
ISSN 1520-295X

Experimental and Analytical Studies of
Base Isolation Systems for Seismic Protection

of Power Transformers

by

Nobuo Murota, Maria Q. Feng and Gee-Yu Liu
University of California, Irvine

Department of Civil and Environmental Engineering
Engineering Gateway 4139

Irvine, California 92697

Technical Report MCEER-05-0008

September 30, 2005

This research was conducted at the University of California, Irvine, Bridgestone Corporation and the
National Center for Research on Earthquake Engineering, and was supported primarily by the

Earthquake Engineering Research Centers Program of the National Science Foundation
under award number EEC-9701471.



NOTICE
This report was prepared by the University of California, Irvine, Bridgestone Cor-
poration and the National Center for Research on Earthquake Engineering as a
result of research sponsored by the Multidisciplinary Center for Earthquake Engi-
neering Research (MCEER) through a grant from the Earthquake Engineering Re-
search Centers Program of the National Science Foundation under NSF award num-
ber EEC-9701471 and other sponsors.  Neither MCEER, associates of MCEER, its
sponsors, the University of California, Irvine, Bridgestone Corporation or the Na-
tional Center for Research on Earthquake Engineering, nor any person acting on
their behalf:

a. makes any warranty, express or implied, with respect to the use of any infor-
mation, apparatus, method, or process disclosed in this report or that such use
may not infringe upon privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the use of, or the
damage resulting from the use of, any information, apparatus, method, or pro-
cess disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of
MCEER, the National Science Foundation, or other sponsors.



Experimental and Analytical Studies of
Base Isolation Systems for Seismic Protection of

Power Transformers

by

Nobuo Murota1, Maria Q. Feng2 and Gee-Yu Liu3

Publication Date: September 30, 2005
Submittal Date: April 5, 2005

Technical Report MCEER-05-0008

Task Number  1.10b

NSF Master Contract Number EEC-9701471

1 Senior Engineer, Department of Seismic Isolation Engineering, Bridgestone Corpora-
tion, Japan

2 Professor, Department of Civil and Environmental Engineering, University of Cali-
fornia, Irvine

3 Associate Research Fellow, National Center for Research on Earthquake Engineer-
ing, Taipei, Taiwan

MULTIDISCIPLINARY CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
University at Buffalo, State University of New York
Red Jacket Quadrangle, Buffalo, NY 14261



 

  



iii

Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national
center of excellence in advanced technology applications that is dedicated to the reduction
of earthquake losses nationwide. Headquartered at the University at Buffalo, State Univer-
sity of New York, the Center was originally established by the National Science Foundation
in 1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses through
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Center
coordinates a nationwide program of multidisciplinary team research, education and
outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is derived from the Federal Emergency
Management Agency (FEMA), other state governments, academic institutions, foreign
governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by devel-
oping seismic evaluation and rehabilitation strategies for the post-disaster facilities and
systems (hospitals, electrical and water lifelines, and bridges and highways) that society
expects to be operational following an earthquake; and to further enhance resilience by
developing improved emergency management capabilities to ensure an effective response
and recovery following the earthquake (see the figure below).
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A cross-program activity focuses on the establishment of an effective experimental and
analytical network to facilitate the exchange of  information between researchers located
in various institutions across the country. These are complemented by, and integrated with,
other MCEER activities in education, outreach, technology transfer, and industry partner-
ships.

This report presents a comprehensive analysis of the use of base isolation technology for seismic
protection of electric power transformers.  The lightweight nature and base displacement constraints
of power transformers require a different philosophy (from buildings and bridges) in designing a base
isolation system.  Two isolation systems were developed, one using sliding bearings combined with
rubber bearings and the other using segmented high-damping rubber bearings.  Tri-axial earthquake
simulator testing was performed using a large-scale transformer model equipped with real bushings.
Numerical simulation confirmed that the two isolation systems can perform differently under tri-
axial ground motions, even when designed with the same force-displacement hysteresis.  In
conclusion, base isolation technology, when properly designed, was shown to be a highly effective
method for seismic protection of power transformers.
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ABSTRACT 
 

This report presents a comprehensive study involving tri-axial earthquake simulator 

testing on seismic isolation of electric power transformers.  The lightweight nature and base 

displacement constraints of power transformers require a different philosophy (from buildings 

and bridges) in designing a base isolation system.  In this study, two isolation systems were 

developed, one using sliding bearings combined with rubber bearings and the other segmented 

high-damping rubber bearings.  Tri-axial earthquake simulator testing was performed using a 

large-scale transformer model equipped with real bushings.  Important observations were made 

on the seismic responses of the transformer and its bushing.  In particular, the vertical component 

of the ground motion induced high-frequency response of the bushing when the transformer was 

isolated with the sliding isolation system.  Numerical simulation confirmed that the two isolation 

systems, even designed with the same force-displacement hysteresis, can perform differently 

under tri-axial ground motions.   This is because the vertical motion changes the friction forces 

in the sliding bearings that can excite high modes in the transformer-bushing system.  

Furthermore, the effect of the interaction with the bushing connecting cables on the seismic 

isolation performance was experimentally evaluated in this study.  In conclusion, the base 

isolation technology, when properly designed, is a highly effective measure for seismic 

protection of power transformers. 
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SECTION 1 

INTRODUCTION 
 

1.1 Background  
 

Recent major earthquakes have significantly damaged many electrical power networks that are 

important to the delivery of electric power to tens of thousands of people in urban areas. 

Examples of these destructive earthquakes include: the 1994 Northridge earthquake in the United 

States, the 1995 Kobe (Hyogo-ken Nanbu) earthquake in Japan, the 1999 Izmit earthquake in 

Turkey, and the 1999 Chi-Chi earthquake in Taiwan.  The seismic damage to electrical power 

facilities and their impacts are shown in Table 1-1, Figure 1-1, and Figure 1-2. While the 

duration of system disruption was relatively short to moderate (one day for Northridge; three 

days for Kobe; and two weeks for Chi-Chi), the estimated direct losses were reported to be in the 

hundreds of millions of dollars for each event.  For example, the Los Angeles Department of 

Water and Power (LADWP) reported that following the Northridge earthquake, LADWP 

expended approximately $10.4 million to clean up debris, replace damaged equipment, and 

restore operations at its transmission-level facilities following the Northridge earthquake. In 

addition to the clean-up and repair costs, LADWP experienced revenue loss when the system 

went black following the earthquake. The net operational losses for LADWP’s electrical system 

in a blackout condition average about $4.4 million per day.  Furthermore, loss of power 

immediately after an earthquake can disrupt emergency response and recovery operations for the 

affected region. Thus power utilities are interested in ways to minimize, if not eliminate, 

earthquake damage and disruption to their systems (Shinozuka). 
 

Since expensive substations are key facilities of electrical power networks, there needs to be a 

way to protect them from earthquakes. In fact, many of them are extremely vulnerable to seismic 

damage because they were designed to much lower seismic standards.  Because transformers 

represent crucial substation equipment, the loss of their functionality can be devastating to the 

entire power system. For example, immediately following the 1994 Northridge and the 1995 

Kobe earthquakes, many power transformers suffered severe damage and lost operation because 
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of damage to the porcelain bushings, which are usually mounted on the top of the transformer 

(Shinozuka, 1995; Pansini 1998). 

 

The power transformer is a device, without moving parts, which transfers electric power from 

one circuit to another by electromagnetic means. Typically, both the voltage and current undergo 

changes between the circuits. The size, shape, and installation of the transformer vary according 

to the voltage it handles, as shown in Figure 1-3.   The basic components of a transformer are 

coils, an iron or steel core, a tank, oil, and bushings. The coils and the core are usually enclosed 

in the steel tank to protect it from vandalism and for safety purposes. The oil is usually placed in 

the tank to cover the coils and the core to provide cooling. Bushings take the terminals of the 

coils through the tank, insulating them from the tank, as shown in Figure 1-4. These typically 

consist of a conductor through an insulating collar, usually made of porcelain. For higher 

voltages, the porcelain cylinders may also be filled with oil or contain layers of insulation with 

metal foil inserted between them to equalize electric stresses among the layers.   

 
 

Table 1-1 Major Damage in Substations during Kobe Earthquake 
 

Equipment Number of damage 

Transformer 52 

Disconnect switch 10 

Condenser 4 

Breaker 41 

Lightning arrester 15 

 
 
Some of the modes of failure in a transformer system during an earthquake include anchorage 
failure that can cause ripping of the transformer case and oil leakage and/or foundation failure 
causing rocking and tilting. An unanchored transformer sometimes causes an overturning of an  
entire transformer system during a severe earthquake. On the other hand, the tightly fixed  
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Figure 1-1 Number of Residence Experiencing Power Cuts after Kobe Earthquake 
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 Broken arresters at the Itami Substation [ An EQE Summary Report, 1995]  

 

Damage to Transformer in Izmit Substation [EERI,1999] 

Figure 1-2 Damages in Electrical Equipments in Substations 
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Figure 1-3 Transformers in Electric Substation 
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anchorage system may cause fatal damage in internal elements of the transformers by the high 

impact forces that are transmitted. 

 

Another type of damage frequently occurs in a transformer system is the failure of porcelain 

bushings mounted on the transformer. The frequency usually varies from 3 to 15 (Hz) and may 

sometime cause large amplification in its response acceleration during earthquake. The failures 

on bushings include oil leakage from connection-interface of transformer and bushing or fracture 

of porcelain body.  The porcelain is a brittle material and has almost no energy-absorbing 

capabilities, and the damage in the bushing will occur at the mounting-end of bushing by stress 

concentration, uplift of porcelain body, slip of gasket, caused by the inertia force as a results of 

high response acceleration during earthquake.   

