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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national
center of excellence in advanced technology applications that is dedicated to the reduction
of earthquake losses nationwide. Headquartered at the University at Buffalo, State Univer-
sity of New York, the Center was originally established by the National Science Foundation
in 1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses through
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Center
coordinates a nationwide program of multidisciplinary team research, education and
outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is derived from the Federal Emergency
Management Agency (FEMA), other state governments, academic institutions, foreign
governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by devel-
oping seismic evaluation and rehabilitation strategies for the post-disaster facilities and
systems (hospitals, electrical and water lifelines, and bridges and highways) that society
expects to be operational following an earthquake; and to further enhance resilience by
developing improved emergency management capabilities to ensure an effective response
and recovery following the earthquake (see the figure below).
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A cross-program activity focuses on the establishment of an effective experimental and
analytical network to facilitate the exchange of  information between researchers located
in various institutions across the country. These are complemented by, and integrated with,
other MCEER activities in education, outreach, technology transfer, and industry partner-
ships.

This report presents the experimental research program developed in conjunction with analytical
research on the use of metallic dampers as structural fuses to reduce structural damage due to
earthquakes. A detailed analytical research program and proposed design guidelines were presented
in a companion report (Technical Report MCEER-06-0004). This report presents the results of a
proof-of-concept experimental program to validate the proposed design procedure, which involved
testing of two types of Buckling Restrained Braces (BRBs) on the shake table at the University at
Buffalo. The first BRB had moment-resisting connections made by Nippon Steel Corporation (Japan)
and the second had pin connections, manufactured by Star Seismic (USA). The main objectives of
the testing were to: (1) assess the replaceability of BRBs designed to be sacrificed and easy-to-repair
members, (2) investigate the behavior of a special type of connector, which is attached to the frame
by a removable and eccentric gusset plate, and was designed to prevent performance problems
observed in other experimental research, and (3) examine the use of seismic isolation devices to
protect nonstructural components from severe floor vibrations. Good agreement was generally
observed between the experimental results and seismic response predicted through analytical
models.



v

ABSTRACT

In a previous report (Vargas and Bruneau, 2006) a procedure to design structural fuse

systems was presented.  As a proof of concept to the developed design procedure, an

experimental project was conducted on the shaking table at University at Buffalo, which

consists of a three-story frame designed with BRBs.  Two types of BRBs with different

types of connections were used in this test: BRBs with moment-resisting connections, and

BRBs with pin connections, manufactured by Nippon Steel Corporation (Japan) and Star

Seismic (USA), respectively.  This experimental project also assesses the replaceability of

BRBs designed as sacrificeable and easy-to-repair members.  These BRBs are connected

to the frame by removable and eccentric gusset-plate, especially designed to prevent

performance problems observed in other experimental research.  Design and behavior of

this type of connection is also investigated here.  Another objective of this test is to

examine the use of seismic isolation devices to protect nonstructural components from

severe floor vibrations in buildings designed per the structural fuse concept.  The seismic

isolation device consists of a bearing with a spherical ball rolling in conical steel plates,

a.k.a. Ball-in-Cone (BNC) system.  This type of seismic isolator was installed on the top

floor of the frame model, and its response in terms of acceleration and displacement is

investigated.  Finally, results from the tests are also discussed.
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SECTION 1

INTRODUCTION

Passive energy dissipation (PED) devices have been implemented in recent years to

enhance structural performance by reducing seismically induced structural damage (and,

indirectly to some extent, non-structural damage).  Soong and Spencer (2002) reported

that, in the last 16 years, more than one hundred buildings in North America have been

either retrofitted or built using PED devices.  In the meantime, Japan has employed these

structural protective systems in hundreds of buildings.

PED metallic dampers (a.k.a. hysteretic dampers) dissipate energy via inelastic

deformations.  Since their response is not sensitive to the frequency of loading, they are

also called rate-independent dampers, or displacement-dependent dampers.  The amount

of damping they provide is somewhat proportional to the magnitude of their inelastic

deformations.  Although they also increase the stiffness of the primary structure to some

degree, the possible increase in input energy due to the added stiffness is dissipated as

part of the total hysteretic behavior of properly designed  dampers, resulting in a net

reduction on the response of the structural system in terms of lateral displacements,

compared to response of the system without dampers.  Accelerations and lateral forces are

either increased or reduced depending on the ground motion and system features.

Metallic dampers are defined here to be structural fuses when they are designed such that

all damage is concentrated on the PED devices, allowing the primary structure to remain

elastic.  Many benefits ensue from the structural fuse concept.  For instance, following a

damaging earthquake only the dampers would need to be replaced (hence the “fuse”

analogy), making repair works easier and more expedient, without the need to shore the



2

building in the process.  Furthermore, in that instance, self-recentering capabilities of the

structure is possible in that, once the ductile fuse devices are removed, the elastic

structure returns to its original position.

In a previous report (Vargas and Bruneau, 2006) a procedure to design and retrofit

structural fuse systems was presented, based on a parametric analysis conducted for

SDOF systems.  As a proof of concept to the developed design procedure, Sections 2, 3,

and 4 of this report describe experimental testing on the shaking table at University at

Buffalo of a three-story frame designed with buckling-restrained braces (BRBs).  Two

types of BRBs with different types of connections are used in this test: BRBs with

moment-resisting connections, and BRBs with pin connections.  This experimental

project assesses the replaceability of BRBs designed as sacrificeable and easy-to-repair

elements.  Eccentric gusset-plate especially designed to prevent performance problems

observed in previous experimental research are used for the connection of BRBs.  As part

of this test, a seismic isolation device is installed on the experimental frame to examine

its effectiveness in the protection of nonstructural components from severe floor

vibrations.  Furthermore, a series of uniaxial static tests were conducted to experimentally

determine the cyclic characteristics of the BRBs, and comparisons between results

obtained from static and dynamic tests are also discussed.

Finally, some conclusions are presented in Section 5.  The three appendixes presented at

the end of this report provide supplemental information in support of Sections 2 through

4.
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SECTION 2

EXPERIMENT DESIGN

2.1. Introduction

A previous report has been dedicated to analytically investigate the structural fuse

concept as an alternative to improve the resilience of new and existing structures (Vargas

and Bruneau, 2006).  As a proof of concept to the previously developed design

procedure, this report describes an experimental project conducted on the shaking table at

University at Buffalo, which consists of a three-story frame designed with buckling-

restrained braces (BRBs).  Two types of BRBs with different types of connections are

used in this test: BRBs with moment-resisting connections, and BRBs with pin

connections, manufactured by Nippon Steel Corporation (Japan) and Star Seismic (USA),

respectively.

Recalling that one of the main purposes of the structural fuse concept is to concentrate

seismically induced damage on disposable elements, this experimental project assesses

the replaceability of BRBs designed as sacrificeable and easy-to-repair members.  BRBs

replaceability is examined in a test-assessment-replacement-test sequence, as described in

Section 3.  These BRBs are connected to the frame by removable and eccentric gusset-

plate, especially designed to prevent performance problems observed in previous

experimental research (Tsai et al. 2004, Mahin et al. 2004, and Uriz, 2005).  Design and

behavior of this type of connection is also investigated in this experimental project.

Another objective of this test is to examine the use of seismic isolation devices to protect

nonstructural components from severe floor vibrations.  The seismic isolation device
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selected here consists of a bearing with a spherical ball rolling in conical steel plates,

a.k.a. Ball-in-Cone (BNC) system.  This type of seismic isolator, manufactured by

WorkSafe Technologies, was installed on the top floor of the frame model, and its

response in terms of acceleration and displacement is investigated.

This Section presents all the aspects of the experiment design from the prototype and

model description, to the analytical predictions performed using SAP 2000 (Computers

and Structures, Inc. 2000).  Gusset-plate description, and seismic behavior of the floor

isolation device for nonstructural components are also presented.

2.2. Prototype Description

In this study, one of the SAC model buildings was selected as the prototype for the

experiment. Recall that SAC was a joint effort between the Structural Engineers

Association of California (SEAOC), the Applied Technology Council (ATC), and

California Universities for Research in Earthquake Engineering (CUREe), established to

address performance problems of steel moment-frame connections found after the 1994

Northridge earthquake (FEMA 355-C).

The selected SAC project consists of a three-story steel building with seven frames in the

North-South (NS) direction and five frames in the East-West (EW) direction, as shown in

Figure 2.1.  Moment-resisting frames are represented by solid lines on the perimeter, and

gravity frames are shown as dotted lines.  According to FEMA 355-C, the project is a

standard office building located on stiff soil (soil type B as per FEMA 368).  As reported

in FEMA 355-C, designs of the moment-resisting frames in the two orthogonal directions

were very similar, therefore, only half of the structure is considered in the analysis.  In

this study, one single bay of the exterior frames in the NS direction is considered as a

substructure for design purposes.  This prototype substructure is designed following the

procedure presented in Vargas and Bruneau (2006) for MDOF buildings using BRBs as

structural fuses.
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Based on the loading definition described on FEMA 355-C, the seismic mass of the entire

structure is 0.9565 kN s2/mm (65.53 kip s2/ft) for the typical floors, and 1.0349 kN s2/mm

(70.90 kip-s2/ft) for the roof.  The total mass of the building is 2.9480 kN s2/mm

(201.96 kip s2/ft), which corresponds to a total weight of 28.93 MN (6503 kips).  Since

only one bay of the exterior frame is considered for the analysis, one sixth of the total

mass is assigned to the substructure as 0.4913 kN s2/mm (34.49 kip s2/ft), which

corresponds to a weight of 4822 kN (1084 kips).  Figure 2.2 shows the geometry and

mass distribution for the studied frame.  Note that the BRBs are placed in diagonal

configuration at every story.

Figure 2.1.  Prototype; (a) Elevation View, (b) Plan View (FEMA 355-C)
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Steel yield strength of 345 MPa (50 ksi) and 290 MPa (42 ksi) is used to design frame

elements and the BRBs, respectively.  The prototype is designed for the set of ground

motions described in Vargas and Bruneau (2006) scaled to a peak ground acceleration of

0.375 g (Section 2.4 discusses the selection of this value as the target peak ground

acceleration).  Mass matrix for this building can be obtained from Figure 2.2 as:

Using (7.3) from Vargas and Bruneau (2006), the corresponding mode shape vector can

be calculated as:

Figure 2.2.  Geometry and Mass Distribution
for the Prototype
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The elastic period limit, TL, and the modal participation factor, Γ1, are obtained from (7.1)

and (7.2) from Vargas and Bruneau (2006), respectively.  In this particular case,

TL = 1.80 s, and Γ1 = 1.27, which corresponds to an allowable story drift of 2% (i.e.,

Δar = 238 mm).  In Vargas and Bruneau (2006) it was observed that values of α $ 0.25

and μmax $ 5 provide systems with appropriate seismic performance.  Based on this

observation, values for parameters α and μmax are selected as 0.25 and 5, respectively, as

target parameters.  Recognizing that the elastic period, T, needs to be shorter than 1.80 s,

η = 0.25 is chosen from Table 4.1 in Vargas and Bruneau (2006) for α = 0.25 and

μmax = 5, assuming that the actual period will be close to 1 s.

2.3. Analytical Results for the Prototype

From the target parameters (i.e., α = 0.25, μmax = 5, η = 0.25 and T # 1.80 s) and using

Equations (4.48) to (4.56) from Vargas and Bruneau (2006), the required yield base

shear, Vy, total base shear, Vp, base shear capacity for the frame, Vyf, and for the damping

system, Vyd, are calculated as 452 kN, 903 kN, 565 kN, and 339 kN, respectively, for the

design earthquake scaled to a peak ground acceleration of 0.375 g.  Note that this system

requires an overstrength factor of 2 according to (4.47) in Vargas and Bruneau (2006). 

Consequently, frame members and BRBs are designed for their required base shear

capacities, and their properties are shown in Table 2.1.  Note that the cross-sectional area

of braces consists of rectangular steel plates (in Table 2.1 only the braces core properties

are presented).  Furthermore, Appendix A shows the step-by-step design of the prototype

system following the procedure presented in Vargas and Bruneau (2006).

Table 2.1.  Summary of Components for the Prototype System

Floor / Story Beams Columns BRBs
(mm)

(1) (2) (3) (4)
3 W 16 x 36 W 14 x 74 73 x 10
2 W 24 x 62 W 14 x 74 121 x 10
1 W 24 x 76 W 14 x 74 143 x 10
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Actual parameters and elastic period are determined from pushover and eigenvalue

analyses, respectively, as α = 0.42, μmax = 2.92, η = 0.30 and T = 0.98 s, which are in fair

agreement with the previously calculated target parameters, recalling that some

deviations from target parameters may result from the selection of available structural

elements for the actual system.  However, actual parameters for the prototype system

result in a behavior that still falls within the area of admissible solutions according to the

graphic representation of Figure 3.8 in Vargas and Bruneau (2006).  Figure 2.3 shows the

pushover curves corresponding to the bare frame, BRBs, and the total base shear capacity

of the system.  Yield displacements of 40 mm and 118 mm for the BRBs and the bare

frame, respectively, may be observed on this plot.  A yield base shear of 535 kN and a

total shear capacity of 1032 kN may also be noted, which exceed the minimum values

required by the design procedure (i.e., Vy = 452 kN and Vp = 903 kN).
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Figure 2.3  Pushover Curve for the Prototype System
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Seismic response of the system is then evaluated by nonlinear time history analysis to

verify that the structural fuse objective is fully satisfied.  Figure 2.4 shows the maximum

response in terms of hysteresis loops of beams and BRBs at each story.  Note that beams

respond elastically, while hysteretic energy is completely dissipated by inelastic behavior

of BRBs at every story.  A maximum roof displacement of 85 mm was obtained from the

analysis.  Note that this roof displacement corresponds to a frame ductility of 0.71 (i.e.,

μf  < 1.0, which is required to avoid inelastic deformations of the frame members). 

