40)). Within this range, a larger sloping angle results in a higher 
restoring force of the bearing and hence a larger base shear force for the column where the 
bearing seats. However, as shown in Section 3-2, a larger restoring force allows for the use of a 
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higher sliding friction force and hence leads to a smaller maximum relative displacement 
response under a given design earthquake. 
 
A bearing with a sloping angle of 6 degrees and a maximum allowable sliding friction force Dsaf  
is investigated first. 
 
With the tributary seismic weight W  for each column, the restoring force of each of the four  
bearings Sf  (see equation (2-28)) is  
 

 ( ) ( )1 1 3125sin sin 6 40.8 kips 182 kN
2 4 2 4S

Wf θ= = = =    

 
The sliding friction force Dsf  of the bearing is set as the maximum allowable value Dsaf  
(equation (3-6)) 
 

 ( ) ( )38.5 kips 171 kN
1.05

S
Ds Dr

ff f= − = =   

 
where the rolling friction force Drf  is calculated as (equations (2-3) and (2-29)) 
 

 ( ) ( )40.002 3125 5 10 781.25 0.4 kips 2 kN
4 4 8 / 2 4Dr r

W Wf
R
δμ −= = ⋅ = ⋅ = ⋅ ⋅ = =   

 
5.2.3 Maximum Relative Displacement Demand under the Design Earthquake  
 
The maximum displacement demand is conservatively estimated using properties of the bearings 
along the principal directions as stated in Section 3.2.1. Moreover, the effect of vertical ground 
motions is ignored as explained in Section 3.3.3.     
 
5.2.3.1 Equivalent linear system.  
 
Assume an initial value, 10 in, for the maximum relative displacement response of the bearing ix . 
 
 ( )10 inix =   
 
The effective stiffness of the bearing ik  (see equation (3-23)) is 
 

 ( )40.8 38.5 0.4 7.97 kips/in
10

S Dr Ds
i

i

f f fk
x

+ + + +
= = =   

 
The combined stiffness of four roller bearings and the column effK  (see equation (3-22)) is 
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 ( )
1 11 1 1 1 31.17 kips/in

4 1400 4 7.97eff
c i

K
k k

− −⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠⎝ ⎠
  

 
Note the stiffness of the surrounding soil is ignored. The effective period of the combined system 
consisting of one column and four bearings is 
 

 ( )31252 2 3.2 s
386.1 31.17eff

eff

WT
gK

π π= = =
⋅

  

 

 ( )2 2 1.96 rad/s
3.2eff

effT
π πϖ = = =   

 
The relative displacement of the column cx  due to the force of the bearings is 
 

 ( ) ( ) ( )4 4 40.8 38.5 0.4
0.23 in

1400
S Dr Ds

c
c

f f f
x

k
+ + + +

= = =    

 
This displacement is much smaller than that of the roller bearing as expected. The total relative 
displacement of the superstructure maxx  is  
 
 ( )max 10 0.23 10.23 ini cx x x= + = + =   
 
The equivalent damping cβ  of the combined system (see equation (3-26)) is 
 

 ( )
( )

( )
( )max

2 2 38.5 0.4 10
0.3

40.8 38.5 0.4 10.23
Dr Ds i

c
S Dr Ds

f f x
f f f x

β
π π

+ ⋅ + ⋅
= = =

+ + + + ⋅
  

 
5.2.3.2 Elastic seismic response coefficient.  
 
According to Figure 3.10.2-1 of AASHTO (2004), the acceleration coefficient A  representing 
the design earthquake for the bridge site is   
 
 0.6A =  (5-3) 
 
The elastic seismic response coefficient sC  is defined by AASHTO (2000) as  
 

 2.5i
s

eff

ASC A
T B

= <  (5-4) 
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where iS  is the site coefficient as defined in Table 5-1 (AASHTO 2000); and B  is damping 
coefficient as defined in Table 3-6 (AASHTO 2000). iS  is 1.0 for soil profile type I, and B  is 
1.7 for cβ  of 0.3. 
 
The value of  sC  is  
 

 0.6 1.0 0.11 2.5 0.6 1.5
3.2 1.7sC ⋅

= = < ⋅ =
⋅

  

 
 

Table 5-1 Site soil coefficient iS  (AASHTO 2000) 
 

Soil Profile Type I II III IV 

iS  1.0 1.5 2.0 2.7 

 
 
5.2.3.3 Maximum relative displacement demand  
 
The maximum relative displacement demand of the bearing diS  is obtained by   
 

 ( )2 2

0.11 386.1 0.23 10.83 in
1.96

s
di c

eff

C gS x
ϖ

⋅
= − = − =  (5-5) 