 

1.2 Conventional Seismic Design of Transformer 

 

Since transformer bushings form an integral part of power transmission and distribution systems, 

their structural and electrical integrity are critical to maintaining power transmission. To mitigate 

the damage in transformer system and other electrical substation equipment, representatives from 

electrical utilities and equipment manufacturers, together with consulting engineers and members 

of the academic community jointly developed a new national standard, IEEE 693-1997. These 

requirements are expected to improve the seismic capability of substation equipment and provide 

the guidelines for seismic testing and qualification of bushings.  In IEEE 693-1997, the bushings 

for 161-kV and larger must be qualified using earthquake simulator testing in which the input 

motion shall match the specified Required Response Spectrum shown in Figure 1-5. Three types 

of earthquake simulator testing are identified in IEEE 693-1997: 1) time-history shake table test; 

2) resonant frequency search; and 3) sine-beat testing. Time history records of input motion for 

the shake table test shall match the specified response spectrum. In IEEE 693-1997, three 

seismic performance levels (PL) are specified -- High, Moderate, and Low. Each level is defined 

by response spectrum with 2, 5, and 10% damping. Corresponding peak ground acceleration of 

the spectrum of each levels are, 1.0g, 0.5g, and 0.25g for the horizontal direction, and 0.8g, 0.4g, 

and 0.2g for the vertical direction. However, IEEE 693-1997 also stated that because testing 

under the specified performance level is often impractical and not cost effective, it may be  
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            ( Figure from Gilani Amir S. et al. (1999)) 
 
 

Figure 1-4 Porcelain Bushing 
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Figure 1-5 Qualification Test of Bushing and Spectra for  
Required Response Spectrum  (IEEE 693-1997) 
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substituted by the shaking of one-half of PL. The test results shall be evaluated with a safety 

factor of two against the requirements of PL. The reduced response spectrum of 0.5 x PL is 

designated High-, and Moderate-Required Response Spectrum as shown in Figure 1-5. 

 

In Japan, JEAG 5003 (1999) specified the required procedure to evaluate the seismic 

performance of transformer/bushing system. The specified seismic-level of the ground motion is 

0.5g in horizontal and 0.3g in vertical direction. The required test for the bushing is a resonant 

sine wave shaking test. A shaking table test is optional, and the actual site-record shall be applied 

(compare to the artificial wave specified in IEEE 693). A comparison of the design requirements 

in IEEE 693-1997, JEAG 5003, and IEC68-3-3 (European code) is summarized in Table 1-2. 

 
 

Table 1-2 Comparison of Standard for Seismic Evaluation of Facilities in 
Substation in Several Countries (JESC E0001 (1999)) 

 
 JEAG 5003 

(1999) IEEE 693 (1997) IEC 68-3-3 (1991) 

Method Tests or Analysis Tests or Analysis Tests 
Voltage class. N/A X X 
Seismic- 
performance class.  N/A X X 

Design-level class. N/A X General Specific 

Frequency range 

0.5 to 10 Hz;  
<0.5, >10Hz is 
tested by 0.5 or 
10 Hz 

1 to 33 Hz 1 to 35 Hz 1 to 35 Hz 

Seismic-intensity 
Class. N/A Low Mid. High Low Mid High Low Mid. High 

Hor. 0.3g, or 0.5g at 
pocket end 

 0.25 0.5 0.2 0.3 0.5 0.2 0.3 0.5 Input 
level 
(g) Ver. 0.15g, or 0.5g at 

pocket end 
 0.2 0.4 0.1 0.15 0.25 0.1 0.15 0.25 

Input point 
Low end of  
frame or 
bushing-pocket 

Low end of 
frame (equipment) 

Low end of  
frame (equipment) 

Low end of  
frame (equipment) 

Input direction 
Uni-Axial. 
If required, 
Bi-Axial (x,z.). 

Tri- or Bi-Axial  
*In Bi-Axial (x,z), 

intensity x 2  

Uni-Axial :desired 
*Multi-Axial is not 
recommended 

Uni- or Multi-Axial 
*In Bi-Axial (x,z), 

intensity x 2  

Sine 3 Resonance-
sine waves 

10 cycle/beat 
(only discont.-sw.) 

Sine-Sweep  
Sine-Beat 

Sine-Beat 
Continuous sine Input 

wave 
form Random Actual e.q.record Art-Wave matching 

RRS 
Art-Wave matching 
RRS 

Art-Wave matching 
RRS 

Dynamic analysis Time history 
Modal analysis 

R-spectrum anls. 
Modal analysis   
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1.3 Past Studies on Seismic Protection of Transformer 
 

Wilcoski (1997) conducted seismic qualification and fragility testing of a 500-kV transformer 

bushing by using the shaking table test to determine the dynamic characteristics of the bushing, 

to qualify the bushing to the IEEE 693-1997 spectrum anchored at 0.5g, and to define the 

capacity of bushings. A fundamental frequency of approximately 6 Hz and a damping ratio of 

between 2 to 3 % of critical were reported. During the fragility test, when the 2% IEEE 693-1997 

response spectrum is matched with a PGA of 1.0g, the bushing leaked oil. 

 

Villaverde (1999) conducted field-testing and analytical study of 230-kV and 500-kV bushings 

mounted on transformers. The objectives of the studies were to evaluate the dynamic 

characteristics of the transformer-bushing systems and to compute the amplification between the 

accelerations at the bushing flange and the ground as a result of the flexibility of the transformer 

tank and the turrets to which the bushings were attached. For the 230-kV bushings, a 

fundamental frequency of approximately 6Hz and a damping ratio of 2% of critical were 

reported. For the 500-kV bushings, a fundamental frequency of between 3 to 4 Hz and a damping 

ratio of between 2 and 4 % of critical were reported. 

 

The seismic testing and evaluation of two 196-kV and three 550-kV bushings was carried out at 

the University of California at Berkeley (Gilani Amir, 1999). The objectives of the studies were 

to compute the dynamic properties of the bushings, to qualify the bushings to the IEEE 693-1997 

required response spectrum, and to characterize the seismic performance of the bushings. For the 

196-kV bushings, fundamental frequencies of between 14 and 16 Hz and damping ratios of 

between 2 to 4 % of critical were measured.  For the 550-kV bushings, fundamental frequencies 

of approximately 8 Hz and damping ratio of between 3 to 4 % of critical were measured. None of 

the three 550-kV bushings met the IEEE 693-1997 requirements of the moderate-level 

qualification (target PGA equal to 1.0g). When subjected to severe shaking, all three bushings 

experienced oil leakage at the gasket connection and slip of the upper porcelain unit over the 

flange. 
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Bonacina (1995) and Serino (1995) performed several feasibility studies of base isolation for 

substation facilities by numerical simulation. Practical design examples of base isolation system 

for 170-kV gas-insulated substations were introduced. Two types of isolation systems were 

studied: 1) a high damping rubber bearing system (HRB) and 2) helical spring devices with 

viscous dampers (HS+VD) system.  The designed isolation period of each system varied in the 

range of 1.5 to 2.0 seconds and 8% to 20% damping ratios. The response displacements were in 

the range of 17 to 19 centimeters. The effectiveness of the systems was demonstrated. Fujita  

(1984 and 1985) made experimental and analytical study on the base isolation of heavy weight 

equipment such as power transformers.  This study mainly focused on the development of 

isolation devices. The research was carried out in early application stage of base isolation in 

Japan. However, the study did not cover the interaction of the porcelain bushing mounted on top 

of those facilities. Their test-frame did not contain any bushings. 

 

1.4  Base Isolation for Seismic Protection of Transformer 

 

The base isolation technology has gained popularity in the recent decade as one of the 

rehabilitation measures for seismic protection of structures. This is especially true in Japan, 

where over 1000 base-isolated buildings have been constructed or are under construction since 

the 1995 Kobe earthquake. Many types of isolation systems have been developed, such as high-

damping rubber bearing systems, lead-rubber bearing systems, systems of low-damping bearing 

combined with dampers, and sliding bearing systems. The fundamental period and displacement 

of such base-isolated buildings are generally over 3.0 seconds and over 300 mm. The reduction 

of response acceleration to the ground motion is less than 30%. Some of the applications of base 

isolation include bridges, LNG tanks, warehouses, nuclear plants, and other industry facilities.  

The first application of an electric facility was the high-voltage condenser system in Haywards, 

New Zealand, in 1988 (Skinner, 1993). The isolation system consists of low-damping rubber 

bearings and steel dampers. The bearings are 400 mm x 400 mm in plane dimensions and 254 

mm in total height. The load-sustaining capacity of the bearing is 5,000 kgf. The system shifted 

the effective period from 0.2 second in the fixed-base system to 1.8 seconds. A major difference 

of design requirements between base isolation of conventional structures and electric facilities 

(i.e. transformer/bushing system) are the lightweight structure that makes it difficult to make 
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long period-shifting.  When a base isolation scheme is planned for a transformer/bushing system, 

the goal is to protect the transformer and the porcelain bushing that makes up only a few 

percentage of the entire weight.  The small mass of the bushing is sensitive to high-mode 

frequency even with a small-amplitude acceleration.  

 

1.5  Research Objectives 
 

The objective of this research is to develop a new methodology for seismic protection of power 

transformer/bushing systems by application of modern base isolation schemes by performing 

comprehensive analytical and experimental study. Tri-axial earthquake simulator testing with a 

large-scale model was used for the first time in this field. Design of a base isolation system for 

the transformer/bushing system presents a unique challenge for the following two reasons. 

1. The entire mass of the system is much lighter than a building, making it difficult to 

lengthen the natural period. 

2. The base isolation system should reduce the response acceleration of the bushing 

and transformer without resulting in a large base displacement. A large 

displacement is not desired considering the interaction with the cable-connected 

other facilities. 

A task flowchart of this research project is shown in Figure 1-6. First, tri-axial earthquake 

simulator testing was conducted. The testing program was part of a joint research project 

between MCEER and the National Center of Research on Earthquake Engineering (NCREE) in 

Taipei, Taiwan, and the earthquake simulator test was conducted at NCREE. A large-scale 2 m x 

2 m x 1.8 m transformer model with a bushing, together with two types of isolation systems were 

designed and manufactured for the project. Actual porcelain bushings of 161-kV and 69-kV sizes 

were used in the testing.  Two types of isolation systems, one using sliding bearings combined 

with rubber bearings and the other segmented high-damping bearings, were developed in this 

project.  The testing program was classified into two phases by the type of isolation system. 

Phase-1 tested the isolation system consisting of sliding bearings and low-damping rubber 

bearings, while Phase-2 tested a segmented high-damping rubber bearing (SHRB) system.  
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I. Phase-1 Testing: ( Aug. 1999 ～ Sep. 1999) 
 
1. Isolation System :  
               4xSliding bearings + 2xLow damping rubber bearings  
2. Transformer Model  and Bushing:  

235.5 kN Frame-structure with counter weight 
161kV & 69kV bushings 

3. Ground Motion : 
1940 El Centro, 1994 Northridge (Sylmar), 1995 Kobe 
(Takatori) 

II.     Phase-2 Testing: ( Jan.2002 ) 
 

1. Isolation System :  
4x Segmented High-damping Rubber Bearings (SHRB) 

2. Transformer Model and Bushing:  
145kN Frame-structure with counter weight 
161kV Bushing 
Rubber Ring to elongate the period of bushing 

3. Ground Motion : 
1994 Northridge (Sylmar), 1995 Kobe (Takatori) 
1999 Chi-Chi, Artificial wave- ART 693 

III. Analytical Study 
 
1. Numerical Model Calibrated by test results in Phase-1, and 

Phase-2  
2. Parametric Study : 

Effect of bushing mass, natural frequency, stiffness 
3. Case Study: 
             Numerical simulation of existing transformer with/without  

base isolation  

Figure 1-6 Task-Flow of Research 
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Next, numerical study of the base-isolated transformer/bushing system was conducted. A 

simplified mathematical model of the base-isolated transformer/bushing was proposed, where the 

properties of the isolation system were expressed as non-linear functions. The model was 

calibrated by the Phase-1 and -2 tests.  Finally, the results of experimental and analytical study 

were reviewed and the effectiveness of the base isolation as the measure of seismic protection of 

transformer/bushing system was discussed. 