Furthermore, the maximum observed story drift was 0.74%, which is less than the limit

of 1% determined from the pushover curve to fully satisfy the structural fuse concept (see

Figure 2.3).
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Story Beams Resp. (MN-mm vs rad) BRBs Response (kN vs mm)
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Figure 2.4  Hysteresis Loops for the Prototype System
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2.4. Scaling and Model Description

In every experimental study, it is desirable trying to build the largest possible physical

model for a particular application (Harris and Sabnis, 1999).  However, in many cases

there are limitations such as dimensional restrictions, and loading equipment capabilities,

that constraint the size of a physical model.  Shake tables of the Structural Engineering

and Earthquake Simulation Laboratory (SEESL) at University at Buffalo have a

theoretical acceleration performance of 1.15 g with a 40 kip specimen, which reduces to

an acceleration performance of 1.05 g for a 110 kip specimen.  Due to this constraint,

specimen components and mass were scaled using a scale factor of 1/3 for geometric

quantities and 1/18 for the mass (i.e., SL = 1/3, and SM = 1/18).

The total weight required for the 1/3-scale model, Wm, is determined as:

where, Wp, is the prototype total weight.  Since the gravity loads for the model were

carried by an independent gravity columns system (described in Section 3), the

acceleration scale factor, SA, can be established different to one, according to the

following similitude relation:

Accordingly, time scale factor, ST, can be determined as:

which implies that the ground motion ordinates and time step should be multiply by 2 and

0.4082, respectively (i.e., ).  Table 2.2

summarizes the scale factors for the experimental study.
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Table 2.2.  Summary of Scale Factors

Quantity Scale Factor Value
(1) (2) (3)

Force, SF 0.111

Mass, SM 0.056

Acceleration, SA 2.000

Gravitational Acceleration, Sg 1 1.000

Velocity, SV 0.816

Time, ST 0.408

Frequency, Sw 2.449

Linear dimension, SL SL 0.333

Area, SAR SL
2 0.111

Moment of Inertia, SI SL
4 0.012

Section Modulus, SS SL
3 0.037

Plastic Modulus, SZ SL
3 0.037

Elastic Modulus, SE 1 1

Stress, 1 1

Strain, 1 1

Critical Damping, 1 1
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Components of the 1/3-scale model were scaled from the prototype properties according

to the corresponding scale factor.  In summary, frame elements subjected primarily to

elastic bending (i.e., beams and columns) were scaled based on the section modulus,

whereas BRBs (subjected to axial loads) were scaled based on the cross-sectional area. 

Table 2.3 shows model properties along with their corresponding scale factors.  It may be

noted from the scale factors in Table 2.3 that the specimen is an incomplete model due to

several physical constraints.  For instance, BRBs cross-sectional area was selected based

on the smallest core that manufacturers could produce at the time of fabrication.  For this

reason, large discrepancies can be noted between target and obtained scale factor for the

BRBs cross-sectional area (especially in the upper stories).  Furthermore, since only one

size of BRBs cross-sectional area is used in the model, it was necessary to use the same

section for beams (i.e., W 6 x 9) at every floor, in order to satisfy capacity design

principles.  Accordingly, based on the strong-beam-weak-column concept, columns were

designed stronger than required by similitude principles (i.e., W 5 x 16).  SAP model

along with mass distribution is schematically shown in Figure 2.5.  Note that rigid

elements were used to represent eccentric connections between BRBs and frame

members (Section 2.6 discusses this type of gusset-plates).
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Table 2.3.  Scale Factors for Components

Prototype Model Theoretical Actual
Scale

Factor
Scale

Factor
(1) (2) (3) (4) (5)

Frame Dimensions
Beam Length (mm) 6096 2032 0.333 0.333

1st Story Height (mm) 3962 1340 0.333 0.338
2nd Story Height (mm) 3962 1289 0.333 0.325
3rd Story Height (mm) 3962 1289 0.333 0.325

Weights
1st Floor (kN) 1564 76.08 0.056 0.049

2nd Floor (kN) 1564 76.73 0.056 0.049
3rd Floor (kN) 1692 75.91 0.056 0.045

Beams Properties
1st Floor W24 x 76 W6 x 9

Sx (mm3) 2850193 90040 0.037 0.032
Ix (mm4) 860401937 6719329 0.012 0.008

2nd Floor W24 x 62 W6 x 9
Sx (mm3) 2137645 90040 0.037 0.042
Ix (mm4) 639155725 6719329 0.012 0.011

3rd Floor W16 x 36 W6 x 9
Sx (mm3) 914977 90040 0.037 0.098
Ix (mm4) 183552413 6719329 0.012 0.037

Columns Properties W14 x 74 W5 x 16
Sx (mm3) 1813759 138461 0.037 0.076
Ix (mm4) 325723590 8767905 0.012 0.027

Nippon Steel BRBs
1st Story (mm) 143 x 10 25 x 16

A (mm2) 1430 400 0.111 0.280
2nd Story (mm) 121 x 10 25 x 16

A (mm2) 1210 400 0.111 0.331
3rd Story BRB (mm) 73 x 10 25 x 16

A (mm2) 730 400 0.111 0.548
Star Seismic BRBs

1st Story (mm) 143 x 10 25 x 13
A (mm2) 1430 325 0.111 0.227

2nd Story (mm) 121 x 10 25 x 13
A (mm2) 1210 325 0.111 0.269

3rd Story (mm) 73 x 10 25 x 13
A (mm2) 730 325 0.111 0.445
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2.5. Analytical Results for the Model

Target parameters for the prototype (i.e., α = 0.25, μmax = 5, and η = 0.25) can be applied

directly to the model, since they are dimensionless quantities that are not affected by

scale factors.  However, prototype period limit (i.e., T # 1.80 s) should be reduced by the

corresponding time scaled factor (i.e., ST = 0.408) to obtain the period limit for the model

(i.e., T # 1.80 A 0.408 = 0.73 s).  As mentioned in previous section, design earthquake for

the model was scaled to a peak ground acceleration of 0.75 g.

Actual parameters and elastic period are determined from pushover and eigenvalue

analyses, respectively, and results are presented in Table 2.4.  Note that values of α and

μmax are in fair agreement with the target parameters.  However, some discrepancies may

be noted between obtained and target values for η and T due to the incomplete similitude

of the model, as described in previous section.  Despite these deviations from target

parameters, it is noteworthy that actual parameters for the model system result in a

behavior that still falls within the area of admissible solutions according to the graphic

Figure 2.5.  SAP Model and
Mass Distribution (kN-s2/m)
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representation of Figure 3.8 in Vargas and Bruneau (2006).  Figure 2.6 shows the

pushover curves corresponding to the bare frame, BRBs, and the total base shear capacity

of the system.  Yield displacements of 7 mm and 34 mm for the BRBs and the bare

frame, respectively, may be observed on this plot.  In Figure 2.6, it can also be noted that

BRBs do not yield simultaneously, since all braces have identical properties.  This is

another consequence of the physical constraints in the model, as described in the previous

section.

Table 2.4.  Actual Parameters for the Model

Parameter Target Nippon Steel Star Seismic
Parameters BRBs BRBs

(1) (2) (3) (4)
α 0.25 0.12 0.16
μmax 5.00 4.69 4.58
η 0.25 0.80 0.67

T (s) 0.73 0.22 0.24
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Seismic response of the model systems was also evaluated by nonlinear time history

analysis to verify that the structural fuse objective is fully satisfied.  Figures 2.7 and 2.8

show the maximum response in terms of hysteresis loops of beams and BRBs at each

story.  Like the prototype, model frame elements respond elastically, while hysteretic

energy is completely dissipated by inelastic behavior of BRBs at every story.  A

maximum roof displacement of 16 mm was obtained from the analyses.  Note that this

roof displacement corresponds to a frame ductility of 0.50 (i.e., μf  < 1.0, which is

required to avoid inelastic deformations of the frame members).  For this particular

model, the maximum observed story drift was 0.58%, which is less than the limit of

0.86% determined from the pushover curve to fully satisfy the structural fuse concept

(see Figure 2.6).
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Figure 2.6.  Pushover Curves for the Model; (a) Nippon Steel
BRBs, (b) Star Seismic BRBs
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Furthermore, moment, shear and axial force diagrams for the model at the point of

maximum lateral displacement are shown in Figures 2.9 to 2.14.  Specific moment

diagrams for the model beams are shown in Figures 2.15 and 2.16.  Discontinuities on

these diagrams result from concentrated moment at the connection point between braces

and beams.  Note that axial force from the braces is transmitted to the beams through

eccentrically connected gusset-plates, which results in a concentrated shear and moment

at the connection point.  As part of the design process, beams capacity should be verified

for the forces associated with the eccentricity of gusset-plates.  In this particular case,

maximum observed values for moment and shear force are 30 kN-m and 96 kN,

respectively, which are less than the corresponding capacity of the W5 x 16 beams (i.e.,

φbMn = 32 kN-m, and φvVn = 144 kN).



19

Story Beams Resp. (MN-mm vs rad) BRBs Response (kN vs mm)

3

2

1

-30

-20

-10

0

10

20

30

-0.002 -0.001 0 0.001 0.002

-30

-20

-10

0

10

20

30

-0.002 -0.001 0 0.001 0.002

-30

-20

-10

0

10

20

30

-0.002 -0.001 0 0.001 0.002

-200

-150

-100

-050

000

050

100

150

200

-10 -5 0 5 10

-200

-150

-100

-050

000

050

100

150

200

-10 -5 0 5 10

-200

-150

-100

-050

000

050

100

150

200

-10 -5 0 5 10

Figure 2.7.  Hysteresis Loops for the Model with Nippon Steel BRBs
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Story Beams Resp. (MN-mm vs rad) BRBs Response (kN vs mm)
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Figure 2.9.  Moment Diagram for the Model with Nippon Steel BRBs
(kN-m)
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Figure 2.10.  Shear Diagram for the Model with Nippon Steel BRBs
(kN)
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Figure 2.11.  Axial Force Diagram for the Model with Nippon Steel
BRBs (kN)
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Figure 2.12.  Moment Diagram for the Model with Star Seismic BRBs
(kN-m)
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Figure 2.13.  Shear Diagram for the Model with Star Seismic BRBs
(kN)
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Figure 2.14.  Axial Force Diagram for the Model with Star Seismic
BRBs (kN)
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Figure 2.15.  Moment Diagram for Beams of the Model with Nippon Steel BRBs
(kN-m)

Figure 2.16.  Moment Diagram for Beams of the Model with Star Seismic BRBs (kN-m)
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2.6. Gusset-plates Description

As mention in Section 2.1, one of the main purposes of this experimental project is to

examine the replaceability of BRBs designed to work as metallic structural fuses.  In

order to facilitate the replacement of BRBs, gusset-plates should also be designed as

removable elements bolted to frame members.  Typical gusset-plates connections for the

model are shown in Figure 2.17 for Nippon Steel and Star Seismic BRBs.  It may be

noted in this figure that gusset-plates are eccentrically connected only to beams with a

separation of 76 mm (3 in) from the columns.  Although this is an eccentric connection,

gusset-plates were designed such that center line of braces, beams, and columns coincide

at the work point (i.e., intersection point between beams and columns center lines).

Eccentric gusset-plates were used in order to prevent performance problems that have

been observed in previous experimental studies of buckling-restrained braced frames

with concentric connections (Tsai et al. 2004, Mahin et al. 2004, and Uriz, 2005).  Local

buckling of gusset-plates may occur when the angle between beam and column closes

due to lateral displacements.  In this experimental project, a gap corresponding to half of

the beam depth (i.e., d / 2 = 76 mm) was selected to avoid any contact between gusset-

plates and columns.  Incidentally, eccentric connections resulted in a reasonable size

gusset-

(a) (b)

Figure 2.17.  Typical Gusset-Plates Details: (a) Nippon Steel BRBs; (b) Star Seismic
BRBs
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plates with expected better seismic behavior and easier to be replaced than conventional

concentric connections.

Rib stiffeners were also added to gusset-plates to improve local buckling capacity.  An

example of these rib stiffeners can be observed at the bottom connection of BRB at first

story as shown in Figure 2.18.  Furthermore, Figures 2.17 and 2.18 show that the free

edges of gusset-plates were restrained by lateral stiffeners to prevent out-of-plane

buckling of the plates (something that has been also reported by Tsai et al. 2004 in

previous experimental studies).  Provisions from the AISC Manual of Steel Construction

(AISC, 2001) and recommendations from Seismic Behavior and Design of Gusset Plates

(Astaneh-Asl, 1998) were followed to design the connections (detailed calculations are

presented in Appendix B).

2.7. Seismic Isolation Device for Nonstructural Components

In Vargas and Bruneau (2006)  it was found that, in many cases, the use of metallic

damper causes increases in floor accelerations, which may negatively affect the seismic

behavior of nonstructural components.  Based on these results, in Vargas and Bruneau

(2006) seismic performance of SDOF systems with metallic and viscous dampers

installed in parallel was assessed, in order to improve floor seismic demands in terms of

displacements and accelerations.  However, it was observed that for structural fuse

(b)(a)

Figure 2.18.  Gusset-Plates at the Base: (a) Nippon Steel BRBs; (b) Star Seismic BRBs
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systems with hysteretic dampers responding inelastically, floor accelerations are likely to

increase if viscous dampers are added in parallel to hysteretic dampers.