 
10.83-in is used as the new value of ix  and diS  is recalculated in a similar manner until the 
calculated value of diS  is close to the assumed value of ix . The final value of  diS  is  
 
 ( ) ( )11.72 in 298 mmdiS = =   
 
This displacement demand is increased here by 40% to address the fact that the secant stiffness 
method could underestimate as much as 40% the maximum displacement response of a roller 
seismic isolation bearing (see Section 3.4.3). The increased maximum displacement demand '

diS  
is 
 
 ( ) ( )' 1.4 16.4 in 417 mmdi diS S= = =   
 
As mentioned in Section 2.3, the relative displacement between the roller and matching bearing 
plates is half the relative displacement of the bearing. Thus, the maximum displacement demand 
of the rollers is  
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 ( ) ( )
'

' 8.2 in 208 mm
2
di

dr
SS = = =    

 
If a smaller maximum displacement demand is desired, one can raise the sloping angle within the 
range suggested by equation (2-40). This allows the use of a larger sliding friction force and 
hence achieves a smaller displacement demand.    
 
5.2.4 Displacement Capacity of the Bearings 
 
To accommodate the displacement demand under the design earthquake ( '

drS ), 8.5 in (216 mm) 
is selected as the design displacement capacity of the rollers rD . The displacement capacity of 
the bearing is 2 rD , 17 in (432 mm). According to equation (2-51), the final length of the rollers 

'L  is   
 
 ( ) ( )' 2 12 2 8.5 29 in 737 mmrL L D= + = + ⋅ = =   
 
5.2.5 Fasteners for Normal forces on the Friction Interfaces    
 
The sliding friction force Dsf  for each rolling direction is 38.5 kips (171 kN) (see Section 5.2.2). 
Thus, each of two friction interfaces for each rolling direction needs to provide a friction force of 
19.3 kips (86 kN). Assume a coefficient of friction of 0.1 for the interface and three screws for 
applying normal forces to the interface. The normal force required by each bolt is  

 

 ( ) ( )19.3 64.3 kips 286 kN
0.1 3bN = = =

⋅
  

 
Screws are used with a diameter of 1 in (25 mm), a pitch of 1/12 in (2 mm) conforming to 
UNF/UNRF series and a tensile area of 0.663 in2 (428 mm2) (Oberg et al. 2000). The yield 
strength of the screw is 150 ksi (1034 MPa). To achieve the normal force bN , the required 
torque for each screw T  is estimated to be (equation (4-2)) 
 

 
( ) ( )

( ) ( )
0.159 0.531 62.3 0.159 1/12 0.531 0.15 1

6 kips in 678 N m
bT N t dμ= + = ⋅ + ⋅ ⋅

= ⋅ = ⋅
  

  
where the coefficient of friction between the threads is assumed to be 0.15. Note that testing such 
as shown in Section 4.2.3 should be conducted to verify this result.   
 
5.2.6 Serviceability Limit State    
 
According to AASHTO (2004), the load combination for the lateral forces for each bearing 
associated with the normal operational use of the bridge is  
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 0.3lsQ BR WS= +  (5-6) 
 
where lsQ  is the factored lateral load for each bearing; BR  is the vehicular braking force; and 
WS  is the wind load.  
 

 ( ) ( )35 87.50.3 15.3 kips 68.1 kN
4 4lsQ = + ⋅ = =   

 
This force is smaller than the restoring force of each bearing, 40.8 kips (182 kN). Therefore, 
rolling of the rollers of the bearing will not occur under the serviceability limit state. 
Alternatively, shear keys can be added to resist this force.  
 
5.2.7 Column Base Shear 
 
The maximum column base shear occurs when the responses of the bearing are along directions 
45 degrees away from the principal directions. Based on equation (3-17), the maximum base 
shear for each column is 
 

 

( ) ( )

( ) ( )

( ) ( )

4

2 1 sin 2 1 2 4
2
2 3125 1 0.9 sin 6 2 5 10 3125 1 0.9 2 4 38.5

2
661 kips 2941 kN

v r v DsV W C W C fθ μ

−

= + + + + ⋅

= + + ⋅ ⋅ ⋅ + + ⋅ ⋅

= =

  

 
This is the base shear force for each column and is approximately 21% the seismic weight W . 
Note that under this force, the column should not yield to ensure proper functioning of the 
bearings. The connections of each of the four bearings to the superstructure and the column will 
have to be designed to resist one fourth of this force, that is, 165 kips (734 kN).  
 
5.2.8 Uplift of the Superstructure 
  
The value of vC g⋅  represents the maximum downward vertical acceleration response expected 
for the site (see equation (3-16)). Use equation (2-44) to check the limit state associated with the 
uplift of the superstructure.   
 