 

1.6 Organization of Technical Report 

 

This report is organized into six sections. Section 2 contains an introduction followed by a 

review of the design procedure for base isolation systems. Section 3 and 4 discuss the earthquake 

simulator testing of Phases -1, and -2 including the base isolators, transformer and bushing 

model, test setup, test programs, and test results. Section 5 presents numerical analysis of base-

isolated transformer system, including comparison with the test results and case studies.  Finally, 

Section 6 provides a summary and conclusions of the research. Appendix A presents additional 

earthquake simulator test results of transformer/bushing system that includes the bushing 

electrical connection interaction. 
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SECTION 2 
DESIGN OF BASE ISOLATION SYSTEMS  

FOR POWER TRANSFORMERS 
 
 

 

2.1 Overview 

 

In this chapter, the concept of base isolation for transformer/bushing system is proposed. Since 

the transformer is light compared to a building, it requires a different engineering approach. A 

large 500-kV transformer can weigh 2400 kN.  If four isolators are installed beneath the corner 

of the transformer-bottom, the weight per isolator is only 600 kN.  The diameter of the rubber 

bearing for 600 kN is estimated at about 400 mm. Generally, the target period of base isolation is 

over 2.0 seconds and, as a result, displacement for design-basis earthquake (DBE) will reach 

more than 300 mm.  Under the maximum credible earthquake (MCE), the displacement is 

usually more than 400 mm, and a bearing with 400 mm diameter will loose its stability. 

Therefore, displacement should be repressed to a certain level by control of period shifting and 

increase of damping. Actually, the large displacement is not desired for those electric facilities 

considering interaction in interconnected equipment in the substation system. On the other hand, 

the reduction of response acceleration is not required to such a level as required in general base 

isolation. The aim is not to protect the human life or valuable properties inside building but to 

protect transformers and porcelain bushings from fracture by overturning or over-stress. Based 

on the above discussion, the design philosophy of a base-isolation plan for the facilities in the 

substation is summarized as follows: 

1. The response acceleration of transformer and bushing shall be reduced. 

2. Large displacement is not desirable.  

3. Reduction of the acceleration may be smaller than that of base-isolation design for a 

conventional structure. 

The design basis of a base-isolation system for the transformer/bushing is discussed in the 

following section by showing some design examples and analyses. 
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2.2 Conventional Base Isolation System 

 

Base isolation is an aseismic design concept to reduce the seismic force transmitted to the 

structure by supporting it with a flexible element at the base to elongate the natural period of the 

structure and thereby decouples it from the ground. The first base-isolated building in the United 

States, Foothill Communities Law and Justice Center in San Bernadino, California, was 

constructed in 1985 (Clark, 1997). During the 1995 Kobe earthquake (officially known as 

Hyogo-ken Nanbu earthquake), two base-isolated buildings located in the suburb of Kobe 

demonstrated excellent performance and verified the effectiveness of the base isolation. Through 

this experience, base isolation technology has been widely accepted and gained great popularity 

in Japan. At this time, there are more than 1000 base-isolated buildings and additional 200 base-

isolated buildings appear to be scheduled for construction each year. 

 

Basically, base isolation systems provide functions of restoring force and energy dissipation. The 

rubber bearing, made up with layers of alternating rubber and steel plates, as shown in  Figure 2-

1, is the most popular device for providing a restoring force. The two components of the rubber 

bearing are bonded to each other by strong special adhesion materials. The steel plates act as 

confinement for the rubber layers to support vertical loads with low horizontal stiffness. 

Generally, the ratio of the vertical stiffness and horizontal stiffness is over 1000. 

 

Ordinarily, there are three types of rubber bearings: 1) Natural Rubber Bearings (NRB); 2) High-

damping Rubber Bearings (HRB); and 3) Lead-rubber Bearings (LRB). With NRB, over 60% of 

total weight of rubber is natural rubber. The NRB has almost linear characteristics in the 

horizontal force – displacement relationship and low damping.  Therefore, when using NRB, 

additional damping devices such as hydraulic dampers, steel bar dampers or friction dampers, are 

required in order to control the response displacement.   HRB is a type of rubber bearing in 

which a specially-compounded rubber material is used to provide energy-dissipation capability 

during deformation, in addition to its restoring function with its stiffness. LRB is another type of 

rubber bearing that has both spring and damping functions combined. The cylindrical-shaped 

lead core is vertically inserted at the center of the bearing for energy dissipation.  
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Recently, extensive research and development work has been carried out for the sliding bearing. 

The sliding bearing has a sliding surface generally made of PTFE (poly-tetra-fluoro-ethylene) 

mating with a stainless steel plate. The coefficient of friction of the sliders is 0.10 to 0.20 with 

normal PTFE and stainless plates, and 0.02 to 0.04 with lubricated PTFE and PTFE-coated 

stainless plate.  Sliding bearings are used mainly in combination with rubber bearings as a 

restoring force element to control the sliding displacement during an earthquake and to prevent 

excessive permanent displacement after an earthquake. The merit of this system is to be able to 

achieve a longer period shifting with larger damping.  Also, this system is quite effective in the 

case of a structure that has relatively lightweight – under 2 MN – such as residential house, 

industrial equipment, or power transformer.  

 

2.3 Mechanism of Rubber Bearings 

 

Much research of the mechanism of the laminated rubber bearings has been analytically and 

experimentally conducted in the past two decades (Constantinou, 1990; Gent, 1959).  The 

derivation of governing equations to describe the mechanical behavior of the laminated rubber 

bearing is omitted for simplicity. The essential equations for practical design procedures are 

introduced below.  Physical parameters of the laminated rubber bearings are presented here.  

They include: outer rubber diameter D, inner rubber diameter d, unit rubber layer thickness tr, 

shim plate thickness ts, number of rubber layers nr, and total rubber height h. The horizontal 

stiffness Kh and vertical stiffness Kv are presented in the following equations. 
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Among the parameters shown above, first shape factor S1, or sometime simply called shape 

factor, is a key factor. S1 is the ratio of the free surface area of the rubber relative to the load-

supporting area of one unit rubber layer of the rubber bearing.  In the case of circular rubber 

bearings without a center hole, S1 is derived from the following equation. 
 

 

 

 

 

When S1 becomes larger, the rubber pad becomes thinner and as a result, the pad will have a 

larger stiffness in the loading direction. Generally, S1 is 20 to 30 for rubber bearings.  As shown 

in the above equations, the apparent Young’s modulus for the loading direction of the rubber pad 

will be affected by the square of S1  (Thomas, 1982). Vertical stiffness Kv is calculated with the 

modulus Ec, which is corrected with bulk modulus E∞ of the rubber material itself. On the other 

hand, the horizontal stiffness is calculated with shear modulus Geq without any influence from 
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(2-5) 

(2-4) 

the shape factor S1.  If the bearing also has energy dissipation capability, equivalent damping 

ratio heq is generally used as the representative physical property and is calculated by the 

following equation. 

 

 amplitudeshear   is                

cycleperenergydissipatediswhere,

C

d

X

W
 

As introduced in the preceding section, the rubber bearings having energy dissipation capacity 

are HRB and LRB. Both bearings have heq from 15% to 25%.  Figure 2-2 shows a typical 

horizontal force-displacement curve of HRB during cyclic loading.  Figure 2-3 shows the 

relationship between shear strain and shear modulus Geq, and equivalent damping ratio heq of 

HRB.  This non-linear relationship between shear strain, Geq and heq is generally determined 

experimentally.  In practical design, those functions are provided by manufactures. As an 

example, some rubber bearing manufactures provide the following polynomial equations for this 

purpose. 

 

where, γ  is shear strain 

The coefficients ai and bi are determined from the force-displacement relationships obtained by 

both scaled and full-size model testing. Therefore, shear modulus Geq should be understood as 

effective shear modulus Geq, which means that this is the property determined by particular 

testing with a certain shape of a test specimen.  The certain shape of a test specimen in this case 

is the alternately laminated rubber bearing.  Those force-displacement relationships as shown in 

Figure 2-2 are generally modeled in a dynamic analysis, either as equivalent linear properties or 

as an elasto-plastic bilinear model. The equivalent linear model with Kh and heq will provide a 

reasonably good approximation with such a simple procedure as response spectrum analysis,  
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Figure 2-1 Laminated Rubber Bearing 
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Figure 2-2  An Example of Hysteresis Curve of High-Damping Rubber Bearings 
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Figure 2-3 Relationship of Shear Modulus and Equivalent Damping 

       Ratio versus Shear Strain 
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whereas bilinear modeling offers more precise and detailed response information by nonlinear 

time history analysis. The determination of the bilinear model is shown in Figure 2-4. The force-

displacement relationship is modeled with initial stiffness K1, post yielding stiffness K2 and yield 

load Qy or yield deflection δy. In the case of LRB, because the hysteresis curve shows typical 

elasto-plastic characteristics, the modeling procedure is directly determined from actual 

performance curve.  In the case of HRB, which shows rather viscous-elastic behavior in its 

hysteresis curve, K2 and Qy will be changed according to the loading amplitude. Therefore, the 

assumption of reasonable loading amplitude is needed to translate the characteristics to a bilinear 

model. However, the target displacement of the isolation system will not differ much from 

structure to structure and will be at a similar level with adequate design earthquake levels.  If the 

calculated bearing displacement is significantly different from the assumed displacement, 

another displacement will be assumed and next calculation will be performed. For a few trial and 

error procedures, a reasonable solution will be obtained. 