Since many nonstructural elements are vulnerable to shifting or overturning in structures

designed or retrofitted with metallic dampers due to severe floor vibrations, the use of

seismic isolation devices to protect them has been included in this experimental project. 

Seismic isolation is an extensively studied concept that has been widely implemented to

protect structures from damaging earthquakes, by reducing seismic demands rather than

strengthening the resistance capacity of structures (Naeim and Kelly, 1999).

In this experimental study, the seismic isolation device used to protect nonstructural

components consists of bearings with a spherical ball rolling in conical steel plates, as

shown in Figure 2.19 from Amick et al., 1998.  This rolling isolation system, a.k.a. Ball-

in-Cone (BNC) system, has been studied in the past as an alternative to de-couple

dynamic response of structures from seismic ground motions (e.g.,  Kemeny and

Szidarovszky, 1995; Kasalanati et al., 1997; Amick et al., 1998; to name a few).  The

BNC isolator used in this study was manufactured and supplied by WorkSafe

Technologies and named ISO-BaseTM (U.S. Patent No. 5,599,106).

Figure 2.19.  Seismic Isolated Platform with Patented Ball-N-ConeTM Isolators (Amick

et al., 1998)
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Figure 2.20 shows plan and cross section views of the bearing used in this study, which

consists of four sets of steel plates interconnected by two plank assemblies (see

Figure 2.19).  Conical plates have a diameter of 213 mm (8.375 in).  Slope of the cone is

1:10 (6°) with a maximum lateral displacement of 178 mm (7 in).  Conical plates are

rounded at the apex with a radius of 127 mm (5 in) to ensure a smooth response.  Note

that bearing thickness is only 76 mm (3 in), which makes it attractive for floor isolation

systems.  From Figure 2.20b, it may be noted that the lateral displacement of top plate is

equal to twice the ball displacement.

Seismic response of the BNC bearing is a function of its geometric properties, which are

schematically shown in Figure 2.21a (greatly exaggerated here for clarity).  Note that

bearing plates have two distinct areas that govern the behavior: a spherical central area

and a conical surface.  From the free body diagram shown in Figure 2.21b, the governing

equation of motion can be written as:

(a) (b)

Units: inches

Figure 2.20.  Seismic Isolation Platform: (a) Plan and Cross Section Views of the
Bearing; (b) Bearing at Maximum Displacement
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where μ is the friction coefficient between the balls and the plate surface, W is the weight

of the nonstructural component on top of the bearing, θx is the rotational angle, R is the

radius of the spherical central area, and x is the balls lateral displacement.  Since rolling

friction coefficient is very small (i.e., μ . 0), and cosθx .1, (2.1) can be simplified as:

which is valid when the ball is in the spherical central area (x # d / 2).  Knowing that the

displacement of the top platform, u, is twice greater than balls displacement (i.e., u = 2 x),

(2.2) can be written in terms of the nonstructural component motion as:

which is valid for u # d.  When the balls reach the conical surface (i.e., x > d / 2 or u > d),

lateral force, F,  is constant and independent of the lateral displacement (Kasalanati et al.,

1997).  In this conical area, (2.1) becomes:

(2.1)

RR

x

d / 2

θ

d
W

F

θ

u = 2x

fr = μN

(a) (b)

θx

θx

θx

N = Wcosθx

Top plate displacement, u

Figure 2.21.  Schematic Representation of the Bearing Geometry: (a) Close up of the
Apex; (b) Free Body Diagram of the Rolling Balls

(2.2)

(2.3)

(2.4)
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where tanθ is the cone slope, which is approximately equal to θ (in radians) for small

angles.

Furthermore, in terms of acceleration demand, (2.4) can be also written as:

which in the case of bearings with a slope of 0.10, results in a constant acceleration

response of 0.10 g.  The force-displacement behavior of the BNC isolator can also be

expressed in a single expression as:

where U is the step function, which is equal to zero for u < d, and one for u $ d.

Figure 2.22 shows the acceleration response of the BNC isolator under a free vibration

test previously conducted (Appendix C shows the results from free vibration tests).  Note

that maximum acceleration is 0.097 g which is in good agreement with theoretical

prediction from (2.5).  Furthermore, a critical damping of 0.78% was calculated from

logarithmic decay.

(2.5)

(2.6)
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Figure 2.22.  Free Vibration Test of BNC Isolator (Acceleration
Response)
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However, this advantage of constant acceleration response comes along with a large

demand in terms of displacement, due to the fact that in the conical surface the lateral

force is constant (i.e., stiffness equal to zero) as indicated by (2.4).  In order to increase

the damping and reduce lateral displacements of the isolator, supplemental rubber pads

adhered to the steel plates were used, as shown in Figure 2.23.  A frequency sweep test

was conducted on the shaking table to determine the dynamic properties of the bearing

with rubber pads, and the acceleration response is shown in Figure 2.24.  Note the rapid

decay in the acceleration response at the end of the motion, which resulted in an

estimated critical damping of 29%.  It may also be noted that the acceleration demand

(0.158 g) increases in comparison with the response of the isolator without rubber pads,

due to the increase in damping (similar concept as studied in Vargas and Bruneau, 2006).

Figu

re 2.23.  BNC Isolator:  (a) Without Rubber Pads; (b) With Rubber Pads

(a) (b)
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Since the rolling friction coefficient is negligible, the BNC isolator can be modeled as a

multi-linear elastic spring element (see Figure 2.25), and its properties can be determined

by (2.3) and (2.4).  In this experimental project, the isolator was installed on the third

floor of the frame as shown in Figure 2.25.  Weight, W, was provided by lead bricks as

1.268 kN (0.285 kips), and from the isolator geometry the initial stiffness can be

calculated as 0.0050 kN/mm (0.0285 kip/in), with a spherical region, d, equal to 25.4 mm

(1 in) (according to the manufacturer, the maximum vertical load that can be applied to

the isolator is 5.338 kN (1.20 kips) to avoid the formation of grooves on the surfaces). 

The effect of the rubber pads adhered to the steel plates was modeled as a dashpot with a

critical damping of 29% (obtained experimentally as mention before).  These properties

were used in a SDOF model subjected to a base acceleration corresponding to the

response of the third floor of the frame.  Analytical predictions in terms of acceleration of

the isolator along with third floor acceleration response are shown in Figures 2.26 and

2.27.  A reduction of about 80% can be observed in the peak acceleration response.  Note

also a significant reduction in the frequency content of the response, due to the flexibility

introduced by the isolator.
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Figure 2.24.  Frequency Sweep Test of the BNC Isolator with Rubber
Pads
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W

Ground Motion, üg(t)

Isolator Response, u

Floor Acceleration

u

F

Wtanθ

d=2Rsinθ

K=W/2R

Figure 2.25.  BNC Isolator Model
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Figure 2.26.  Isolator and Third Floor Acceleration of the Frame with Nippon Steel
BRBs
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2.8. Observations

Theoretical aspects concerning the experiment design have been presented in this section. 

Analytical predictions for the prototype and the model responses have also been

presented.  Due to physical limitations and constraints in the shake table capacity,

specimen components and mass have been scaled using a scale factor of 1/3 for

geometric quantities and 1/18 for the mass, which resulted in an incomplete similitude for

the model.  Particular attention was dedicated to the scaling process of this project.

Eccentric gusset-plates have been proposed as an effective way to prevent performance

problems observed in other experimental studies, such as local buckling and out-of-plane

buckling of the plates at the connection point.  Similarly, BNC isolators were proposed to

control acceleration transmitted to nonstructural components in systems designed using

the structural fuse concept.
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Figure 2.27.  Isolator and Third Floor Acceleration of the Frame with Star Seismic BRBs
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SECTION 3

TEST SETUP

3.1. Introduction

Description of the test setup is presented in this section.  Since replaceability of BRBs is

an important part of this experimental project, frame elements are designed and built to

be used in repeatable tests conducted with four sets of replaceable braces.  Two types of

BRBs (manufactured by two different companies as described later) were used in the

tests, and their properties are also presented.

As part of the test setup, the gravity columns system used to transfer only lateral loads to

the testing frame is also described.  Furthermore, instrumentation of the testing frame and

test protocol are presented.  Results from the tests will be presented in next section.

3.2. Frame and BRBs Description

As described in Section 2, the testing model consists of a three-story one-bay frame,

which members were designed using steel with a yield stress of 345 MPa (50 ksi).  The

model is a two-dimensional structure designed with BRBs manufactured by Nippon Steel

Corporation (Japan) and Star Seismic (USA).  Figures 3.1 and 3.2 show the frame with

Nippon Steel BRBs and Star Sesimic BRBs, respectively.  Furthermore, the bare frame

was manufactured by a local fabricator from Buffalo, NY (K & E Fabricating Co), and

was designed to be used in repeatable tests with both types of BRBs.  A general view of

the experiment setup with both sets of braces can be seen in Figure 3.3.
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Figure 3.1.  Frame with Nippon Steel BRBs
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Figure 3.2.  Frame with Star Seismic BRBs
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Figure 3.3.  Experiment Setup: (a) Frame with Nippon Steel BRBs; (b) Frame with Star
Seismic BRBs

(a)

(b)



43

Beams and columns were braced in the transverse direction by a brackets system as

described in Figures. 3.4 to 3.6.  Beams were restrained at the mid-span to avoid lateral

torsional buckling (see Figure 3.5), and columns were braced at the center of the nodes as

shown in Figure 3.6.  Note that polytetrafluoroethylene (PTFE) sheets were used between

frame and brackets to reduce friction.

Figure 3.4.  Beams Lateral Bracing (Drawing)

Figure 3.5.  Beams Lateral Bracing
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Nippon Steel BRBs (NSBRBs) core consists of a rectangular plate (16 mm x 25 mm)

made of SN400B steel (Fy = 235 MPa, and Fu = 400 MPa), which expands at the ends to

form a cruciform section.  A steel tube (HSS 6 x 6 x 3/16) filled with mortar surrounds

the core to prevent buckling of the plate and ensure a similar behavior in tension and

compression of the brace.  Figure 3.7 shows details of NSBRBs geometry.  In this figure

it may be noted that the core length is 65% of the total length of the brace.  Note also that

these braces are connected to the frame by “stitch-plates”, which are small plates (5 mm

x 38 mm) bolted to the braces and to the gusset-plates.  A set of 16 stitch-plates (eight per

end) were used to connect NSBRBs to the frame.  Figure 3.8 shows an installed and

instrumented NSBRB.

Figure 3.6.  Columns Lateral Bracing
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Figure 3.7.  Nippon Steel BRB Details

Figure 3.8.  Nippon Steel BRB in Place
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Star Seismic BRBs (SSBRBs) have a smaller cross sectional area (13 mm x 25 mm) than

NSBRBs, and a longer core length (i.e., 73% of the brace length) as shown in Figure 3.9. 

In this case steel with Fy = 290 MPa was used for the core.  Note that the inner plate

expands to the ends to a larger rectangular cross sectional area (25 mm x 114 mm) with a

cap to keep the braces longitudinally aligned.  Furthermore, SSBRBs have a pin

connection, which has the purpose of reducing moment and shear at the connection point. 

Pins consist of φ38 mm (1 ½ in) bolts fabricated from high strength steel (A490). 

Figure 3.10 shows an installed and instrumented SSBRB.

Figure 3.9.  Star Seismic BRB Details

Figure 3.10.  Star Seismic BRB in Place
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In Section 2 the concept of eccentric gusset-plates to connect BRBs to the frame was

described, with the purpose of enhancing the overall performance of the beam-column-

brace connection.  Detailed pictures of the gusset-plates for NSBRBs and SSBRBs are

presented in Figures 3.11 and 3.12, respectively.

Figure 3.11.  Gusset-Plate for Nippon Steel BRBs

Figure 3.12.  Gusset-Plate for Star Seismic BRBs
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3.3. Gravity Columns System

The gravity columns system is a set of frames designed to separate the lateral resisting

system from the vertical load resisting system, and has been used in various projects for

structures near collapse at University at Buffalo (Kusumastuti et al. 2005).  These gravity

frames consist of columns connected to rocking supports with the frame free to displace

unrestrained in the longitudinal direction, and diagonally braced in the transverse

direction.  This set of gravity frames has been designed in such a way that only vertical

loads can be carried out by the columns.  Figure 3.13 shows a lateral view of the gravity

columns system on both sides of the testing frame.  Spherically shaped plates are used at

the top and bottom of the gravity columns as physical hinges as shown in Figure 3.14. 

Note in Figure 3.13 that every gravity frame supports a 89 mm (3.5 in) thick steel plate,

which weights about 38 kN (8.5 kips) for a total of about 76 kN (17 kips) per floor as

presented in Table 2.3.  A general view of the setup can be seen in Figure 3.3.