 3
4 4 38.50.9 1.05

3125
Ds

v
fz C g g g g g g g

W−

⋅⎛ ⎞ ⎛ ⎞= = < + = + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

   

 
Thus, uplift of the superstructure is not likely to occur. However, since the bridge is very close to 
a major fault, a response-history analysis of the bridge is suggested to verify this conclusion.      
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5.3 Schematic View of the Bearing 
 
The schematic view and dimensions of the bearing is shown in Figure 5-3. The bearing uses the 
same design concepts as presented in Section 4.2. Refer to Section 4.2.2 for more information on 
the detailed design of the bearing.  
 
 
 

 
 

 Figure 5-3 Schematic view of the bearing 
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Figure 5-3 Schematic view of the bearing (cont’d) 
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CHAPTER 6 
SUMMARIES AND CONCLUSIONS 

 
 
6.1 Summaries and Conclusions 
 
This report presents a new roller seismic isolation bearing for use in highway bridges. The 
bearing uses rolling motions of cylindrical rollers between sloping surfaces to achieve seismic 
isolation. Principles of the bearing under vertical loading and earthquake excitation are 
analytically and experimentally investigated. Two prototype roller isolation bearings have been 
developed with and without built-in friction devices for supplemental energy dissipation. A case 
study illustrating design procedures of the bearing is presented. A number of important 
conclusions are shown as follows: 
 
(1) The bearing has a constant spectral acceleration independent of the amplitude and the 

frequency content of horizontal ground motions. This means resonance between the bearing 
and the horizontal ground motions will not occur and the column base shear can be predicted 
with more certainty. In addition, the bearing also possesses a self-centering capability when 
the earthquake ends. This means the bridge superstructure can return to its original position 
after an earthquake.     

  
(2) To prevent sliding of the rollers, the sloping angle of the bearing needs to be smaller than a 

certain value depending on the coefficient of static friction and coefficient of rolling friction 
between the roller and sloping surface. For steel rollers and steel bearing plates, the sloping 
angle may need to be smaller than 11 degrees for greasy contact interface.    

 
(3) The bearing has the maximum restoring force, rolling friction force and sliding friction force 

when responses are along directions 45 degrees away from the principal directions. To be 
conservative, properties of the bearing along the principal directions are used in estimating 
the maximum displacement response of the bearing while those along directions 45 degrees 
away from the principal directions are used to predict the maximum base shear.    

 
(4) A larger sloping angle of the bearing results in a larger restoring force and hence a higher 

lateral strength of the bearing. However, based on the results of nonlinear response-history 
analyses, this does not result in a smaller maximum displacement response in most cases if 
friction devices are not incorporated into the bearing. If friction devices are included into the 
bearing, a larger restoring force permits the use of a larger sliding friction force of the 
bearing while maintaining a self-centering capability, which leads to a smaller maximum 
displacement response.   

 
(5) Vertical ground motions have little influence on the maximum displacement response of the 

bearing with friction energy dissipation devices. However, they could significantly increase 
the maximum acceleration response and hence the column base shear. A coefficient to 
account for this effect has been incorporated into the calculation procedure for the column 
base shear.     
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(6) An equivalent linear method based on relative displacement, relative velocity and absolute 
acceleration spectra has been developed. The method provides a better prediction of the 
maximum displacement demand of the bearing under earthquakes than the secant stiffness 
method. Results from nonlinear response-history analyses showed that the proposed method 
and the secant stiffness method could underestimate the maximum displacement response by 
approximately as much as 20% and 40%, respectively, under the 28 ground motions 
examined.  

 
 
6.2 Future Research 
 
(1) In addition to the displacement spectrum, the proposed equivalent linear method also uses 

relative velocity and absolute acceleration spectra. However, existing building codes and 
bridge specifications only provide 5% damped relative displacement spectra. Research 
should be conducted to develop a simplified method to establish absolute acceleration and 
relative velocity spectra from a 5% damped relative displacement spectrum. 

 
(2) The durability of the friction interface of the bearing’s friction devices subjected to thermal 

cycles should be investigated. Alternatively, methods of demobilizing the friction devices 
under thermal cycles can be developed to address this issue.   

 
(3) The bearing may exhibit a large permanent displacement when uplift of the superstructure 

occurs. Although the friction force from the friction energy dissipation device could help 
resist the uplift, it typically occupies only a small fraction of the resistance against uplift as 
compared to the gravity force. A mechanism to increase the resistance needs to be developed 
if the bearing is to be used in places where uplift is likely to occur.          