 

2.4 Design of Rubber Bearings 

 

2.4.1 Preliminary Design based on Stiffness Requirement 

 

The dynamic behavior of the structure is mostly characterized by the isolation system. It is a 

great benefit of the base isolation. Even if the structure has an irregular shape with a large 

eccentricity in inertia, earthquake response will not be affected so much for the base-isolated 

structure.  The target period of base isolation is generally 2.0 to 3.0 seconds at the design 

earthquake level. Such period shifting will result in a base displacement of 150 to 300 mm.  The 

first shape factor, S1, is the influential factor to the vertical stiffness and is determined by the 

vertical stiffness requirement restricted by the creep performance under long-term vertical load 

(Thomas, 1982). The vertical frequency, fv, is generally required over 12 Hz resulting in S1, 

practically and empirically, in the range of 20 to 30. The diameter of the bearing, if circular in 

shape, will be mainly decided by the vertical load to be carried by the bearing. The maximum 

compressive stress of the rubber area is restricted by the long-term deterioration of the rubber, 

such as creep, as well as the buckling characteristics of the bearing. Higher compressive stress 

will result in decreasing ultimate displacement by virtue of buckling. Generally, the long-term  
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Figure 2-4 Definition of Bi-Linear Model for Isolators 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5  Overlapped Effective Area of Rectangular Type Bearing 

       at Displacement X  [2-8] 
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compressive stress is in the range of 4 to 10 MPa.  The design procedure is summarized as 

follows. 
 

 

Design base displacement XD and maximum displacement XM are generally determined 

from the response spectrum with assumed design horizontal frequency fh (or the period 

Th).  

II. Design Procedure 

Step-1 : total rubber thickness  h 
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             Step-2 : shape factor S1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step-3 : diameter D 

 

  

 

 

 

 

 

 

 

Step-4 : unit rubber layer thickness  tr and number of layer nr 

 

 

 

 

where, int| a| is the  integer value closest to the real value of a 
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In Step-2, a reasonable S1 is decided first and fv is calculated later. The vertical frequency, fv, is 

not an important design factor as long as it falls in a reasonable range, such as, 12≤ fv ≤ 20Hz.  

After the completion of these calculations, the ultimate capacity of the bearings shall be checked 

as shown below. 

 

2.4.2 Prediction of Ultimate Capacity of Rubber Bearings 

 

The ultimate properties of the rubber bearing may be classified into two types: rubber breaking 

and buckling.  In a typical design, breaking will occur at over 400% shear strain with a 

corresponding ultimate displacement of over 600 mm. This displacement is usually large enough 

for base isolation. A bearing with a large diameter to height ratio will have no buckling before 

the rubber breaks. However, in many cases, the bearings will experience buckling before 

breaking (Kelly, 1993).  Here, we derive a new design factor called the secondary shape factor, 

S2, calculated by the following equation: 

 

h
DS =2  

 

Many experiments verified that the bearing in the range of S2 ≥ 5 is stable until rubber breaking 

and has no buckling problem. However, to obtain the isolation period over 2.0 seconds, the 

rubber height becomes at least over 160 mm even if the softest rubber compound is used. It 

means that the diameter of the bearing will be over 800 mm.  A typical compressive stress of a 

bearing is 6.0 MPa, and the sustaining column load is calculated as 3.0 MN. This corresponds to 

the vertical load on interior located column of an 8-story reinforced concrete (RC) building. 

Buildings with less weight would be isolated with the smaller diameter resulting in a smaller S2.  

Considering the majority of the structures weigh lighter than 8-story RC building, buckling will 

be the critical failure mode of a rubber bearing.  

 

The prediction of buckling behavior of a rubber bearing under combined compression and shear 

loading is not simple because of its geometric and material nonlinearity. The load under zero 

(2-13) 
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(2-15) 

deflection assumption is considered as the critical buckling load, Pcr, by many analytical and 

experimental studies. Koh and Kelly (1988) derived the critical load, Pcr, under zero 

displacement with linear assumption as follows: 
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Ieff  is effective moment of inertia,  

4

64
DIeff ⋅= π  

When  S2>3, equation (2-14) will be approximated as follows. 

 

 

 

Eb is the apparent Young’s modulus of a thin rubber pad for bending deformation. Fujita (1985)  

provided the equation for Eb as follows, 
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Then the critical stress for buckling will be derived as follows. 

 

 

Buckle (1994) introduced Pcr under large displacement for rectangular type bearing by reducing 

Pcr at zero displacement with the ratio of the effective overlapped area at the displacement X, as 

shown in Figure 2-5.  

 

⎥⎦
⎤

⎢⎣
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L
X

crPcrP 1  

direction loadingin length bearingiswhere, L  

For the circular bearing, the overlapped-area is expressed in more complicated form as shown in 

(2-23). 
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The critical load is given as follows. 

'
'

'
effAcr

effA
effA

crPcrP ⋅=⋅= σ  

However, many test results verify that the critical load given by the above-mentioned procedure 

is conservative enough, and even for circular bearings. The simple equation for a rectangular 

bearing (2-21) is also applicable in practical design, as shown in (2-24). 

( )2
1
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D
X
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bearing ofdiameter iswhere, D  

Equation (2-24) is translated by introducing effA  and 2S  into (2-25). 
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Using (2-25), design criteria of bearings regarding buckling stress is expressed with given design 

compressive stress σ  as (2-26). 
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cr

S
σ
σγ 12  

where, 

h
X=γ   , is shear strain of rubber, and 

A
P=σ , is design compressive stress on rubber bearing 

 

Another criteria of ultimate properties is breaking of bearing, which is determined by testing. 

Generally, the breaking property is defined as breaking strain bγ  under given design 

compressive stress σ . With relationship of equation (2-26) and bγ , the demand of ultimate 

properties of bearings can be   illustrated in a diagram with σ  and γ , as shown in Figure 2-6.  

The intersection of maximum compressive stress and shear strain must be within the enclosed are 

bounded by the horizontal-vertical axis, the line expressed by (2-26), and bγγ = . 

(2-26) 

(2-24) 

(2-25) 
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Figure 2-6 Design Diagram for Ultimate Properties of Isolators 

 

2.5 Base Isolation Systems for Lightweight Structures 

 

2.5.1 Sliding Bearing 

 

For a lightweight structure, the small axial load on a bearing makes it impossible to design a 

rubber bearing which satisfies the requirements for buckling, breaking, and creeping safety, as 

discussed before. One of the countermeasures is to apply sliding bearings in such an isolation 

system. 

 

A sliding bearing generally consists of a PTFE disc and a stainless steel plate. A rubber pad is 

usually attached to the PTFE disc.  The general configuration of a sliding bearing is shown in 

Figure 2-7.  Compressive stress on PTFE is designed within the range of 10 MPa to 30 MPa.  In 

order to endure high compressive stresses, PTFE is usually confined with glass fiber or carbon 

fiber. One of the functions of the rubber pad is to reduce the shock generated when the static 

friction force is broken and the bearing slides (usually called “breaking away”).  If there were no 

rubber pad, the shock would stimulate the high frequency mode response of the isolated 
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structure.  The friction coefficient of PTFE usually depends on sliding velocity and compressive 

stress.  Higher sliding velocity increases the friction coefficient.  A typical relationship of sliding 

velocity and friction coefficient is shown in Figure 2-8.  The test data was obtained with a PTFE 

disc confined with glass fiber.  However, as the figure indicates, at the velocity range under 

earthquake ground motions, such as ≥250 cm/s, the friction coefficient can be considered 

constant.   

 

Another typical characteristic of sliding bearings is compressive stress dependence.  The friction 

coefficient will be lower when the compressive stress becomes higher. For example, the friction 

coefficient at 10 MPa is 0.14; whereas at 30 MPa, it becomes 0.090 (see Figure 2-9).  The 

compressive stress is generally limited by the fracture and creep characteristics of the PTFE 

material. 
 

 

 

 

 

 

 

 

 

 

Figure 2-7 Sliding Bearing 
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Figure 2-8 Sliding Velocity Dependency of Friction Coefficient: 

       Compressive Stress =12MPa, Confined PTFE 
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Figure 2-9 Compressive Stress Dependency of Friction Coefficient: 

        Velocity = 200(mm/sec), Confined PTFE 
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2.5.2 Segmented Rubber Bearing 

 

A segmented rubber bearing is another prospective solution of isolation of lightweight structures.  

It has a structure of layers consisting of several laminated rubber bearings with stabilizing plates 

as shown in Figure 2-10. This type of structure has low stiffness, large deformation capability, 

and good stability.  Its main use is a spring element for tuned-mass dampers--vibration controls 

for high-rise buildings.  Masaki (1999) conducted an experimental and analytical study on the 

application of segmented rubber bearings.  Basically, the deformation capability is computed as 

the deformation of an element bearing multiplied by the number of layers.  However, the rotation 

of the element bearing at the end fixed to the stabilizing plates, and the bending stiffness of the 

stabilizing plate itself affects the ultimate deformation of the bearing.  Masaki studied the 

instability characteristics of the element rubber bearings with a bending moment at one end and 

verified that the bending moment causes the reduction of its stability. According to the results of 

experiments by Masaki, the ultimate deformation of an element bearing in a segmented structure 

will be reduced to approximately 80% of the individual element.  The precise analytical 

approach will be a topic of future study. 

 

2.6 Proposed Design Procedure of Isolation System for Transformer 

 

The preliminary response-analysis of base-isolated structures can be determined by the statically 

equivalent method, namely the equivalent linearization method (EQLM).  In UBC 97, the EQLM 

formulas provide displacements and forces and are based on constant-velocity spectra over the 

period range of 1.0 to 3.0 seconds.  In the calculation procedure, the isolation system is modeled 

with equivalent linear properties.  The solution is given by a response spectrum.  

 

In this study, we apply this static analysis, EQLM, to the preliminary design of the base isolation 

system for a transformer.  The isolation system is modeled with a bi-linear characteristic and the 

solution is obtained by an iterative process with response spectrum, as shown in Figure 2-11.  

The IEEE 693-1997 Required Response Spectrum (RRS), which is introduced in Chapter 1, is 

applied as the demand-spectrum.  The IEEE 693-1997 RRS (High Level) is defined as follows: 
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Figure 2-11 Equivalent Linearization Analysis of Base-isolated 

       Transformer/Bushing System 
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The RRS is specified for the seismic evaluation of the electrical equipment in a substation, such 

as a porcelain bushing, by a shaking table test using earthquake ground motion.  Ground motion 

shall have spectral ordinates that equal or exceed the RRS. Because the RRS is specified as the 

input to the bushing, this spectrum already includes the amplification from the transformer body.  

Therefore, it is conservative to use this RRS for the design of base isolation systems for power 

transformers.  

 

The spectrum related to the frequency range of base isolation is: 

 

rfS A 144.1=  

 

AS  and DS , the spectrum of response displacement, has the following relationship: 
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Substituting (2-28) into (2-29), and erase f  from the equation, then the relationship of AS  and 

DS  is expressed as follows. 