It may be noted in Figure 3.3 that the gravity columns system is physically unable to

support lateral loads.  When the model is dynamically excited, lateral loads are

transmitted to the testing frame by φ38 mm (1 ½ in) bolts as shown in Figures 3.15 and

3.16.  A machined hole was made at the mid-point of the column web at each beam level

to receive the pins.  Note that doubler plates were used at both sides of the columns web

to reinforce the panel zone.  In may be also noted that the holes were designed vertically

larger than the pins to avoid transmission of gravity loads through the pins during the

tests.
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Figure 3.13.  Gravity Columns System

Figure 3.14.  Columns Rocking Support 
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Figure 3.15.  Details of Beam-Column Connection

Figure 3.16.  Transfer Loading System
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3.4. Instrumentation

Instrumentation for this experimental project has been designed to measure global

response of the frame, and local performance of beams, columns and braces, as well as

seismic behavior of the BNC isolator installed at the third floor.  Global response of the

structure in terms of floor accelerations and displacements was obtained from

accelerometers and string-pots installed at the base of the frame and at every floor. 

Optical coordinate tracking probes (Krypton sensors) were also distributed on the first

story to measure displacement response at specific points.

Seismic response of beams and columns was obtained from strain gages installed at

critical points.  The purpose is to determine whether the members remain elastic at these

critical points during the test, recalling that part of the objectives of this experiment is to

assess the effectiveness of the structural fuse concept to prevent damage in beams and

columns.  Strains measured from strain gages installed on opposite flanges were used to

determine internal forces in the members (i.e., moment, shear, and axial force) by

equilibrium equations.  Measured moments can then be compared with the yielding

moment of the members (i.e., My = Fy Sx).

Axial deformations of the BRBs were measured with temposonic sensors installed in

parallel with the braces and connected to the gusset-plates.  Table 3.1 presents the list of

instrumentation for this experimental project.  Each channel was named with respect to

the type of sensor, the floor number, the type of structural member, and the sensor

position, according to the following nomenclature:  AC (Accelerometer), SP (String pot),

SG (Strain gauge), KR (Krypton), TS (Temposonic), FL (Floor level), BM (Beam), CL

(Column), BR (Brace), I (Isolator), N, S, E, W (North, South, East, West), and T, B (Top,

Bottom). Figure 3.17 shows the location of the sensor for this experimental project.
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Table 3.1.  List of Instrumentation

#

(1)

Name

(2)

Type of

Sensor

(3)

Note

(4)

1 ACFL000 Accelerometer Base, east-west acceleration

2 ACFL001 Accelerometer 1st floor, east-west acceleration

3 ACFL002 Accelerometer 2nd floor, east-west acceleration

4 ACFL003 Accelerometer 3er floor, east-west acceleration

5 KRFL000 Krypton Base, longitudinal (E-W) displacement

6 SPFL000 String pot Base, longitudinal (E-W) displacement

7 SPFL001 String pot 1st floor, longitudinal (E-W) displacement

8 SPFL002 String pot 2nd floor, longitudinal (E-W) displacement

9 SPFL003 String pot 3rd floor, longitudinal (E-W) displacement

10 TSBR001 Temposonic 1st story brace, axial deformation

11 TSBR002 Temposonic 2nd story brace, axial deformation

12 TSBR003 Temposonic 3rd story brace, axial deformation

13 SGCLWBE1 Strain gauge Column, 1st story, west, bottom, east

14 SGCLWTE1 Strain gauge Column, 1st story, west, top, east

15 SGCLEBE1 Strain gauge Column, 1st story, east, bottom, east

16 SGCLETE1 Strain gauge Column, 1st story, east, top, east

17 SGCLWBE2 Strain gauge Column, 2nd story, west, bottom, east

18 SGCLWTE2 Strain gauge Column, 2nd story, west, top, east

19 SGCLEBE2 Strain gauge Column, 2nd story, east, bottom, east

20 SGCLETE2 Strain gauge Column, 2nd story, east, top, east

21 SGCLWBE3 Strain gauge Column, 3rd story, west, bottom, east

22 SGCLWTE3 Strain gauge Column, 3rd story, west, top, east

23 SGCLEBE3 Strain gauge Column, 3rd story, east, bottom, east

24 SGCLETE3 Strain gauge Column, 3rd story, east, top, east
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Table 3.1.  List of Instrumentation (Cont’d)

#

(1)

Name

(2)

Type of

Sensor

(3)

Note

(4)

25 SGBMWWT1 Strain gauge Beam, 1st floor, west, west, top

26 SGBMWET1 Strain gauge Beam, 1st floor, west, east, top

27 SGBMEWT1 Strain gauge Beam, 1st floor, east, west, top

28 SGBMEET1 Strain gauge Beam, 1st floor, east, east, top

29 SGBMWWT2 Strain gauge Beam, 2nd  floor, west, west, top

30 SGBMWET2 Strain gauge Beam, 2nd floor, west, east, top

31 SGBMEWT2 Strain gauge Beam, 2nd floor, east, west, top

32 SGBMEET2 Strain gauge Beam, 2nd floor, east, east, top

33 SGBMWWT3 Strain gauge Beam, 3rd floor, west, west, top

34 SGBMEWT3 Strain gauge Beam, 3rd floor, east, west, top

35 SGBMEET3 Strain gauge Beam, 3rd floor, east, east, top

36 SGCLWBW1 Strain gauge Column, 1st story, west, bottom, west

37 SGCLWTW1 Strain gauge Column, 1st story, west, top, west

38 SGCLEBW1 Strain gauge Column, 1st story, east, bottom, west

39 SGCLETW1 Strain gauge Column, 1st story, east, top, west

40 SGCLWBW2 Strain gauge Column, 2nd story, west, bottom, west

41 SGCLWTW2 Strain gauge Column, 2nd story, west, top, west

42 SGCLEBW2 Strain gauge Column, 2nd story, east, bottom, west

43 SGCLETW2 Strain gauge Column, 2nd story, east, top, west

44 SGCLWBW3 Strain gauge Column, 3rd story, west, bottom, west

45 SGCLWTW3 Strain gauge Column, 3rd story, west, top, west

46 SGCLEBW3 Strain gauge Column, 3rd story, east, bottom, west

47 SGCLETW3 Strain gauge Column, 3rd story, east, top, west

48 SGBMWWB1 Strain gauge Beam, 1st floor, west, west, bottom
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Table 3.1.  List of Instrumentation (Cont’d)

#

(1)

Name

(2)

Type of

Sensor

(3)

Note

(4)

49 SGBMWEB1 Strain gauge Beam, 1st floor, west, east, bottom

50 SGBMEWB1 Strain gauge Beam, 1st floor, east, west, bottom

51 SGBMEEB1 Strain gauge Beam, 1st floor, east, east, bottom

52 SGBMWWB2 Strain gauge Beam, 2nd  floor, west, west, bottom

53 SGBMWEB2 Strain gauge Beam, 2nd floor, west, east, bottom

54 SGBMEWB2 Strain gauge Beam, 2nd floor, east, west, bottom

55 SGBMEEB2 Strain gauge Beam, 2nd floor, east, east, bottom

56 SGBMWWB3 Strain gauge Beam, 3rd floor, west, west, bottom

57 SGBMEWB3 Strain gauge Beam, 3rd floor, east, west, bottom

58 SGBMEEB3 Strain gauge Beam, 3rd floor, east, east, bottom

59 KRFL000 Krypton Base, longitudinal (E-W) displacement

59 KRWGB Krypton Gusset-Plate, West, Bottom

60 KRWGT Krypton Gusset-Plate, West, Top

61 KRWBR Krypton West, Brace

62 KRWBH Krypton West, Brace, House

63 KRMBH Krypton Middle, Brace, House

64 KREBH Krypton East, Brace, House

65 KREBR Krypton East, Brace

66 KREGB Krypton Gusset-Plate, East, Bottom

67 KREGT Krypton Gusset-Plate, East, Top

68 KRWCB Krypton West, Column, Bottom

69 KRWCM Krypton West, Column, Middle

70 KRWCT Krypton West, Column, Top

71 KRECB Krypton East, Column, Bottom
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Table 3.1.  List of Instrumentation (Cont’d)

#

(1)

Name

(2)

Type of

Sensor

(3)

Note

(4)

72 KRECM Krypton East, Column, Middle

73 KRECT Krypton East, Column, Top

74 KRWB Krypton West, Beam

75 KREB Krypton East, Beam

As mentioned in Section 2, a BNC isolator was installed on the third floor of the structure

to assess its effectiveness in the protection of nonstructural components (see Figure 3.18). 

Accelerometers and string pots were installed in three consecutive corners to measure

accelerations and displacements in the longitudinal and transverse directions, as shown in

Figure 3.19.
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Figure 3.17.  Instrumentation of the Model
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Figure 3.18.  BNC Isolator on Top of Third Floor

Figure 3.19.  Instrumentation of the BNC Isolator
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3.5. Test Protocol

One of the spectrum compatible synthetic ground motions that were generated in Vargas

and Bruneau (2006) for the parametric study was used in this experiment as the input

ground motion.  For similitude purposes, this ground motion was scaled according to the

scale factors presented in Section 2 (i.e., SA = 2 and ST = 0.4082).  Figure 3.20 presents

the synthetic ground motion for the prototype (PGAp = 0.375 g) and the scaled ground

motion corresponding to the model (PGAm = 0.75 g).  Note that the ground motion

amplitude has been increased by a factor of two, and that the duration has been shortened

from 60 s to 24.5 s.

Test protocol for the experiment is presented in Table 3.2.  Note that the amplitude of the

ground motion is increased by 0.25 g in each test until the capacity of the shaking table is

reached (i.e., which is about 1.0 g for this experiment).  It may also be noted in Table 3.2

that white noise tests (with PGA of 0.10 g) are performed before and after every

earthquake simulation test to identify the dynamic properties of the structure.  Four sets

of braces (two NSBRBs and two SSBRBs) were tested following this protocol to

examine the replaceability of BRBs as structural fuses.

Table 3.2.  Test Protocol
Test #

(1)
Test Label

(2)
Scale

(3)
Ground
Motion

(4)

PGA (g)
(5) 

Note
(5)

1 WN1 White Noise 0.10 System Identification

2 TEST025 0.4269 EQ 0.25 Elastic Range

3 WN2 White Noise 0.10 System Identification

4 TEST050 0.8538 EQ 0.50 First Story Brace Yields

5 WN3 White Noise 0.10 System Identification

6 TEST075 1.2807 EQ 0.75 Second Story Brace Yields

7 WN4 White Noise 0.10 System Identification

8 TEST100 1.7076 EQ 1.00 Third Story Brace Yields

9 WN5 White Noise 0.10 System Identification
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Figure 3.20.  Synthetic Ground Motions: (a) Ground Motion for the Prototype; (b)
Scaled Ground Motion for the Model
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3.6. Observations

General description of the test setup has been presented in this section.  Frame and BRBs

have been described, along with the gravity columns system used to transfer lateral loads

to the testing frame.  Furthermore, instrumentation of the testing frame and test protocol

have also been presented.  Results from the tests will be presented in next section.
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SECTION 4

EXPERIMENTAL RESULTS

4.1. Introduction

This section presents the results from the experimental project conducted on the shaking

table at the University at Buffalo (previously described in Sections 2 and 3).  Results are

presented in terms of global response of the frame, as well as in terms of local response

of individual components.  Comparison between the seismic response of the BRB frame

with respect to the performance of the bare frame is also discussed.

Seismic demand in terms of floor acceleration and displacement is presented, and frame

and global ductility is analyzed to determine whether the objectives of the structural fuse

concept are experimentally achieved.  Seismic behavior of beams, columns and BRBs are

presented as graphs of response history and hysteretic loops, and maximum results are

also tabulated as part of the analysis.  Furthermore, response of the seismic isolation

device installed on the experimental frame is also investigated, as an alternative to protect

nonstructural components from severe floor vibrations in structural fuse structures.

Finally, a series of uniaxial static tests were conducted to experimentally determine the

cyclic characteristics of the BRBs previously used in the shake table tests.  Standard

loading protocol and low-cycle fatigue tests were conducted, and results are tabulated

and presented also as hysteresis loops. Comparison between the results obtained from

static and dynamic tests are also presented at the point of maximum displacement

achieved during the shake table tests.



1Mathematical representation of the relation between the input signal (i.e., Fourier
transform of the ground acceleration) and the output signal (i.e., Fourier transform of the
acceleration response at a selected floor) of a linear system.  In seismic analysis, the transfer
function is also known as frequency response.
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4.2. Global Response

White noise tests were performed after every earthquake simulation test to identify the

dynamic properties of the testing frame, according to the test protocol presented in

Table 3.2.  Figures 4.1 to 4.4 show the transfer function1 corresponding to the white noise

tests conducted at the end of every earthquake level.  In these figures, the transfer

function corresponding to the white noise test conducted for the bare frame (BF) is also

plotted (i.e., frame without BRBs).  As shown on these figures, the natural frequency of

the BF alone (i.e., fn = 1.52 Hz, Tf = 0.66 s from Table 4.1) is less than for the cases in

which additional stiffness is provided by the inclusion of the BRBs.  Natural frequencies

and periods of the BRB frame are presented in Table 4.2.  Knowing that the stiffness

ratio between BF and BRB frame is inversely proportional to the period ratio to the

square (i.e., Kf / K1 = (T1 / Tf )2 ), it is observed that the BRB frame is approximately five

times stiffer than the BF.  This translates into a parameter α . 0.20, which is in good

agreement with the values determined from pushover analyses in Section 2 (see

Figure 2.6 and Table 2.4).