 
(4) The properties of the bearing will change over time due to wear under repeated loading 

cycles and weathering due to environmental factors. Moreover, the bearing may have an 
initial displacement prior to earthquakes due to thermal displacements and long-term effects 
such as creep and shrinkage of concrete if a concrete superstructure is used. These effects on 
the seismic performance of the bearing should be studied.         
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APPENDIX A 
 
 
The attached CD contains experimental data on roller seismic isolation bearings from tests 
conducted at the University of California at San Diego (see file UCSD_tests.pdf), National 
Center of Research on Earthquake Engineering, Taipei, Taiwan (see file NCREE_tests.pdf) and 
Institute of Engineering Mechanics, Harbin, China (see file IEM_tests.pdf). In addition, it also 
contains results of tests on the coefficient of rolling direction under rusty conditions (see file 
Fr_rusty.pdf).  
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APPENDIX B 
GROUND MOTIONS 
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 Figure B-1 El Centro Array #6, horizontal: 230 degrees 
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 Figure B-2 El Centro Array #6, horizontal: 140 degrees 
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 Figure B-3 Hollister, horizontal: 90 degrees 
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 Figure B-4 Hollister, horizontal: 0 degrees 
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 Figure B-5 Lexington Dam, horizontal: 90 degrees 
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 Figure B-6 Lexington Dam, horizontal: 0 degrees 



 

 122

-40

-20

0

20

Ve
lo

ci
ty

 (i
n/

s)

-0.8

-0.4

0

0.4

0.8

A
cc

el
er

at
io

n 
(g

)

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

-8
-4
0
4
8

12
16

D
is

pl
ac

em
en

t (
in

)

 
 

 Figure B-7 Petrolia, horizontal: 90 degrees 
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 Figure B-8 Petrolia, horizontal: 0 degrees 
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 Figure B-9 Lucerne Valley, horizontal: L 
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 Figure B-10 Lucerne Valley, horizontal: T 
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 Figure B-11 Yermo, horizontal: 360 degrees 
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 Figure B-12 Yermo, horizontal: 270 degrees 
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 Figure B-13 Sylmar, horizontal: 90 degrees 
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 Figure B-14 Sylmar, horizontal: 360 degrees 
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 Figure B-15 Newhall Fire, horizontal: 90 degrees 
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 Figure B-16 Newhall Fire, horizontal: 360 degrees 
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 Figure B-17 Corralitos, horizontal: 90 degrees 
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 Figure B-18 Corralitos, horizontal: 0 degrees 
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 Figure B-19 Santa Monica City Hall Grounds, horizontal: 90 degrees 
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 Figure B-20 Santa Monica City Hall Grounds, horizontal: 360 degrees 
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 Figure B-21 Oakland Outer Harbor Wharf, horizontal: 305 degrees 
 

-20

-10

0

10

20

V
el

oc
ity

 (i
n/

s)

-0.4

-0.2

0

0.2

0.4

A
cc

el
er

at
io

n 
(g

)

0 5 10 15 20 25 30 35 40
Time (s)

-4

-2

0

2

4

D
is

pl
ac

em
en

t (
in

)

 
 

 Figure B-22 Oakland Outer Harbor Wharf, horizontal: 35 degrees 
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 Figure B-23 Pomona, horizontal: 90 degrees 
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 Figure B-24 Pomona, horizontal: 0 degrees 
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 Figure B-25 Altadena, horizontal: 90 degrees 
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 Figure B-26 Altadena, horizontal: 0 degrees 
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 Figure B-27 Century City, horizontal: 90 degrees 
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 Figure B-28 Century City, horizontal: 360 degrees 
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 Figure B-29 Hollister, vertical 
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 Figure B-30 Lexington Dam, vertical 
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 Figure B-31 Petrolia, vertical 
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 Figure B-32 Lucerne Valley, vertical 
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 Figure B-33 Yermo, vertical 
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 Figure B-34 Sylmar, vertical 
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 Figure B-35 Newhall Fire, vertical 
 

-8

-4

0

4

8

V
el

oc
ity

 (i
n/

s)

-0.4
-0.2

0
0.2
0.4
0.6

A
cc

el
er

at
io

n 
(g

)

0 5 10 15 20 25 30 35 40
Time (s)

-2
-1
0
1
2
3
4

D
is

pl
ac

em
en

t (
in

)

 
 

 Figure B-36 Corralitos, vertical 
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 Figure B-37 Santa Monica City Hall Grounds, vertical 
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 Figure B-38 Oakland Outer Harbor Wharf, vertical 
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 Figure B-39 Pomona, vertical 
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 Figure B-40 Altadena, vertical 



 

 139

-4

-2

0

2

4

V
el

oc
ity

 (i
n/

s)

-0.15
-0.1

-0.05
0

0.05
0.1

0.15

A
cc

el
er

at
io

n 
(g

)

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (s)

-1.5
-1

-0.5
0

0.5
1

1.5

D
is

pl
ac

em
en

t (
in

)

 
 

Figure B-41 Century City, vertical 
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