(2-27) 

(2-28) 

(2-29) 
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The force-deflection relationship of the bi-linear model for the isolation system is expressed as 

follows: 

 

δδ ⋅=+⋅= hd KQKQ 2        

  

The definition of the each variable is shown in Figure 2.4. In an equivalent linear system, the 

following relationship is assumed: 

 

ASMQ ⋅=  

DS=δ  

 

 

Substituting (2-31), (2-32), and (2-33) into (2-30),  
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The damping factor r  is the function of damping ratioζ of the bilinear-model at displacement δ  

as follows. 
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Damping factor is expressed with ζ  as follows. 

 

(2-30) 

 (2-31) 

(2-32) 

(2-33) 
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The response displacement δ and acceleration SA are given as the cross point of the curve 

expressed by (2-37) obtained by substituting (2-36) into (2-30), and performance curve of 

isolation system. The relationship expressed by (2-37) is called as transit curve.  
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Practically, the solution of response displacement δ  that satisfies (2-33) will be given by an 

iteration process as indicated in Figure 2-12. The capacity curve of the isolation system is 

modeled as bi-linear characteristics with parameters of yield force ratio α  and fundamental 

period fT .  

gM
Qd

⋅
=α  

2
2

K
MTf π=  

 

Figure 2-13 shows the relationship of the transit line and capacity curve when the α = 0.08 and 

fT =2.0 seconds. Figures 2-14 and 2-15 are the design diagram of isolation system with 

parameter of α and fT . 

 

In general base-isolation design of buildings, α  varies from 0.04 to 0.06 and fT  varies between 

3.0 and 4.0 seconds. However, according to the curves in Figure 2-13, the resulting response 

displacement will be over 300 mm and it will be too large considering the complicated 

interconnection with other equipment. The author recommends making the fT less that 2.0 

seconds and increase the α to more than 0.07. These boundaries become part of the design 

principle in this research for isolators of transformers or other equipment in substations. 

(2-36) 

(2-38) 

(2-39) 

(2-37) 
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In order to verify the proposed procedures, the result of the EQLM was compared with time-

history analysis. Nine time-history ground motion were generated based on the target spectrum 

RRS 693-1997 for 2% damping and PGA=0.5g. Seven records have random phase angles (Art-

R1 to Art-R7, respectively), one with phase angle of 1995 Kobe (Takarazuka) EW (Art-KT), and 

one with phase angle of 1994 Northridge (Sylmar) S11  (Art-NY). Each ground motion has slight 

difference in its PGA from 0.5g in target spectrum. However, the spectrum agrees better to target 

spectrum than modify its PGA to 0.5g. The response spectra of acceleration and time histories of 

Art-R1, Art-KT, and Art-NY are shown in Figures 2-16 and 2-17.   

 

The comparison of time-history analysis results under PGA of 0.25, 0.50, and 0.70g and EQLM 

was shown in Figure 2-18. The solution line of EQLM covers all of the time history results. It 

indicates that the proposed method by EQLM gives a good approximated solution with 

reasonable safety margin in its practical use.  
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Figure 2-12 Iteration-Flow for Computation of Response Displacement 
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Figure 2-13 Relationship of Transit Line and Capacity Curve 
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Figure 2-14 Relationship of Fundamental Period  and Response Acceleration 
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Figure 2-15 Relationship of Fundamental Period and Response Displacement  
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Figure 2-16 Response Spectrum of Artificial Wave: Art-R1, Art-KT, and Art-NY 
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Figure 2-17 Time History Record of Artificial Wave: Art-R1, Art-NY, and Art-KT 
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Figure 2-18 Comparison of the Results by EQLM and Time-History Analysis 
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SECTION 3 

EARTHQUAKE SIMULATOR TEST/PHASE-1 
 

3.1 Overview  

 

In this section, the earthquake simulator test /Phase-1 is reported.  In this phase, the combined 

sliding and low-damping rubber bearing system was used.  The system consists of PTFE-sliding 

bearings and low-damping rubber bearings.  The test cases were classified into uni-axial (x-

direction), bi-axial (x-,y-direction), and tri-axial (x-,y-, and z-direction) shaking.  First, dynamic 

characteristics of each test-component were identified by random vibration tests. After that, tri-

axial shaking was conducted using several records of site-motion.  The results were analyzed and 

discussed. 

 

3.2 Experimental Setup  

 

3.2.1 Earthquake Simulator  
 

The size of the earthquake simulator in NCREE is 5m x 5m in plan and the maximum payload is 

500 kN.  The simulator has six degrees of freedom and the maximum stroke and velocity are 

±250 mm and ±1000 mm/sec, respectively. Specifications of this earthquake simulator are 

summarized in Table 3-1 and a schematic view of the simulator is shown in Figure 3-1. 

 

3.2.2 Transformer Model  

 

The transformer model was a four-layered steel frame structure. It has 80 pieces of lead blocks 

loaded inside to provide additional weight.  The total weight of the transformer model was 235 

kN in Phase-1 (Ref: 145 kN in Phase-2). At the top of the frame, a bushing was connected with 

bolts through the bushing flanges to a column, which was assumed as the turret of the 

transformer.  Figure 3-1 shows a photo of the frame.  The transformer model can be assumed as a 

scaled-model of the actual transformer. The target transformer was a large-size one, such as over  
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Figure 3-1 Earthquake Simulator in NCREE, Transformer Model and Bushing 

( from NCREE web site  [3-1] ) 
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500 kV, weighing approximately 2500 kN.  In this case, the assumed scale-factor of the 

transformer model was in the range of   1/3 to 1/4. 

 

 

Table 3-1 Specification of Earthquake Simulator in NCREE 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

3.2.3 Porcelain Bushing  

 

The bushings tested were used in an actual field installation for 15 years and were provided by 

the Taiwan Power Company.  In Phase-1, two types of bushings, 69-kV and 161-kV, were used.  

Their characteristics and dimensions from the original specifications are shown in Figure 3-2, 

which were redrawn from the original drawings.  According to the description on the drawings, 

both bushings were manufactured by Toshiba Corporation Japan in 1977.  These 161-kV and 69-

kV transmission systems are a popular size for power stations in Taiwan.  According to JEAG  

Table Size 5m x 5m 

Specimen Weight Capacity 500kN 

Overturning Moment Capacity 150tonf⋅m 

Frequency Range Min. 0.1Hz ,  Max 50Hz 

Displacement  Longitudinal : ±250 mm 

Transverse    : ±100  mm 

Vertical         : ±100  mm 

Velocity Longitudinal : ±1000 mm/sec 

Transverse    : ±600   mm/sec 

Vertical         : ±500   mm/sec 

Acceleration Longitudinal : ±1.0 g 

Transverse    : ±3.0 g 

Vertical         : ±1.0 g 

Actuator Force Longitudinal : ±220kN 

Transverse    : ±600kN 

Vertical         : ±600kN 
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Type Form VE-60ZN VEU-140ZT 

Insulation Class 69 kV 161 kV 

Rated Current 2000 A 1200 A 

BIL 350 kV 750 kV 

Approximated 

Weight 

1.324kN 3.434kN 

Total Length 1945 mm 3496 mm 

161-kV Bushing 69-kV Bushing 

Figure 3-2 Characteristics of Porcelain Bushings 
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50003 “Seismic Design Guideline of Electric Facilities in Power Substation” and other 

references, the typical material properties of porcelain are as follows: Young’s modulus is 

5.88x104 MPa, Poisson’s ratio is 0.23, and tensile strength is minimum 40MPa.  

 

3.2.4 Instrumentation 

 

Accelerometers and displacement transducers for x, y and z directions were installed at the 

simulator platform, at the bottom and top of the transformer model, and at four points on the 

bushings at the following locations (measured from the middle flange of the bushing): 

• 161-kV bushing: 1st node:  -112cm .2nd node: –60cm 3rd node: +88cm  

                             4th node: 197.5cm  

• 69-kV bushing: 1st node:  -64cm .2nd node: –30cm 3rd node: +41cm  

                             4th node: 100cm  

3-component load cells for the measurement of the reaction forces of the sliding and rubber 

bearings were installed above each of the bearings.  The detailed information of the instruments 

and their locations are shown in Figure 3-3, together with Table 3-2 and Table 3-3.   

 

Table 3-2 Symbols of Measurement Instruments for Acceleration and Displacement 

Acceleration (g) Displacement (mm) Measurement 

Point x-dir. y-dir. z-dir. x-dir. y-dir. z-dir. 

Table AX1 AY1 AZ1 long lateral transverse 

Bottom of 

transformer 
AX2 AY2 - DX2 DY2 - 

Top of transformer AX3 AY3 AZ2 DX3 DY3 DZ2 

Middle of bushing ABX3 ABY3 ABZ3 DBX3 DBY3 DBZ3 

Top of bushing ABX4 ABY4 ABZ4 DBX4 DBY4 DBZ4 
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AY1 

AY2 

AY3 

ABY3 

ABY4 

AX1 

AX2 

AX3 

ABX3 

ABX4 DBX4 

DBX3 

DX3 

long 
lateral 

DBY4 

DBY3 

DY3 

DX2 

x 

z 

y 

z 

DY2 

x 

y 

N-E S-E 

N-W 

RBRB

SLB

SLB SLB 

SLB 

2200 

1900 

SLB : Sliding Bearing 
RB  : Rubber Bearing 

S-W 

Figure 3-3 Layouts of Sliding Bearings and Rubber Bearings 
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Table 3-3 Symbols of Measurements in Load Cells Installed 

Load Cell ID x-dir. y-dir. z-dir. 

SLB-SE SESX SESY FES 

SLB-SW SWSX SWSY FWS 

SLB-NE SENX SENY FEN 

SLB-NW SWNX SWNY FWN 

RB-S SWESX SWESY - 

RB-N SWENX SWENY - 

 

 

3.3 Combined Sliding-Rubber Bearing Isolation System 

 

An isolation system combining sliding bearings with low-damping rubber bearings was designed 

and applied for the transformer.  This system enables reasonable period shifting and allows large 

displacement without buckling problems, which rubber bearings with a small diameter usually 

possess.  A sliding bearing was installed under each of the four corners of the transformer model 

and two rubber bearings were installed at the midpoint of opposite sides, as shown in Figure 3-3.  

Coordinate axes were mapped on the simulator platform with the N-S direction as the x-axis and 

the E-W direction as the y-axis.  The positions of the sliding bearings were identified as N-E, N-

W, S-E, S-W and the positions of the rubber bearings were identified N and S.  The sliding 

bearings carried the entire weight of the transformer model, including the bushing.  The rubber 

bearings worked only as horizontal restoring force elements, sustaining no vertical load.  An 

experimental study on a similar system was performed by Feng (1994) and Constantinou (1990).  