Table 4.1.  Dynamic Properties of the Bare Frame

Test \ Property
(1)

Frequency (Hz)
(2)

Period (s)
(3)

Damping (%)
(4)

0.25 g 1.58 0.63 1.33

0.50 g 1.56 0.64 1.66

0.75 g 1.52 0.66 2.04

1.00 g 1.44 0.69 3.13

Average 1.52 0.66 2.05
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Table 4.2.  Dynamic Properties of the BRB Frame

Test \ PGA (g) 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Frequency (Hz) Period (s) Damping (%)
1 (NSBRBs) 3.84 3.77 3.75 3.59 0.26 0.27 0.27 0.28 1.84 3.06 4.93 6.32
2 (NSBRBs) 3.90 3.83 3.72 3.48 0.26 0.26 0.27 0.29 1.53 4.02 6.66 7.23
3 (SSBRBs) 3.51 3.50 3.04 2.98 0.28 0.29 0.33 0.34 3.62 3.78 6.10 6.20
4 (SSBRBs) 3.62 2.31 2.25 2.25 0.28 0.43 0.44 0.44 2.73 3.98 6.28 8.07
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Figure 4.1.  Transfer Function for Test 1
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Figure 4.3.  Transfer Function for Test 3
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From the transfer functions corresponding to the BRB frame, it may also be noted that

the frequencies of higher modes shifted to lower frequencies as the tests progress to

stronger earthquake levels.  No explanation is attributed to this observation (although, it

could be associated with yielding of the BRBs at higher levels of earthquake excitation

(i.e., PGA > 0.50 g)).  Furthermore, damping ratio was determined using the logarithmic

decrement method from the free vibration portion of the motions at the end of every

earthquake level simulation.  Average damping ratios of 2% and 5% were obtained for

the BF and the BRB frame, respectively (results for all the tests are presented in

Tables 4.1 and 4.2).  The increase in the damping ratio as a function of increases in the

magnitude of frame deformations is consistent with what has been observed by others

(e.g., Vian and Bruneau, 2001).  Note that the analyses were performed using a damping

ratio of 2%, which coincides with the measured values at low amplitude tests, but it is

significantly different than the values obtained at higher amplitude tests, as shown in

Table 4.2.  This may explain some of the discrepancies observed between experimental

and analytical results, as discussed below.

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

0.25 g
0.50 g
0.75 g
1.00 g
Bare Frame

Figure 4.4.  Transfer Function for Test 4



66

Floor response of the BRB frame in terms of acceleration and displacement are presented

in Figures 4.5 to 4.18 along with the results obtained from the analytical model.  For the

NSBRB frame (tests 1 and 2), displacement response was reasonably good for the first

and second floor, although the analytical model tended to predict higher values for the

top floor.  Similarly, the analytical model generally tended to slightly overestimate the

acceleration response for the NSBRB frame at every floor.  On the other hand, for the

SSBRB frame (tests 3 and 4), a less competent match was observed between analytical

predictions and experimental results for both displacement and acceleration response. 

For example, the model predicted residual displacements that were not observed in the

experiment.  Note also that both displacement and acceleration response were generally

overestimated by the analytical model.
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Figure 4.5.  Floor Displacement for Test 1 (PGA = 0.25 g)
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Figure 4.6.  Floor Acceleration for Test 1 (PGA = 0.25 g)
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Figure 4.7.  Floor Displacement for Test 1 (PGA = 0.50 g)
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Figure 4.8.  Floor Acceleration for Test 1 (PGA = 0.50 g)
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Figure 4.9.  Floor Displacement for Test 1 (PGA = 0.75 g)
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Figure 4.10.  Floor Acceleration for Test 1 (PGA = 0.75 g)
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Figure 4.11.  Floor Displacement for Test 1 (PGA = 1.00 g)
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Figure 4.12.  Floor Acceleration for Test 1 (PGA = 1.00 g)
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Figure 4.13.  Floor Displacement for Test 2 (PGA = 1.00 g)
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Figure 4.14.  Floor Acceleration for Test 2 (PGA = 1.00 g)
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Figure 4.15.  Floor Displacement for Test 3 (PGA = 1.00 g)
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Figure 4.16.  Floor Acceleration for Test 3 (PGA = 1.00 g)
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Figure 4.17.  Floor Displacement for Test 4 (PGA = 1.00 g)
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Figure 4.18.  Floor Acceleration for Test 4 (PGA = 1.00 g)
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It is worthwhile to indicate that for the purpose of this discussion the analytical models

are directly used to predict the experimental response of the system.  In hindsight, it is

always possible to adjust the analytical models to better match the experimental results. 

However, this was not done here because the purpose was to see whether true predictions

could be matched by experimental results, as opposed to find tunning to the analytical

models to perfectly replicate the experimental results.  In addition to this, while looking

at the force - displacement curve for the SSBRB frame (which is presented in a later

section) after the test, it was discovered that there has been slips developing in the system

at the connection point between BRBs and gusset-plates.  This observation may further

explain the greater differences between analytical and experimental results that have been

observed for the SSBRB frame.  Further discussion in this regard will be presented in a

later section.

Maximum floor response and inter-story drift for the BF and for the BRB frame are

presented in Tables 4.3 and 4.4, respectively.  No significant change was generally

observed in the acceleration response between the BF and the BRB frame.  The reason

for this, is that for the actual parameters of this BRB frame the ratio between peak floor

acceleration of the structural fuse system with respect to the BF is approximately equal to

one (this behavior was discussed in Section 5 of Vargas and Bruneau, 2006).  Results in

Tables 4.3 and 4.4 generally indicate a reduction of approximately 70% in the floor

displacement as well as in the inter-story drift for the BRB frame with respect to the BF. 

This significant reduction is an indication of the BRBs effectiveness to control lateral

displacements and inter-story drifts during strong ground motions (something that is

essential to prevent damage to nonstructural components that are attached to consecutive

floors).  According to the analyses conducted in Section 3 of Vargas and Bruneau (2006),

the anticipated reduction in floor displacement was to be of the order of 77%, which is in

reasonably good agreement with the floor demand obtained in the experiment.
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Table 4.3.  Bare Frame Maximum Floor Response

Story \ PGA (g) 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Acceleration (g) Displacement (mm)
3 0.47 0.94 1.15 1.44 27.15 40.08 57.28 76.48
2 0.37 0.65 0.96 1.23 35.27 55.68 73.75 100.45
1 0.37 0.73 1.13 1.59 13.57 19.28 26.51 33.77

Inter-Story Drift (mm) Inter-Story Drift (%)
3 8.12 15.60 16.47 23.97 0.63 1.21 1.28 1.86
2 21.70 36.40 47.24 66.68 1.68 2.82 3.66 5.17
1 13.57 19.28 26.51 33.77 1.01 1.44 1.98 2.52

Table 4.4.  BRB Frame Maximum Floor Response

Story \ PGA (g) 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Acceleration (g) Displacement (mm) Inter-Story Drift (%)
Test 1 (NSBRBs)

3 0.47 0.81 1.10 1.34 5.36 10.06 14.31 18.99 0.21 0.39 0.44 0.65
2 0.32 0.60 0.85 1.10 8.08 15.03 20.02 27.33 0.39 0.78 1.02 1.41
1 0.31 0.69 0.94 0.99 3.07 5.03 6.84 9.18 0.23 0.38 0.51 0.69

Test 2 (NSBRBs)
3 0.48 0.74 1.02 1.38 5.08 9.48 14.31 21.47 0.17 0.33 0.37 0.49
2 0.30 0.56 0.72 0.96 7.29 13.68 19.14 27.74 0.30 0.64 0.85 1.24
1 0.33 0.68 0.98 1.30 3.38 5.38 8.18 11.78 0.25 0.40 0.61 0.88

Test 3 (SSBRBs)
3 0.40 1.18 1.78 1.91 5.74 13.09 20.04 27.03 0.20 0.43 0.79 0.93
2 0.42 1.04 1.75 2.27 8.34 18.67 30.17 39.00 0.44 0.94 1.59 2.02
1 0.34 0.77 1.08 1.24 2.69 6.61 9.64 12.94 0.20 0.49 0.72 0.97

Test 4 (SSBRBs)
3 0.51 1.09 2.12 2.53 5.74 10.88 18.41 28.74 0.25 0.58 0.76 0.92
2 0.29 0.89 1.38 1.67 8.93 18.41 28.23 40.57 0.51 0.97 1.48 2.04
1 0.36 0.76 1.30 1.34 2.40 5.94 9.21 14.30 0.18 0.44 0.69 1.07
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Seismic demand in terms of frame ductility, μf, and global ductlity, μ, is presented in

Table 4.5.  Note that in every BRB frame, the frame ductility is less than one (i.e., μf < 1),

which is one of the requirements to satisfy the structural fuse concept (recalling that

beams and columns remain elastic when the frame ductility is less than one).  For the

strongest level of earthquake simulation (i.e., PGA = 1 g), the average frame and global

ductility  is 0.7 and 3.4, respectively, which is in good agreement with the analytical

values of 0.62 and 3.10 from charts presented in Figures 3.13 and 3.14, respectively,  for

α . 0.20, μmax . 5, η . 0.7, and T .0.25.

Table 4.5.  Ductility Demand

Test \ PGA (g) 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Frame Ductility (μf) Global Ductility (μ)
Bare Frame 0.799 1.179 1.685 2.249 0.799* 1.179* 1.685* 2.249*
1 (NSBRBs) 0.158 0.296 0.421 0.559 0.766 1.437 2.044 2.713
2 (NSBRBs) 0.149 0.279 0.421 0.631 0.726 1.354 2.044 3.067
3 (SSBRBs) 0.169 0.385 0.589 0.795 0.820 1.870 2.863 3.861
4 (SSBRBs) 0.169 0.320 0.541 0.845 0.820 1.554 2.630 4.106

* Frame and global ductility have the same values for the Bare Frame

Inertial forces were determined from measured floor acceleration, and corresponding

story shear response is presented in Figures 4.19 to 4.25, along with the results from the

analytical model.  Maximum values were well predicted by the analytical model for the

NSBRB frame (tests 1 and 2), although the trend itself seems to have some discrepancies

with respect to the experimental results.  However, for the SSBRB frame (tests 3 and 4)

larger differences were observed between analytical and experimental results, especially

for the second half of the earthquake simulation (i.e., t $ 20 s).
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Figure 4.19.  Story Shear for Test 1 (PGA = 0.25 g)



85

-160

-120

-80

-40

0

40

80

120

160

0 10 20 30 40 50 60

t (s)

1s
t S

to
ry

 S
he

ar
 (k

N
)

Analytical
Experimental

-160

-120

-80

-40

0

40

80

120

160

0 10 20 30 40 50 60

t (s)

1s
t S

to
ry

 S
he

ar
 (k

N
)

Analytical
Experimental

-160

-120

-80

-40

0

40

80

120

160

0 10 20 30 40 50 60

t (s)

1s
t S

to
ry

 S
he

ar
 (k

N
)

Analytical
Experimental

Figure 4.20.  Story Shear for Test 1 (PGA = 0.50 g)
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Figure 4.21.  Story Shear for Test 1 (PGA = 0.75 g)
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Figure 4.22.  Story Shear for Test 1 (PGA = 1.00 g)
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Figure 4.23.  Story Shear for Test 2 (PGA = 1.00 g)
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Figure 4.24.  Story Shear for Test 3 (PGA = 1.00 g)
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Figure 4.25.  Story Shear for Test 4 (PGA = 1.00 g)
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Maximum seismic demand in terms of base shear and roof displacement for every

earthquake level are presented in Figures 4.26 and 4.27, along with the theoretical

pushover curves for the BRB frame and the BF.  Figure 4.26 shows a good correlation

between the experimental seismic demand and the analytical pushover curve obtained for

the NSBRB frame.  However, some discrepancies can be observed between the pushover

curve and seismic demand for the SSBRB frame (Figure 4.27).  Note that the

experimental results are horizontally shifted from the pushover curve.  Upon close

investigation of the system to explain this discrepancy, it was realized that the small gap

between the pin and the pinhole on the gusset-plates in this particular case, amounted for

a significant percentage of the total deformation.  This gap was generally measured as

1.5 mm at each connection point (i.e., a total of 3 mm per brace).  Adding up the needed

displacement to engage the braces at every story results in a horizontal “slippage” of

about 8 mm at the roof level for the strongest level of earthquake.  This matches the

observations on Figure 4.27.  Calculating the proportional slippage at each level, a

corrected curved for the seismic demand can be constructed and is presented as a dotted

line in Figure 4.27 for the SSBRB frame.  This phenomenon is further discussed in

Sections 4.3.2 and 4.4.
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Figure 4.26.  Seismic Demand for Bare Frame and Frame with Nippon Steel BRBs
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Figure 4.27.  Seismic Demand for Bare Frame and Frame with Star Seismic BRBs
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4.3. Local Response

Seismic demand in terms of global response of the experimental system was presented in

previous section.  Subsequent sections present seismic behavior of system components in

terms of local response.  Seismic demand on beams, columns, BRBs, and on the isolator

for nonstructural components are presented in response history plots and hysteresis loops. 

Observations about the results are also discussed.

4.3.1.  Beams and Columns Response

Since one of main purposes of the structural fuses is to protect beams and columns from

seismically induced damage, bending moments were calculated from strain gages results

at critical locations to assess whether these elements remained elastic at the end of every

earthquake level simulation.  Columns and beams moment response history is plotted in

Figures 4.28 to 4.35 for the strongest earthquake level (i.e., PGA = 1 g), along with the

flexural strength corresponding to the onset of yielding at the extreme fiber of the section

(i.e., My = FySx).  In these figures, the yielding moment, My, is plotted as dashed lines in

the positive and negative side of the graphs (48.3 kN and 31.4 kN for columns and

beams, respectively).  It may be noted that beams and columns performed as intended

(i.e., elastic behavior), which satisfies the structural fuse concept.  Experimental results

were generally 15% less than the response predicted by the analytical models.  In other

words, the experimental frame behaved more elastically than what was predicted by the

analytical models (i.e., the analytical models were conservative in the prediction of local

response of beams and columns).
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Figure 4.28.  Columns Moment for Test 1 (PGA = 1.00 g)
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Figure 4.29.  Columns Moment for Test 2 (PGA = 1.00 g)
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Figure 4.30.  Columns Moment for Test 3 (PGA = 1.00 g)
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Figure 4.31.  Columns Moment for Test 4 (PGA = 1.00 g)
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Figure 4.32.  Beams Moment for Test 1 (PGA = 1.00 g)
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Figure 4.33.  Beams Moment for Test 2 (PGA = 1.00 g)
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Figure 4.34.  Beams Moment for Test 3 (PGA = 1.00 g)
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Figure 4.35.  Beams Moment for Test 4 (PGA = 1.00 g)
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According to the instrumentation diagram presented in Figure 3.17, strain gages were

located at the top and bottom of columns to measure moments at these specific cross

sections.  From these moments, and using equilibrium equations obtained from a free

body diagram of the columns, it was possible to calculate the shear force at everyone of

those locations.  Then, columns shear force were calculated at every story and results are

plotted versus inter-story drifts in Figures 4.36 to 4.39 for the strongest earthquake level. 

The elastic behavior exhibited by the frame confirms that the objective of frame

protection intended by the structural fuse concept was met.  Similarly, these experimental

results were generally 15% less than the response predicted by the analytical models.
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Figure 4.36.  Columns Story Shear for Test 1 (PGA = 1 g)
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Figure 4.37.  Columns Story Shear for Test 2 (PGA = 1 g)
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Figure 4.38.  Columns Story Shear for Test 3 (PGA = 1 g)



106

-200

-150

-100

-50

0

50

100

150

200

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inter-Story Drift (mm)

1s
t S

to
ry

 C
ol

um
ns

 S
he

ar
 (k

N
)

-200

-150

-100

-50

0

50

100

150

200

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inter-Story Drift (mm)

2n
d 

St
or

y 
C

ol
um

ns
 S

he
ar

 (k
N

)

-200

-150

-100

-50

0

50

100

150

200

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inter-Story Drift (mm)

3r
d 

St
or

y 
C

ol
um

ns
 S

he
ar

 (k
N

)

Figure 4.39.  Columns Story Shear for Test 4 (PGA = 1 g)
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4.3.2.  Buckling-Restrained Braces Response

BRBs axial forces were indirectly obtained from the previously calculated internal forces

for the beams, as described below.  Beams moments and axial forces were determined

from strain gages installed at the ends of the beams.  From these moments, and using

equilibrium equations obtained from free body diagrams of the beams, shear forces at the

ends of the beams were calculated.  Then, BRBs axial forces were calculated from

equilibrium equations obtained from the free body diagrams presented in Figure 4.40 as

sections A, B, and C, and results are plotted in Figures 4.41 to 4.44 for the strongest

earthquake level, along with the yield strength of the section (i.e., Pyb = FybAb).  In these

figures, the yielding force of the braces, Pyb, is plotted as dashed lines in the positive and

negative side of the graphs (94.5 kN and 93.4 kN for NSBRBs and SSBRBs,

respectively).  From these plots it may be generally observed that first and second story

BRBs yielded, while third story BRB remained elastic.  As mentioned in Section 2, the

third story BRB did not yield because it was not possible to reduce the cross-sectional

area of BRBs through the frame’s height, due to manufacturing constraints at the time of

fabrication.

Note that in Figures 4.41 to 4.44, when the actual force exceeds the yield line the BRB

strain-hardens and can undergo large elongations without developing significantly more

force.  Therefore, slight exceedance of this line can translate in significant yielding.  Note

also that the number of exceedance relates to the number of yield excursions.  In that

perspective, the NSBRBs at the first and second stories underwent a large number of

inelastic excursions, whereas the SSBRBs, with the exception of test 3 at the second story

and test 4 at the first and second stories, did not yield significantly (note that even for

those exceptions, the SSBRBs only yielded a few times.  Recall that this comparison was

made with respect to the BRBs theoretical yield strength, which will be verified in

Section 4.4.
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Figure 4.41.  BRBs Axial Force for Test 1 (PGA = 1.00 g)
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Figure 4.42.  BRBs Axial Force for Test 2 (PGA = 1.00 g)
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Figure 4.43.  BRBs Axial Force for Test 3 (PGA = 1.00 g)
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Figure 4.44.  BRBs Axial Force for Test 4 (PGA = 1.00 g)



113

BRBs seismic response is also presented in terms of axial deformations in Figures 4.45 to

4.48 for the strongest earthquake level, along with the yield deformation of the braces

(1.17 mm and 1.62 mm for NSBRBs and SSBRBs, respectively).  Table 4.6 presents a

summary of maximum axial deformation of BRBs, at every earthquake level, along with

the corresponding ductility.  An average ductility of 4.6 can be observed for first and

second story NSBRBs at the strongest level of earthquake.  However, an average

ductility of 2.7 was observed for the SSBRBs, caused by the slippage between bolts and

gusset-plates as mentioned in Section 4.2.  The gap between pins and pinholes resulted in

a relatively smaller axial deformation of the braces and, therefore, reduced the

effectiveness of the BRB frame as shown in Table 4.6.

Table 4.6.  BRBs Axial Deformation

Story \ PGA (g) 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Axial Deformation (mm) Ductility (μ)
Test 1 (NSBRBs)

3 0.49 0.96 1.06 1.19 0.42 0.82 0.91 1.02
2 0.79 2.62 4.00 5.64 0.68 2.25 3.43 4.84
1 0.84 1.53 3.46 4.98 0.72 1.31 2.97 4.28

Test 2 (NSBRBs)
3 0.51 0.86 1.12 1.27 0.43 0.74 0.96 1.09
2 0.77 1.87 3.50 5.45 0.66 1.60 3.00 4.67
1 0.87 1.69 3.20 5.40 0.75 1.45 2.74 4.64

Test 3 (SSBRBs)*
3 0.62 1.14 1.35 1.53 0.38 0.70 0.84 0.95
2 0.70 2.00 3.35 4.96 0.43 1.24 2.07 3.06
1 0.67 1.25 2.59 4.03 0.41 0.77 1.60 2.49

Test 4 (SSBRBs)*
3 0.57 0.98 1.27 1.44 0.35 0.60 0.78 0.89
2 0.67 1.62 3.03 4.72 0.41 1.00 1.87 2.92
1 0.63 1.21 2.30 3.88 0.39 0.75 1.42 2.40

* Slippage has been subtracted from the SSBRBs axial deformation.
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Figure 4.45 BRB Axial Deformation for Test 1 (PGA = 1 g)
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Figure 4.46 BRB Axial Deformation for Test 2 (PGA = 1 g)
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Figure 4.47 BRB Axial Deformation for Test 3 (PGA = 1 g)
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Figure 4.48 BRB Axial Deformation for Test 4 (PGA = 1 g)
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BRBs axial forces and deformations were combined to plot the hysteresis loops presented

in Figures 4.49 to 4.52.  As previously mentioned, NSBRBs at first and second stories

exhibited inelastic behavior with a ductility of 4.6, while third story brace remained

basically elastic (see Figures 4.49 and 4.50).  On the other hand, SSBRBs exhibited a

different hysteretic behavior, due to the above mentioned slippage between bolts and

gusset-plates.  Figures 4.51 and 4.52 show the hystersis loops for SSBRBs along with

dashed lines, which indicate the point of contact between pins and gusset-plates (i.e.,

approximately 3 mm).  Note that when pins and gusset-plates make contact the braces are

engaged and axial force starts to increase.  It is noteworthy that before the gap is closed,

some friction force is developed between the brace collar and gusset-plate, which

corresponds to the almost horizontal lines between dashed lines on the hysteresis loops in

Figures 4.51 and 4.52.  This slippage behavior has been previously reported by Merritt et

al. 2003, and was also observed on static tests conducted to individual braces in this

study (see Section 4.4).  For large full-scale structures, the magnitude of that ±3 mm

slippage is of a smaller percentage of the total brace elongation, and thus of lesser

significance than observed here.  In hindsight, for this scaled model, the hole of the

SSBRB gussets should have been machined to perfectly match the pin diameter without

leaving space for slippage.
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Figure 4.49.  BRBs Hysteresis Loops for Test 1 (PGA = 1 g)
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Figure 4.50.  BRBs Hysteresis Loops for Test 2 (PGA = 1 g)
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Figure 4.51.  BRBs Hysteresis Loops for Test 3 (PGA = 1 g)
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Figure 4.52.  BRBs Hysteresis Loops for Test 4 (PGA = 1 g)
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4.3.3.  Response of the Base Isolator for Nonstructural Components

Section 2 presented a description of the Ball-in-cone (BNC) isolation system used in this

experimental study to mitigate seismic demand on nonstructural components in structures

designed with metallic structural fuses.  Seismic behavior was presented along with

analytical predictions for an isolator installed on the third floor of the experimental

frame.  Seismic response was directly measured from accelerometers and string pots

installed on the top platform of the isolator (see Figure 3.19).  Acceleration response is

presented in Figures 4.53 to 4.54, along with the third floor acceleration of the BRB

frame (shown as dotted lines).  Similar results were obtained for other cases as shown in

Figure 4.55, which also includes the acceleration response of the isolator installed on the

BF.  Maximum values of acceleration for both third floor and isolator are presented in

Table 4.7.  An almost constant acceleration response can be observed from the results

(i.e., 0.14 g on average), regardless the earthquake level and the structural system (BF or

BRB frame).  A reduction of 85% is generally observed from the results, which is in

good agreement with the analytical predictions presented in Section 2.  However, when

the BF was subjected to a ground motion with PGA = 1 g, a peak of 0.75 g was observed

on the acceleration response (see Figure 4.55).  This spike on the acceleration demand

occurred because the top platform exceeded its allowable lateral displacement (i.e.,

178 mm in Figure 2.20b) and the balls struck the plates edge, causing a sudden increase

in the acceleration.

Table 4.7.  Acceleration Response of the Base Isolator for Nonstructural Components

Test \ PGA (g)

(1)

0.25

(2)

0.50

(3)

0.75

(4)

1.00

(5)

0.25

(6)

0.50

(7)

0.75

(8)

1.00

(9)

0.25

(10)

0.50

(11)

0.75

(12)

1.00

(13)
Third Floor

Acceleration (g)

Base Isolator

Acceleration (g)

% of Reduction

Bare Frame 0.47 0.94 1.15 1.44 0.15 0.17 0.18 0.75 68% 82% 84% 48%
2 (NSBRBs) 0.48 0.74 1.02 1.38 0.12 0.14 0.15 0.16 75% 81% 85% 88%
3 (SSBRBs) 0.40 1.18 1.78 1.91 0.11 0.13 0.14 0.16 73% 89% 92% 92%
4 (SSBRBs) 0.51 1.09 2.12 2.53 0.13 0.15 0.15 0.16 74% 86% 93% 94%
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Isolator response in terms of relative displacement of the top platform with respect to the

third floor is also presented in Table 4.8.  Note that when an isolator displacement of

178 mm is reached, the ball travels to the maximum distance to which it can roll.  Beyond

that, the platform can start to ride on top of the ball and the displacement can increase

somewhat beyond that point in an undesirable manner.  This explains the value of

204.18 mm recorded when the BF was subjected to the ground motion with PGA = 1 g,

which coincides with the sudden spike on the acceleration response, as previously

mentioned.  It may be also noted that for the BRB frames, the isolator did not exceed the

maximum allowable displacement, and a general reduction of 50% can be observed with

respect to the displacement demand of the isolator installed on the BF.  This shows that it

is generally possible to reduce the displacement response of BNC isolators compared to

BF when additional stiffness is provided by the inclusion of the BRBs (i.e., lateral

displacement of the top platform was kept under the limit imposed by the isolator

geometry).  The modeling procedure described in Section 8.7 can be used in actual

designs to obtain reasonable estimates of the relative displacement demands of the BNC

isolator.

Finally, note that the average value of displacement demand for the isolator that would

have been used in the corresponding prototype with BRBs, taking all scaling into

consideration, would have been 335 mm.  Therefore, in actual buildings, such as the

prototype used for this study, isolators would generally require such large lateral

displacements capacity.

Table 4.8.  Displacement Response of the Base Isolator for Nonstructural Components

Test \ PGA (g)

(1)

0.25

(2)

0.50

(3)

0.75

(4)

1.00

(5)

0.25

(6)

0.50

(7)

0.75

(8)

1.00

(9)
Base Isolator Displacement (mm) % of Reduction

Bare Frame 67.82 108.95 176.36 204.18 N/A N/A N/A N/A
2 (NSBRBs) 31.90 48.28 87.40 106.72 53% 56% 50% 48%
3 (SSBRBs) 39.28 54.39 101.10 116.82 42% 50% 43% 43%
4 (SSBRBs) 38.24 57.82 105.12 111.22 44% 47% 40% 46%
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Figure 4.53.  Acceleration Response of the Isolator for Test 2
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Figure 4.53.  Acceleration Response of the Isolator for Test 2 (cont’d)
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Figure 4.55.  Acceleration Response of the Isolator for Tests 3, 4, and Bare Frame
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Static Hydraulic Actuator (50 kip)NSBRB

SSBRB
Static Hydraulic Actuator (50 kip)

Figure 4.56.  Elevation View of the Static Test Setup

4.4. Uniaxial Static Tests

After completion of the shake table tests, six BRBs (three from Nippon Steel and three

from Star Seismic) were axially tested to determine the cyclic performance of the braces

based on the acceptance criteria of the Seismic Provisions for Structural Steel Buildings

(AISC, 2005) and the Office of Statewide Health Planning and Development (OSHPD). 