Such a system has an advantage for isolation of lightweight structures like small office buildings 

and residential houses.   
 

3.3.1 Low-Damping Rubber Bearing 

 

In order to reduce the stiffness and to maintain a large deflection capability, each rubber bearing 

unit actually consisted of two stacked rubber bearings, which were fixed with bolts through 

mating flange plates as shown in Figure 3-4.  The designed characteristics of the rubber bearings  
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                  Low-damping Rubber Bearing 

 

            Figure 3-4  Low-Damping Rubber Bearing    
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are summarized in Table 3-4, and the typical physical properties of the rubber compound are 

shown in Table 3-5.  The natural rubber compound shows a clear linear relationship in the stress-

strain curve with a small degree of damping.  The natural rubber compound used in these 

bearings had a shear modulus, G, of 0.45 MPa and a damping ratio, heq, of about 3%.  In this 

system, the energy dissipation function was provided mainly by the sliding bearings.  Because 

the rubber bearings carried no vertical load, the ratio of the thickness of a unit rubber layer to the 

diameter was relatively large, resulting in a first shape factor of 10.2.  The absence of a vertical 

load allowed for a slim shape of the rubber bearing. As a result, the second shape factor for the 

double-decked bearing was 1.58.  In order to prevent any vertical loading (either compression or 

tension) on the rubber bearing during the testing, a 10 mm clearance between the bearing flange 

and the transformer bottom was maintained.  Instead of fixing bolts, loose pins were used to 

transmit the horizontal load. 

 

3.3.2 Sliding Bearing 

 

A sliding bearing consists of a laminated rubber pad and a PTFE disc fixed together with keys 

and bolts (See Figure 3-5). The purpose of using the laminated rubber pad is to alleviate the 

degree of shock due to the stick-slip action of the sliding bearing (Iizuka, 1998). The 

characteristics of the sliding bearing are summarized in Tables 3-6 and 3-7.  The rubber 

compound used in the rubber pad was a high modulus natural rubber compound whose shear 

modulus, G, was 1.2 MPa. The high modulus rubber compound produces a design with small 

breaking-away displacement and a compact size. The rubber pad used in the sliding bearing does 

not require a large deformation capacity such as a conventional rubber bearing.  The physical 

properties of the compound are summarized in Table 3-8. 
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Table 3-4  Dimensions and Properties of Rubber Bearing 

Outer Diameter   D 304mm 

Inner Diameter    d 58.5mm 

Unit Rubber Thickness  tr 6.0mm 

Number of Layers  nr 16 

Shim Plate Thickness  ts 1.6mm 

Total Rubber Height  h 96mm for NB 

192mm for DNB 

Rubber Compound Type Natural Rubber(NR):G5 

Apparent Shear Modulus G 0.44MPa 

1st  Shape Factor S1 10.2 

2nd  Shape Factor S2 3.17 for Single Bearing 

1.58 for Doubled Bearing 

Horizontal Stiffness Kh 0.321kN/mm 

 

 

 

 

Table 3-5  Physical Properties* of Rubber Compound for Rubber Bearing 

Property Specification  

Hardness 39+4 

100% Modulus 0.69+0.2MPa 

Tensile Strength > 17.7MPa 

Breaking Strain  >600% 

 

 

 

 

 

* by JIS K 6301 
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(In above figure, a=60mm, and t=1.0mm) 
 

Figure 3-5 Sliding Bearing 
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The PTFE disk used in this test had a specially designed reinforcement to endure high axial 

stress.  The PTFE disk consisted of a 0.2 mm thick PTFE sheet that is reinforced by an Aramid-

chipped fiber.  The fiber was bonded to the glass-fiber fabric with an epoxy resin-type adhesive. 

The whole sheet was finally bonded to the steel plate with the same type of adhesive.  By 

reducing the thickness of the PTFE sheet and reinforcing it with the Aramid fiber, the PTFE disk 

can sustain a compressive stress of 30 MPa without fracture or creep.  The physical properties of 

PTFE are summarized in Table 3-9.  A stainless steel plate embedded in the back-plate was used 

as the mating surface of the sliding bearing. 

 

Table 3-6  Dimensions and Properties of PTFE Disc 

Diameter Dp  55 mm 

Thickness tp 2.0 mm 

Shape Factor S1 13.8 

Friction Coef.  µ 0.10 – 0.15  

 

 

Table 3-7  Dimensions and Properties of Rubber Pad for Sliding Bearing 

Property Rubber Pad 

Outer Diameter D 120mm 

Inner Diameter  d 0mm 

Unit Rubber Thickness tr 2.0mm 

Number of Layers  nr 5 

Shim Plate Thickness  ts 2.2mm 

Total Rubber Height  h 10.0mm 

Rubber Compound Type Natural Rubber(NR):G12 

Apparent Shear Modulus G 1.18MPa 

1st  Shape Factor S1 15 

2nd  Shape Factor S2 12 

Horizontal Stiffness Kh 1.33kN/mm 

Vertical Stiffness Kv 1372kN/mm 
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Table 3-8  Physical Properties* of Rubber Compound for Sliding Bearing 

Property Specification 

Hardness 65+5 

Modulus at 25% 0.72+0.2MPa 

Tensile Strength > 14.7MPa 

Breaking Strain > 600% 

 

 

 

Table 3-9  Physical Properties of  PTFE Material for Sliding Bearing 

Property Specification 

Hardness               

D-1706 

D52 to D55 

Tensile Strength   D638 > 14.7 MPa 

Breaking Strain    D638 > 200% 

 
 

3.3.3 Design Performance  

 

The design characteristics of the complete isolation system are summarized in Table 3-10.  The 

initial stiffness, K1, is the summation of the initial stiffness of the rubber bearings and the 

stiffness of the rubber pads in the sliding bearings.  After the horizontal load reaches the 

maximum static friction load, sliding bearings start to slide (sometimes called “break away”) and 

the stiffness decreases to post-sliding stiffness, K2, which is basically the summation of the post-

yield stiffness of the rubber bearings.  The designed natural period, Teq, of the system was 1.32 

seconds at a deflection of 100 mm, calculated with the effective stiffness, Kh, which corresponds 

to the gradient of the line from peak to peak of the bi-linear loop.  With the post-sliding stiffness, 

K2, the period of the system was calculated as 1.75 seconds.  The former natural period is called 

the equivalent natural period, Teq, whereas the latter is called the fundamental natural period, Tf.  

In general, the natural period, Teq, of a base-isolated building varies from 2.0 to 3.0 seconds.  

However, in this case, the small dead load of the transformer model limited the period to less 

than 2.0 seconds.  The equivalent damping ratio, heq, at 100 mm displacement was 27%, which is 

relatively large damping compared with typical isolation systems. 

* by JIS K 6301 
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 Table 3-10 Design Parameter Values of  Isolation System 

Characteristics Designed Value 

Pre-yield Stiffness         K1 (kN/mm) 5.32 

Post-yield Stiffness       K2 (kN/mm) 0.323 

x=100mm : 0.568 
Effective Stiffness        Kh (kN/mm) 

x=200mm : 0.441 

x=100mm : 0. 269 
Equivalent Damping Ratio heq 

x=200mm : 0.174 

Vertical Stiffness         Kv (kN/mm) 3360 

x=100mm : 1.32 
Effective Period           Teq (sec) 

x=200mm : 1.49 

Fundamental Period     Tf (sec) 1.75 

Vertical Natural Freq.  Fv (Hz) 58.3 

             
 

3.3.4 Preliminary Performance Test  

 

The sliding bearings and low-damping rubber bearings were manufactured by Bridgestone 

Corporation in Japan.  Before shipping to NCREE, all of the rubber bearings were tested for 

quality assurance and evaluation of initial performance.  The testing conditions and results from 

those initial tests are shown in Table 3-11.  The testing was carried out individually on all four 

rubber bearings.  Therefore, the results cannot be directly compared with the results of the 

earthquake simulator testing, where each of the rubber bearing units consisted of two stacked 

bearings. 

 

The sliding bearings used in this testing were not subjected to an initial performance test.  

However, the PTFE disc itself was tested and the results showed that the friction coefficient was 

0.08 under a compressive stress of 10 MPa and a very low sliding velocity.  In the earthquake 

simulator testing, the sliding bearing was subjected to dynamic motion and the friction 

coefficient was approximately 0.12.   
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Table 3-11 Initial Performance Test of Rubber Bearing 

Testing Condition : 

(1) Vertical Load    : 29.4 kN (3.0tf) 

Compressive stress : 0.32MPa 

(2) Horizontal Displacement (Amplitude) : +96mm 

(3) Number of Cycle : 3 

(4) Horizontal Stiffness Kh is determined from the 3rd  cycle. 
 

Bearing No. Kh   (kN/mm) G (MPa) 

RB-1 0.319 0.438 

RB-2 0.307 0.436 

RB-3 0.330 0.453 

RB-4 0.332 0.456 

 

 

3.4 Testing Program 

 

Three actual earthquake records were applied as the input earthquake ground motion. They were 

1940 El Centro, 1994 Northridge (Sylmar), and 1995 Kobe (Takatori).  Their response spectra 

under 5 % damping are shown in Figure 3.6 together with the IEEE-693 Required Response 

Spectrum.  Each time-history record was normalized to PGA = 0.5 g.  The dominant frequency is 

high for El Centro (2 to 5 Hz) and for Northridge (Sylmar) (1.5 to 3.0 Hz), and very low for 

Kobe (Takatori) (0.8 to 2 Hz).   The Kobe (Takatori) record was considered as a  

“disadvantageous” input for the isolated system because its dominant frequency was close to the 

natural frequency of the isolated system and would cause large displacement in the isolation 

bearings. Although PGA is still the most popular and convenient parameter to characterize the 

earthquake intensity for general design purposes, the Peak Ground Velocity (PGV) is considered 

to be another parameter to express intensity of an earthquake, representing the energy of the 

seismic motion.  The PGV of each motion with PGA normalized to 0.5g in the x-direction is as 

follows: 
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Figure 3-6 Response Spectrum of Input Ground Motion 
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1940 El Centro NS   : 48.1cm/sec 

1994 Northridge (Sylmar) NS  : 79.3cm/sec 

1995 Kobe (Takatori) EW  : 105.7cm/sec 

 

The earthquake simulator was excited in the x, x-y and x-y-z directions. The x-direction was set 

as the main direction for excitation and the component with the largest PGA of each motion was 

set as the x-direction excitation. The other components in the horizontal direction were set as the 

y-direction motion and the up-down component as the z-direction motion.  