In addition to the standard loading protocol, low-cycle fatigue tests were also conducted

until the braces fractured.  Test setup and results are discussed in subsequent sections.

4.4.1.  Test Setup

The braces were tested on an axial loading facility at the University at Buffalo, which

consisted of a foundation beam, reactions blocks and a hydraulic actuator with a capacity

of 222 kN (50 kips).  Gusset-plates were specifically designed for both Nippon Steel and

Star Seismic BRBs to represent the type of connections used on the shake table tests. 

One of the gusset-plates was attached to a reaction block, the other one was attached to

the actuator’s head, and the braces were connected to both ends.  Figure 4.56 shows a

schematic view of the setup for the static tests.
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4.4.2.  Instrumentation

The longitudinal movement of the actuator was measured by a linear variable

displacement transducer (LVDT) located in the actuator.  Five additional displacement

transducers (L1 through L5 in Figure 4.57) were installed to measure the axial

deformation of the braces.  Figures 4.58 and 4.59 show the instruments installed at one

end of NSBRBs and SSBRBs, respectively.  Note that for SSBRBs transducers L1 and

L2 were installed on the collar of the braces (as opposed to on the gusset-plates), to

obtain elongation results that do not include slippage between bolts and gusset-plates, in

addition to the lateral brace global elongation including slippage.

Figure 4.57.  Instrumentation for NSBRBs and SSBRBs
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Figure 4.58.  Instrumentation for Nippon Steel BRBs

Figure 4.59.  Instrumentation for Star Seismic BRBs
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The applied load was measured by a load cell installed in the actuator.  According to the 

Seismic Provisions for Structural Steel Buildings (AISC, 2005) the axial strength of

BRBs, Pysc, shall be determined as:

where β and ω are the compression and strain-hardening adjustment factors, respectively;

Ry is the ratio of the expected yield stress to the specified minimum yield stress; Fysc is the

specified minimum yield stress of the steel core; and Asc is the net area of the steel core. 

Values of β and ω at the point of maximum deformation were obtained from previous

studies (e.g., Merritt et al. 2003, and Lopez and Sabelli, 2004) as 1.2 and 1.6,

respectively.  Ry was taken as 1.1 from Table I-6-1 from the Seismic Provisions for

Structural Steel Buildings (AISC, 2005).  Substituting these values into (4.1), and

recalling that Fysc = 235 MPa (NSBRB) and 290 MPa (SSBRB), and that Asc = 400 mm2

(NSBRB) and 325 mm2 (SSBRB), values of Pysc were estimated for both NSBRBs and

SSBRBs as approximately 200 kN (i.e., less than the capacity of the actuator’s load cell).

4.4.3.  Loading Protocol

Nippon Steel and Star Seismic BRBs were axially tested according to the protocol

proposed in the Seismic Provisions for Structural Steel Buildings (AISC, 2005), followed

by additional cycles to satisfy the OSHPD requirement for cumulative inelastic

deformation.  

Table 4.9 presents the loading sequence for the static tests.  Note that the yielding

deformation, Δby, for NSBRB and SSBRB was calculated as 1.17 mm and 1.62 mm,

respectively.  In this uniaxial brace test series, the brace deformation at the design story

drift, Δbm, was taken as 5Δby as proposed by Seismic Provisions for Structural Steel

Buildings (AISC, 2005).  Figure 4.60 shows the test protocol for both NSBRBs and

SSBRBs.

(4.1)
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Table 4.9.  Loading Protocol for Static Test

Cycles Axial Deformation Inelastic Cumulative Axial Deformation (mm)
Deformation Inelastic Def. NSBRB SSBRB

(1) (2) (3) (4) (5) (6) (7)
4 0.2 Δbm 1.0 Δby 0 Δby 0 Δby 1.17 1.62
4 0.3 Δbm 1.5 Δby 4 Δby 4 Δby 1.75 2.43
4 0.5 Δbm 2.5 Δby 12 Δby 16 Δby 2.91 4.05
4 1.0 Δbm 5.0 Δby 32 Δby 48 Δby 5.83 8.09
4 1.5 Δbm 7.5 Δby 52 Δby 100 Δby 8.74 12.14
4 2.0 Δbm 10 Δby 72 Δby 172 Δby 11.65 16.19
2 2.5 Δbm 12.5 Δby 46 Δby 218 Δby 14.56 20.23
2 3.0 Δbm 15 Δby 56 Δby 274 Δby 17.48 24.28
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Figure 4.60.  Test Protocol Normalized with respect to Dby (1.17 mm and 1.62
mm for NSBRBs and SSBRBs, respectively)
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Once the standard loading protocol was completed for every specimen, low-cycle fatigue

tests were conducted with an amplitude of 3Δbm until the braces fractured.  Note that

AISC requires the braces to achieve a cumulative inelastic axial deformation of at least

200Δby before failure.  It may be noted from Table 4.9 that this required cumulative

inelastic deformation was exceeded at the end of the standard loading protocol (i.e.,

274Δby).  In addition, the low-cycle fatigue test conducted until failure amounted to

additional cumulative inelastic deformations, and individual results will be reported in

the next section.

4.4.4.  Test Results

Results are presented in this section for both the standard loading protocol and the low-

cycle fatigue tests.  BRBs properties and peak results are also tabulated based on the

measurement of forces and deformations.

Figures 4.61 to 4.63 show the hysteresis loops for NSBRBs corresponding to the standard

loading protocol and the low-cycle fatigue tests.  It may be noted that two types of low-

cycle fatigue tests were conducted, with amplitude of cycles equal to 15Δby and 20Δby,

respectively.  Table 4.10 presents NSBRBs measured properties along with maximum

results. From this table it may be noted that average values of Ry, β, ω, and strain-

hardening of 1.15, 1.13, 1.53, and 5%, respectively, matched the target parameters (i.e.,

Ry = 1.1, β = 1.2, ω = 1.6 and strain-hardening of 4.5%) within 10%.  Results obtained at

the end of fatigue life are also shown in Table 4.10.  The maximum cumulative inelastic

deformation was 2598Δby, with an average value of  2309Δby, which satisfies the

requirement of 200Δby and translates into a large energy dissipation capacity. 

Furthermore, a comparison between the results obtained from static and dynamic tests is

presented in Figure 4.64 as superimposed curves.  Good correlation is observed between

static and dynamic test results through the point of maximum displacement achieved

during the shake table tests.
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Table 4.10.  Static Test Results

Test Pysc Δyb Kb Tmax Cmax Ry β ω Strain- Cycles Cum.
(kN) (mm) (kN/mm) (kN) (kN) hard. to

fract.

Inel.

Def.

/ Δby
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NSBRB1 116.09 1.94 59.84 184.31 215.64 1.10 1.17 1.59 0.054 94 2122
NSBRB2 123.61 2.09 59.14 203.80 226.90 1.17 1.11 1.65 0.060 97 2206
NSBRB3 123.63 2.26 54.70 168.10 187.47 1.17 1.12 1.36 0.043 111 2598
SSBRB4 119.66 2.43 49.24 154.00 171.81 1.17 1.12 1.29 0.044 46 778
SSBRB5 113.26 2.00 56.63 156.43 168.82 1.11 1.08 1.38 0.046 47 806
SSBRB6 121.18 2.24 54.10 159.25 168.09 1.18 1.06 1.31 0.043 45 750
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Figure 4.61.  Hysteresis Loops for NSBRB Test 1: 
(a) AISC Protocol, (b) OSHPD Protocol, (c) Low-cycle

Fatigue Protocol
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Figure 4.62.  Hysteresis Loops for NSBRB Test 2: 
(a) AISC Protocol, (b) OSHPD Protocol, (c) Low-cycle

Fatigue Protocol
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Figure 4.63.  Hysteresis Loops for NSBRB Test 3: 
(a) AISC Protocol, (b) OSHPD Protocol, (c) Low-cycle

Fatigue Protocol
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Figure 4.64.  Comparison between Static and Dynamic Test Results for NSBRBs
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Hysteresis loops for the three SSBRBs that were tested are presented in Figure 4.65.  As

discussed in Section 4.3.2, the horizontal shift near zero load was caused by the gap

between pins and gusset-plates (note that the shift does not occur at zero force, due to

friction between the surfaces in contact).  Four slipping surfaces can be noted at every

hysteresis loop, which correspond to the relative motion between gusset-plates and bolts,

and between bolts and braces at both ends.  Displacement transducers installed on the

collars of the braces allowed to record elongation of the brace alone, without the shift,

and to plot the hysteresis loops considering the actual deformation of the BRBs.

Figures 4.66 to 4.68 show the hysteresis loops for SSBRBs corresponding to the standard

loading protocol and the low-cycle fatigue tests.  In this case, both low-cycle fatigue tests

were conducted with amplitude of 15Δby.  Average values of Ry, β, ω, and strain-

hardening of 1.15, 1.08, 1.33, and 4%, respectively,  matched the target parameters

within 12%.  The maximum cumulative inelastic deformation was 806Δby, with an

average value of 778Δby, which satisfies the requirement of 200Δby and translates into a

large energy dissipation capacity.
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Figure 4.65.  Hysteresis Loops for SSBRBs with Slippage:
(a) SSBRB 4, (b) SSBRB 5, (c) SSBRB 6
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Figure 4.66.  Hysteresis Loops for SSBRB Test 4:
(a) AISC Protocol, (b) OSHPD Protocol, (c) Low-cycle

Fatigue Protocol
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Figure 4.67.  Hysteresis Loops for SSBRB Test 5:
(a) AISC Protocol, (b) OSHPD Protocol, (c) Low-cycle

Fatigue Protocol

(a)

(b)

(c)
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Figure 4.68.  Hysteresis Loops for SSBRB Test 6:
(a) AISC Protocol, (b) OSHPD Protocol, (c) Low-cycle

Fatigue Protocol

(a)

(b)

(c)
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A comparison between the results obtained from static and dynamic tests is also

presented in Figure 4.69 as superimposed curves.  Again, good correlation is observed

between static and dynamic test results through the point of maximum displacement

achieved during the shake table tests.  Combined hysteresis loops (including the standard

loading and the low-cycle fatigue protocols) for all the BRBs that were tested are

presented in Figure 4.70.  Furthermore, it is noteworthy that the gap between pins and

gusset-plates (necessary for adequate assemblage of the braces) has a substantial

influence in the seismic behavior of a scaled frame like the one tested in this study. 

However, in an actual building with full-scale braces, this small gap may not have a

significant influence in the seismic performance of BRBs.

Finally, Figures 4.71 and 4.72 show pictures of NSBRBs and SSBRBs, respectively, at

the point of maximum deformation.  Fractured braces can also be seen in Figures 4.73

and 4.74.  Small longitudinal waves along the brace were attributed to slight local

buckling of the core plate under compression loads.
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Figure 4.69.  Comparison between Static and Dynamic Test Results for SSBRBs
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Figure 4.70.  Combined Hysteresis Loops (kN vs mm) for BRBs Tests (Slippage has
been removed from SSBRBs)
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Figure 4.71.  NSBRB at Maximum Deformation

20 Δyb

Figure 4.72.  SSBRB at Maximum Deformation
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Figure 4.73.  NSBRB After Fracture

Figure 4.74.  SSBRB After Fracture
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4.5. Observations

Experimental results presented in this section indicate that the objectives of the structural

fuse concept were successfully achieved (i.e., beams and columns performed elastically,

while BRBs worked as metallic fuses and dissipated the seismically induced energy).

In general, analytical models reasonably predicted maximum response values for the

NSBRB frame, although some discrepancies were observed in the trend itself.  These

differences were attributed in part to the fact that the analyses were performed using a

damping ratio of 2%, which was found to be lower than the actual values obtained at

higher amplitude tests.  However, for the SSBRB frame significant differences were

observed between experimental results and analytical predictions. .  The slips developed

in the SSBRB system at the connection point between BRBs and gusset-plates may

further explain the observed differences between analytical and experimental results.

BNC isolators were observed to be effective to control the acceleration transmitted to

nonstructural components in systems designed using the structural fuse concept, where

lateral stiffness is substantially increased by the inclusion of metallic dampers. In terms

of displacement response, it was observed that it is generally possible to reduce the

displacement response of BNC isolators compared to BF by the inclusion of BRBs (i.e.,

increase in the lateral stiffness of the system). 

Furthermore, even though the scaled frame with SSBRBs exhibited a less than ideal

performance due to the gap between bolts and gusset-plates (which is substantial in this

case relative to the total expected braces displacements), the BRBs behavior may not be

significantly affected by the gap size in a full-scale structure.  This has been observed in

other large-scale studies (e.g., Merritt et al. 2003).

Incidentally, the proposed eccentric gusset-plates detail was found to be effective to

prevent performance problems observed in other experimental studies, such as local

buckling and out-of-plane buckling of the plates at the connection point.  However, since
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the BRBs were not tested to failure in place in the frame, final conclusion regarding the

performance of that proposed gusset detail should be the subject of further research.
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SECTION 5

CONCLUSIONS

An experimental project, consisting of a three-story frame designed with BRBs, was

conducted as a proof of concept to the alternative of using structural fuses to improve the

resilience of new and existing structures.  In this experimental project, seismically

induced damage was successfully concentrated on BRBs, which were designed as

sacrificeable and easy-to-repair elements.  Replaceability of BRBs was also examined in a

test-assessment-replacement-test sequence using four sets of braces connected to the

frame by removable eccentric gusset-plate, which were also found to be effective to

prevent performance problems observed in other experimental studies with BRBs (e.g.,

local and out-of-plane buckling of concentrically connected gusset-plates).  Similarly,

BNC isolators were observed to be effective to control the acceleration transmitted to

nonstructural components in structural fuse systems, where the inclusion of metallic

dampers results in a substantial increased in the lateral stiffness.  Furthermore, good

agreement was generally observed between experimental results and seismic response

predicted through analytical models.

Specific conclusions of this study are:

(1) Important clarification has been provided to the previously used definition of

structural fuses.  This study specifically defines structural fuses as sacrificeable

and easy-to-repair elements designed to protect the primary structure of a building

while allowing automated self-centering of the frame during fuse replacement

(hence the “fuse” analogy).
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(2) The parameters that govern the seismic behavior of buildings designed or

retrofitted with metallic dampers working as structural fuses were identified. 

Seismic response was validated through parametric analyses of the studied

systems, and design guidance was provided for the sizing of the fuse system as a

function of the total system strength.

(3) Viscous dampers installed in parallel with hysteretic dampers were found to be

not only ineffective but sometimes detrimental to the seismic performance of

acceleration sensitive equipment and nonstructural components.  Generally, this

conclusion would also be valid for buildings retrofitted with viscous dampers and

whose original frame still behaves inelastically under major earthquakes.

(4) The validity of the proposed design procedure was thoroughly verified through

several analytical examples of MDOF systems designed and retrofitted with

different types of structural fuses.  Furthermore, the procedure was also

experimentally validated, with good agreement between analytical predictions and

experimental results.  Therefore, it is concluded that the proposed procedure is

sufficiently robust and reliable to design structural fuse systems with satisfactory

seismic performance.
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Site: Sherman Oaks, California (Lat.=34.154, Long.=-118.465), Site Class B

Ss 1.95 g⋅:= S1 0.87 g⋅:= Fa 1:= Fv 1:=

SMS 1.95 g= SM1 0.87 g=

SDS 0.94 g= SD1 0.42 g=

Peak Ground Acceleration: ügmax 0.4 SDS⋅:= ügmax 0.375 g=

Step 1: Allowable Roof Displacement: Δa 0.02 H⋅:= Δa 238 mm=

Elastic Spectral Displacement: Sd Δa:= Sd 238 mm=

Step 2: Elastic Period Limit: TL
4 π

2
⋅

Γ1 SD1⋅

Sd

1sec
⋅:= TL 1.802 sec=

Elastic Spectral Acceleration: Sa min
SD1

TL
1⋅ sec SDS,⎛⎝ ⎞⎠:= Sa 0.232 g=

Appendix A: Design to Satisfy the Structural Fuse Concept
of Prototype System with Buckling-Restrained Braces (BRBs)

Frame Properties:

Building High: H 11887 mm⋅:= Panel Width: L 6096 mm⋅:=

Total Mass: mt 0.4913
kN sec2⋅

mm
⋅:=Mass Matrix: M

0.1594

0

0

0

0.1594

0

0

0

0.1725
⎛⎝ ⎞⎠:=

Assumed Mode Shape: φ1

0.33

0.67

1
⎛⎝ ⎞⎠:= r

1

1

1
⎛⎝⎞⎠:=

Modal Participation Factor: Γ1
φ1

T
M⋅ r⋅

φ1
T

M⋅( ) φ1⋅
:= Γ1 1.27=

Story high: h1 3962mm:= h2 3962mm:= h3 3962mm:=

Bay Length: L1 6096mm:=

Material Properties:

Fyf 345 MPa⋅:= E 200000 MPa⋅:= G 77240 MPa⋅:= Fyd 290 MPa⋅:=
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Ka 4.48
kN
mm

=

Step 6: SF Yield Displacement: Δya
Vy

K1
:= Δya 76 mm=

BF Yield Displacement: Δyf μmax Δya⋅:= Δyf 378 mm=

Step 7: BF Shear Capacity: Vyf Vy α⋅ μmax⋅:= Vyf 565 kN=

SF Shear Capacity: Vya Vy 1 α−( )⋅:= Vya 339 kN=

Step 8: Vertical Distribution of BF and SF Base Shear:

Ff1 Φ1 Vyf⋅:= Ff1

93

189

282
⎛⎝ ⎞⎠ kN=

Fa1 Φ1 Vya⋅:= Fa1

56

113

169
⎛⎝ ⎞⎠ kN=

BF Story Shear: Vyf1 565 kN= Vyf2 471 kN= Vyf3 282 kN=

Elastic Base Shear: Ve mt Sa⋅:= Ve 1118 kN=

Step 3: Design Parameters (Table 4.1):

Target Design Parameters: α 0.25:= μmax 5:= η 0.25:=

Ωo α μmax 1−( )⋅ 1+:= Ωo 2=

Step 4: Yield Shear: Vy η mt⋅ ügmax⋅:= Vy 452 kN=

Shear Capacity: Vp Ωo Vy⋅:= Vp 903 kN=

Step 5: Required Stiffness:
K1

4 π
2

⋅

TL
2

mt⋅:= K1 5.97
kN
mm

=

Frame Stiffness: Kf α K1⋅:= Kf 1.49
kN
mm

=

Structural Fuse Stiffness: Ka 1 α−( ) K1⋅:=

158



ZEC3 810501 mm3=ZEC3
MEC3

Fyf
:=

ZEC2 1353537 mm3=ZEC2
MEC2

Fyf
:=

ZEC1 1621002 mm3=ZEC1
MEC1

Fyf
:=Required Columns Plastic Modulus:

MEC3 280 kN m⋅=MEC3 Vyf3 h3⋅
1
4
⋅:=

MEC2 467 kN m⋅=MEC2 Vyf2 h2⋅
1
4
⋅:=

MEC1 559 kN m⋅=MEC1 Vyf1 h1⋅
1
4
⋅:=Columns Moments:

ZB3 810501 mm3=ZB3
MB3

Fyf
:=

ZB2 2164038 mm3=ZB2
MB2

Fyf
:=

ZB1 2974539 mm3=ZB1
MB1

Fyf
:=Required Beams Plastic Modulus:

MB3 280 kN m⋅=MB3 Vyf3 h3⋅( ) 1
4
⋅:=

MB2 747 kN m⋅=MB2 Vyf3 h3⋅ Vyf2 h2⋅+( ) 1
4
⋅:=

MB1 1026 kN m⋅=MB1 Vyf2 h2⋅ Vyf1 h1⋅+( ) 1
4
⋅:=Beams Moments:

Vya3 169 kN=Vya2 283 kN=Vya1 339 kN=SF Story Shear:
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Ab1 b1 t1⋅ 1430 mm2⋅→:=

Second Story: b2 121mm:= t2 10mm:= Ab2 b2 t2⋅ 1210 mm2⋅→:=

Third Story: b3 73mm:= t3 10mm:= Ab3 b3 t3⋅ 730 mm2⋅→:=

Step 9: Pushover Analysis:

Frame Properties: Kf 5.49
kN
mm

= Vyf 651 kN= Δyf 118 mm=

BRB Properties: Ka 7.69
kN
mm

= Vya 312 kN= Δya 41 mm=

Total Stiffness: K1 Kf Ka+:= K1 13.19
kN
mm

=

Total Yield Shear: Vy 535 kN=

Select Beams

First Floor:            W24x76 Zb1 3277413 mm3=

Second Floor:       W24x62 Zb2 2523608 mm3=

Third Floor:           W16x36 Zb3 1048772 mm3=

Select Columns

First to Third Story:                 W14x74 Zec 2064770 mm3=

Required BRBs Area:

First Story: Abr1
Vya1

Fyd cos θ1( )⋅
:= Abr1 1393 mm2=

Second Story: Abr2
Vya2

Fyd cos θ2( )⋅
:= Abr2 1163 mm2=

Third Story: Abr3
Vya3

Fyd cos θ3( )⋅
:= Abr3 697 mm2=

Select BRBs Properties:

First Story: b1 143mm:= t1 10mm:=
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μ f
0.8239
μmax

η
A

⋅
T

1sec⎛⎝ ⎞⎠
B ηC⋅

⋅:= μ f 1.11=

Global Ductility: μ μmax μ f⋅:= μ 3.23=

Step 11: Design Parameters:
Sa min

SD1

T
1⋅ sec SDS,⎛⎝ ⎞⎠:= Sa 0.4286 g=

Ve mt Sa⋅:= Ve 2065 kN=

Vp Vyf Vya+:= Vp 963 kN=

R
Ve

Vy
:= R 3.862=

Ωo
Vp

Vy
:= Ωo 1.801=

Rμ
R
Ωo

:= Rμ 2.145=

New Parameters: α
1

1
Ka

Kf
+

:=
α 0.42=

μmax
Δyf

Δya
:= μmax 2.92=

η
Vy

mt ügmax⋅
:=

η 0.3=

Period from Dynamic Analysis: T 0.976sec:=

Step 10: Time History Analysis Results:

umax 3.33 in=Frame Ductility: μ f 0.71=

Global Ductility: μ μmax μ f⋅:= μ 2.09=

Approximate Results:

Frame Ductility:
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h 0.56 in=

Bearing Strength:

Lc 1
5
8

+⎛⎝ ⎞⎠ in:= Lc 1.62 in=

φRn 0.75 1.2⋅ Lc⋅ t⋅ Fu⋅( ) 2⋅:= φRn 118.83 kip= > 32 kip => OK

Block Shear Strength:

Agt 3in t⋅:=

Agv 2.375in t⋅( ) 2⋅:=

Ant 3in h−( ) t⋅:=

Anv 2.375in 1.5 h⋅−( ) t⋅[ ] 2⋅:=

φRn min 0.75 0.6 Fy⋅ Agv⋅ Fu Ant⋅+( )⋅ 0.75 0.6 Fu⋅ Anv⋅ Fu Ant⋅+( )⋅,

⎡⎣ ⎤⎦
:=

φRn 130.25 kip= > 32 kip => OK

Appendix B: Design of Gusset-Plates:

Nippon Steel BRBs:

BRB Properties:

Fyb 36ksi:= Ry 1.1:= βω 1.3:= Ab 0.625in2:=

Pu βω Ry⋅ Fyb⋅ Ab⋅:= Pu 32.18 kip=

Gusset-Plate Design:

Thickness: t 0.625in:= Fy 50ksi:= Fu 65ksi:=

Holes: d 0.5in:= h d
1
16

in+:=
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> 2 in => OKLfg 11.29 in=Lfg 0.75
E
Fy

⋅ t⋅:=

Buckling Strength of Free Edge:

> 32 kip => OKφRn 111.39 kip=φRn φFcr Ag⋅:=

φFcr 37.52ksi:==>k l⋅
r

41.38=

k 1:=l 7.5in:=r 0.29 t⋅:=

Buckling Strength:

> 32 kip => OKφRn 133.59 kip=φRn 0.9Fy Ag⋅:=

Ag 4.75in t⋅:=

Tension Yielding Strength:
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> 33 kip => OKφRn 84.38 kip=φRn 0.9Fy Ag⋅:=

Ag 3in t⋅:=

Tension Yielding Strength:

> 33 kip => OKφRn 63.98 kip=φRn 0.75 1.2⋅ Lc⋅ t⋅ Fu⋅:=

Lc 1.75in:=

Bearing Strength:

h 1.56 in=h d
1
16

in+:=d 1.5in:=Holes:

Fu 65ksi:=Fy 50ksi:=t 0.625in:=Thickness:

Gusset-Plate Design:

Pu 32.89 kip=Pu βω Ry⋅ Fyb⋅ Ab⋅:=

Ab 0.50in2:=βω 1.3:=Ry 1.1:=Fyb 46ksi:=

BRB Properties:

Star Seismic Steel BRBs:
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Buckling Strength:

r 0.29 t⋅:= l 4.75in:= k 1:=

k l⋅
r

26.21= => φFcr 40.46ksi:=

φRn φFcr Ag⋅:= φRn 75.86 kip= > 33 kip => OK

Buckling Strength of Free Edge:

Lfg 0.75
E
Fy

⋅ t⋅:= Lfg 11.29 in= > 2 in => OK
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APPENDIX C

FREE VIBRATION AND FREQUENCY SWEEP TESTS FOR THE

BNC ISOLATOR

Figure C.1.  Free Vibration without Rubber Pads (Test 1)

Figure C.2.  Free Vibration without Rubber Pads (Test 2)
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Figure C.3.  Free Vibration with Rubber Bands and without Rubber Pads (Test 3)

Figure C.4.  Free Vibration with Rubber Bands and without Rubber Pads (Test 4)
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Figure C.5.  Frequency Sweep with Rubber Pads (Test 5)

Figure C.6.  Frequency Sweep with Rubber Pads (Test 6)
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Figure C.7.  Frequency Sweep with Rubber Pads and Rubber Bands (Test 7)

Figure C.8.  Frequency Sweep with Rubber Pads and Rubber Bands (Test 8)
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