 

Because the conventional seismic design parameter for electric facilities was PGA, it was used to 

indicate the intensity of the earthquake motion in the tests.  PGA was varied from 0.125g to 

0.50g when using intervals of 0.125g.  The detailed information about PGA in the earthquake 

simulator testing is shown in Table 3-12.  Because there were no spare bushings, a high PGA 

that might damage the bushings during the testing was avoided.  As a result, the maximum PGA 

for the fixed-based cases was limited to 0.375g, where the maximum PGA for the base-isolated 

cases was 0.5g.  Only for the Northridge (Sylmar) input, a maximum PGA of 0.625g was tried.   

Time scale was not applied to input ground motion.  

The test case is identified with the code as follows. 

 

[Example-1] 

Bushing: 161 -kV 

System: Fixed-base 

Earthquake: El Centro, Target PGA 0.375g in x-direction 

Code: 161kV/F/El Centro/x375 

 

[Example-II] 

Bushing: 69 kV 

System: Base-isolated 

Earthquake: Northridge (Sylmar), Target PGA 0.375g in x-direction, 

                    0.25g in y-direction, and 0.25g in z-direction 

Code: 69kV/B/Northridge/xyz375 
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Table 3-12 Target PGA of Earthquake Simulator Testing in Phase-1 

 
(1) Base-isolated Case:  

   unit, g  
1940 El Centro 1994 Northridge (Sylmar) 1995 Kobe (Takatori)  

NS EW UD NS EW UD EW  NS UD 
X y z x Y z x Y z 
    0.125   0.125   

0.250   0.250   0.250   
0.375   0.375   0.375   
0.500   0.500   0.500   

   0.625      
         

0.250 0.125  0.250 0.125  0.250 0.250  
0.375 0.250  0.375 0.250  0.375 0.250  

         
0.250 0.125 0.125 0.250 0.125 0.125 0.250 0.250 0.125 
0.375 0.250 0.250 0.375 0.250 0.250 0.375 0.250 0.250 
0.500 0.250 0.250 0.500 0.250 0.250    

 
 
(2) Fixed-based Case: 
 

 

1940 El Centro  1994 Northridge (Sylmar) 1995 Kobe (Takatori)  
NS EW UD NS EW UD EW  NS UD 
x y z x Y z x y z 
    0.125   0.125   

0.250   0.250   0.250   
0.375   0.375   0.375   

         
         
         

0.250 0.125  0.250 0.125  0.250 0.250  
0.375 0.250  0.375 0.250  0.375 0.250  

         
0.250 0.125 0.125 0.250 0.125 0.125 0.250 0.250 0.125 
0.375 0.250 0.250 0.375 0.250 0.250 0.375 0.250 0.250 
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3.5 Dynamic Characterization of Transformer Model and Bushing 

 

The dynamic characteristics of the transformer model and bushings were evaluated by random 

wave excitation (Chopra).  The transformer model, carrying the lead block weight without the 

bushing, was subjected to a random wave with peak acceleration of 0.05g. The response 

acceleration at the top of the transformer was measured and analyzed through Fast Fourier 

Transform.  Then, the transfer function was calculated against the input random wave and the 

natural frequency was determined. 

 

The dynamic characteristics of the bushings were investigated by mounting the bushings on the 

upper part of the frame, which was designed as removable, in the transformer model as shown in 

Figure 3-7.  An example of the transfer function for the bushing is also shown in Figure 3-7.  The 

peak of the transfer function curve indicates the natural frequency for the 161-kV bushing was in 

the range of 12-13 Hz for the x-, y-, yaw-x- and yaw-y- directions.  For the 69-kV bushing, the 

natural frequency was found to be around 27 Hz in the x-direction, 29.5Hz in the y-direction, and 

25-30 Hz in yaw-x- and yaw-y- directions. The damping ratio was estimated around 1 to 2 % for 

each mode of the bushings by the half-power bandwidth method. The natural frequencies in each 

direction from the random shaking test are summarized in Table 3-13. 

 

Table 3-13 Dynamic Characteristics of Transformer Model and Bushings 

         Unit, Hz 

 x-dir. y-dir. yaw-dir. 

Transformer Model 12.5  12.5  x-12.5, y-13 

161kV Bushing 12-13  12-12.5  x-, y- 12-13 

69kV Bushing 27.0  29.0  x-, y- 25-30 
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   Figure 3-7 Dynamic Characterization Test of Bushings 
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3.6 Test Results 

 

The differences of response between base-isolated and fixed-base, between 161-kV and 69-kV 

bushings, and between uni-, bi-, and tri-axial shakings are compared and discussed.  In the 

section of uni-axial shaking, fundamental performance of each element of the system was 

analyzed and evaluated.  In the sections of bi-axial shaking and tri-axial shaking, much attention 

was paid to the difference between the responses under the bi-axial and tri-axial ground motions. 

 

3.6.1 Uni-Axial Shaking  

 

Under uni-axial shaking, the behavior of the system is straightforward and the fundamental 

properties of each element in the system can be easily evaluated, whereas the force-displacement 

relationship under bi- and tri-axial shaking revealed complicated locus caused by multi-

directional loading. 

 

3.6.1.1 Response of Transformer/Bushing System  

 

161 -kV Bushing: 

Figure 3-8 shows the comparison of response acceleration time histories at the transformer 

model with and without base isolation under the El Centro 0.375g.  In the fixed-base model, the 

peak response acceleration at the top of the transformer was amplified to 0.747g from the PGA 

of 0.339g. 

   

Figure 3-9 shows the comparison of response acceleration time histories at node-3 (upper 

middle) and node-4 (top) of the 161-kV bushing with and without base isolation under the El 

Centro 0.375g. Without base isolation, the peak acceleration at the top of the bushing reached 

3.66g resulting in an amplification factor to PGA of 10.80.  On the other hand, with base 

isolation, the peak response acceleration at the top of bushing was 0.354g and the resulting 

amplification factor was 1.05.  Similar testing results under the Kobe (Takatori) excitations are 

shown in Figures 3-10 and 3-11.  Peak response accelerations at transformer-bottom, 

transformer-top, and bushing-top are plotted as a function of PGA in Figures 3-12 to 3-14. The 
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effectiveness of base isolation was clearly observed, especially in terms of the response of the 

bushing top.  Base isolation becomes more effective as PGA becomes larger, which is typical of 

an isolation system with sliding bearings.  Among the three earthquake motions, the largest 

response in the base-isolated system was observed under the Kobe (Takatori) earthquake, as 

predicted. The peak response acceleration was 1.0g at the top of the bushing and less than 1/3 of 

that in the fixed-base system. 

 

Figures 3-15 and 3-16 plot the distribution of the response acceleration at different measurement 

points including platform (ground), bottom, and top of the transformer and top of the bushing, 

under Northridge and Kobe.  The effectiveness of base isolation is very evident in the plots.  In 

the base-isolated system, the amplification of the response acceleration is very small from the 

bottom to the top of transformer.  These results indicate the base-isolated transformer body can 

be considered as a single mass. The response displacement of each measurement point is also 

plotted in Figures 3-17 and 3-18.  Large displacement was observed in the isolation system. 

 

The Fourier amplitudes of the response accelerations at the tops of the transformer and the 161 

kV bushing are compared in Figure 3-19.  In the base-isolated system, it was observed that the 

transformer was not sensitive to the ground motion.  In the fixed-base system, the interaction of 

the transformer and the bushing was observed.  The response accelerations at different 

measurement points on the bushing under the Kobe (Takatori) 0.375g are displayed in Figure 3-

20.  The shape of the response acceleration distribution indicates that the rocking motion around 

the fixed end is the dominant movement of the bushing during shaking. The rocking stiffness at 

the fixed end will characterize the frequency of the bushing. 

 

In Figure 3-21, the change of axial load on each sliding bearing caused by overturning of the 

transformer/161-kV bushing system is plotted under the Northridge (Sylmar) 0.375g.  The 

maximum change of the vertical load occurred at Slider-WN-- 40% of the initial load. Initial 

vertical load of each bearing was 41.3kN for NW, 76.0kN for NE, 73.8kN for SW, and 44.4kN 

for SE. The reason of the initial load distribution is assumed that the stiffness of transformer 

model is extremely high and the small difference of column height generated the distribution of 

the load.  
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69-kV Bushing: 

 

Figures 3-22 and 3-23 compare the peak response accelerations of the transformer/69-kV 

bushing system with and without base isolation.  The peak response acceleration at the bushing 

top in the fixed-base system was reduced to 1/3 of that in the 161-kV system. The difference in 

responses between the base-isolated and fixed-base system was relatively small.  

 

The 69-kV bushing, whose fundamental frequency is over 25 Hz, was totally insensitive to the 

seismic excitations, according to the dynamic characterization results shown in Table 3-13.  

Therefore, the acceleration amplification factor in the fixed-base system with the 69-kV bushing 

was also small, showing that little improvement can be made by the base isolation system.  The 

results proved that those bushings with a high frequency have few problems in seismic damage. 

 

3.6.1.2 Performance of Isolation System  

 

Figures 3-24 and 3-25 show examples of horizontal force-displacement loops for a sliding 

bearing and a rubber bearing. Because the weight of the transformer model was not uniformly 

distributed to each column, the friction force generated at each sliding bearing differs.  The axial 

load, friction coefficient, and compressive stress on each PTFE disc are summarized in Table 3-

14.  The compressive stress varied from 17.4 to 32.0 MPa and the friction coefficient from 0.145 

to 0.102, as a function of the stress. The change in vertical load due to the overturning moment 

made the loops of each sliding bearing asymmetrical.  

 

An example of the force-displacement loop of the rubber bearings under the Kobe (Takatori) 

161kV/x0375g is shown in Figure 3-26.  The maximum displacement was 124 mm, 

corresponding to a rubber shear strain of 64.6%.  The rubber bearing exhibited a linear-elastic 

behavior, typical of its natural rubber compound. 

  

The total force-displacement loops of the isolation system, including the rubber and sliding 

bearings, are plotted in Figure 3-23 by superposition of the force-displacement loops of all the 
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bearings.  The system performance for K1, K2 and Qd were estimated from the curve and listed in 

Table 3-15.  They agreed very well with the designed values in Table 3-8. 

 

Table 3-14 Friction Coefficient and Compressive Stress on Sliding Bearing 

(Evaluated from the performance loops in case of 161kV/Kobe (Takatori),x0.375g) 

Location Axial Load (KN) Friction Coef. Compressive Stress (MPa) 

E-N 76.0 0.105 32.0 

E-S 44.4 0.130 18.7 

W-N 41.3 0.145 17.4 

W-S 73.8 0.102 31.1 

 

 

Table 3-15 Total Performance of Isolation System 

                         ( Evaluated from the performance in case of 161kV/Kobe (Takatori), x0.375g) 

K1 (kN/mm) 5.17 

K2 (kN/mm) 0.356 

Qd (kN) 27.3 

Qd/Pv 0.116 (=average friction coef.) 

Tf  (sec) 1.63 

        Pv: Total Axial Load =235.5kN 

        Tf: Fundamental Period  
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Figure 3-10 Time History of Transformer Response Acceleration: 

161kV/Kobe/x375 
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       Figure 3-12 Response Acceleration vs. Peak Ground Acceleration 

                                          in 161kV/ElCentro/ Uni-Axial shaking 
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Figure 3-13 Response Acceleration vs. Peak Ground Acceleration  

in 161kV/Northridge/ Uni-Axial shaking 
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                   Figure  3-14  Response Acceleration vs. Peak Ground Acceleration 

  in 161kV/Kobe/ Uni-Axial shaking 
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Figure 3-15 Maximum Response Acceleration: 161kV/Northridge/x375 
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Figure 3-16 Maximum Response Acceleration: 161kV/Kobe/x375 
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Figure 3-17 Maximum Response Displacement: 161kV/Northridge/x375 
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Figure 3-18 Maximum Response Displacement: 161kV/Kobe/x375
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Figure 3-19 FFT Analysis of Response Acceleration in 161kV/ El Centro/x375 
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Figure 3-20 Distribution of Response Acceleration  

at Bushing,161kV/Kobe/x375
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Figure 3-21 Change of Vertical Load on Sliding Bearings: 161kV/ Kobe/x375 
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Figure 3-22 Maximum Response Acceleration: 69kV/Northridge/x375 
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Figure 3-23 Maximum Response Acceleration: 69kV/Kobe/x375 
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Figure 3-24 Force-Displacement Curve of Sliding Bearing: 161kV/B/Kobe/x500 
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Figure 3-25 Force-Displacement Curve of Low-damping Rubber Bearing: 

161kV/B/Kobe/x500
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                  Figure 3-26 Total Force-Displacement Curve of Isolation System 

                                                   in 161kV/B/Kobe/x375 
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3.6.2 Bi-Axial Shaking 

 

The bi-axial shaking test showed similar results to those of the uni-axial shaking. Figure 3-27 

shows the correlation between the response accelerations at the top of the bushing (AB4) and the 

transformer (A3), in the x-direction under the uni- and bi-axial excitations. Each point plotted on 

the figure is the result under uni- and bi-axial excitations with the same PGA in the x-direction. 

In the fixed-base system, a strong correlation was demonstrated both fixed and isolated  systems 

at top of transformer.  In the base-isolated system, however, a weak correlation was observed at 

top of bushing. 

   

The force-displacement curves of the sliding bearings and the rubber bearings under the Kobe 

(Takatori) x0375gy025g are shown in Figure 3-28.  The sliding bearings exhibited complicated 

loops caused by the plane movement of the transformer model.  Assume that the force-

displacement loops for the sliding bearing under uni-axial shaking is a rectangular shape with a 

friction force of QS.  When the sliding bearing moves in the x-y plane, the x-component of the 

friction force Qx at time t is expressed as follows: 

 
 

 

 

 

 

 

 

 

Applying (3-1), Qx(t) was calculated using the actual locus(x,y) measured during the Kobe 

(Takatori) x0375gy025g excitation and plotted in Figure 3-29.  The loops show very good 

agreement with the actual test results and verified the relationship expressed in (3-1).  The total 

force-displacement curves in x- and y-directions under the Kobe (Takatori) x0375gy025g are 

shown in Figure 3-30.  Compared with Figure 3-26 under the uni-axial shaking, the effect of 

multi-axial shaking on the performance of the isolation system can be observed. 
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The locus of the gravity center under Kobe (Takatori) x0375gy025g, the largest input to the 

base-isolated system, is shown in Figure 3-31.  The maximum deflection of the rubber bearing 

under the Kobe (Takatori) was 177.6 mm, corresponding to a rubber shear strain of 92.5%. 

 

3.6.3 Tri-Axial Shaking 

 

Under the tri-axial (tri) shaking, the responses of the transformer/bushing system showed 

significant difference from those under the uni and bi-axial shaking. The response accelerations 

at the tops of the bushing for both 161-kV and 69-kV bushings on the isolated transformer were 

amplified and, in some cases, the response exceeded that of the fixed-base system. 

  

Figure 3-32 shows the time-history of the response acceleration in the x-direction of the case 

161kV/Northridge/xyz375, for the base-isolated and fixed-base systems. The acceleration at the 

bushing top with base isolation reached 1.0g and the amplification of the input was about 3.  

Amplification on the bushing was not observed in uni-axial and bi-axial shaking in the base-

isolated system. This phenomenon was a very significant finding through Phase-1 testing.  

Figures 3-33, 3-34 and 3-35 compare the peak response acceleration along the height of the 

transformer under uni-, bi-, and tri-axial shaking in the cases of 161kV/Northridge, 161kV/Kobe, 

and 161kV/El Centro.  

 

Figure 3-36 shows the correlation between the response accelerations at the tops of the bushing 

and the transformer under the bi- and tri-axial shaking.  In the fixed-base system, there was a 

linear correlation between the bi- and tri-axial shaking.  In other words, the vertical ground 

motion had little effect on the responses in the horizontal directions.  However, in the base-

isolated system, there was no linear correlation between the bi- and tri-axial shaking.  The 

response under the tri-axial excitation was much larger than that under the bi-axial shaking with 

the same intensity of ground motion.   

 

Figure 3-37 shows the comparison of the vertical load on the sliding bearings under bi- and tri-

axial shaking for the 69kV system. The vertical load change under bi-axial shaking was caused 
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by overturning of the transformer, whereas under tri-axial shaking the vertical load change was 

caused by the combination of overturning-load and vertical ground motion. 

 

In Figure 3-38, the total force-displacement curves of the sliding bearings under the bi- and tri-

axial shaking are compared. The loops under tri-axial shaking were obviously affected by the 

change of vertical load due to the vertical excitation.  From the above discussion, it was deduced 

that the high frequency factor on the friction force of the sliding bearings, which was caused by 

the vertical excitation, affected the bushing response. The 161kV bushing showed better results 

because the natural frequency of this bushing was lower than that of the 69-kV bushing.  

 

3.7 Summary 

 

The uni-axial, bi-axial and tri-axial seismic simulator testing was carried out for both the fixed-

base and the based-isolated transformer/bushing systems.  The input motions were the 1940 El 

Centro, 1994 Northridge (Sylmar), and 1995 Kobe (Takatori) earthquake ground motion records. 

 

Under the uni-axial shaking, the response of the base-isolated transformer/bushing system 

showed obvious improvement compared to the fixed-base system.  Particularly in the 161kV 

bushing/transformer system, the response acceleration observed on the bushing attached on the 

fixed-base transformer showed severe amplification, whereas the corresponding amplification in 

the base-isolated system remained well confined. 

 

Under the bi-axial horizontal shaking, the base-isolated system in general showed improved 

responses, although in some cases the amplification at the top of the bushing increased compared 

with those under the uni-axial shaking. 

 

Under the tri-axial shaking with the vertical ground motion introduced, the response acceleration 

at the top of the bushing was amplified more in the base-isolated system than the same system 

under bi-axial horizontal shaking with the same x and y intensities.  In some cases, the base-

isolated system showed larger response accelerations than those of the fixed-base system.  
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Figure 3-30 Total Force-Displacement Curve under Bi-Axial Shaking: 

      161kV/B/Kobe /xy375 
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Figure 3-31 Locus of Center at Transformer Bottom under Bi-Axial Shaking: 

161kV/B/Kobe/xy375 
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    Figure 3-32 Response Acceleration at the Top of 161kV Bushing under 

                        Tri-Axial Shaking: 161kV/B/Northridge / xyz375, Acceleration 

                        in x-dir. 

Base-isolated 
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            Figure 3-33 Comparison of Maximum Response Acceleration in Uni-, Bi-, and  

                                Tri-Axial     Shaking: 161kV/B/Northridge/x, xy, xyz375 
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            Figure 3-34 Comparison of Maximum Response Acceleration in Uni-, Bi-, and 

       Tri-Axial Shaking: 161kV/B/Kobe/x, xy, xyz375 
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Figure 3-35 Comparison of Maximum Response Acceleration in Uni-, Bi-, and 

                                 Tri-Axial Shaking: 161kV/B/El Centro/x,xy,xyz375 
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Figure 3-37 Comparison of the Vertical Load on Sliding Bearing 

under Bi- and Tri-Axial Shaking 
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Figure 3-38 Force-Displacement Curve of Sliding Bearing under Bi- and  

Tri-Axial Shaking: 69kV/B/Northridge /xy375,xyz375, x-dir. 
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SECTION 4 
EARTHQUAKE SIMULATOR TEST/PHASE-2 

 

4.1 Overview 

 

In Phase-2, the segmented high-damping bearings were used as isolators, and a flexible rubber 

ring was developed and installed between the flanges of bushing and transformer top to change 

the dynamic characteristics of the bushing. The frequency was shifted to low-range (assuming a 

large-size bushing such as 500-kV) that is generally sensitive to ground motion.  The artificial 

wave matching to IEEE693-1997 REQUIRED RESPONSE SPECTRUM was generated and 

applied.   

 

4.2 Experimental Setup  

 

The basis of the experimental setup of Phase-2 was almost the same as that of Phase-1.  As 

described later, the weight of the transformer model was reduced and a scale factor was 

introduced.  Figure 4-1 shows the test setup of base-isolated model. 

 

4.2.1 Transformer Model  

  

The total weight of the transformer model was decreased from 241kN in Phase-1 to 141kN 

considering the stability of the segmented isolators. The other dimensions were the same as that 

of Phase-1.  According to the dynamic identification test results, the natural frequencies of the 1st 

and 2nd modes were 12.3 Hz and 28.9 Hz, respectively.  

 

4.2.2 Porcelain Bushing 

 

From the results of Phase-1, it is concluded that the 69-kV bushing had a frequency high enough 

to be insensitive to ground motion. Therefore, only the 161-kV bushing was used in Phase-2.  
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Figure 4-1 Test Set-Up of Phase-2 Testing 
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4.3 Segmented High-Damping Rubber Bearing Isolation System 

Figure 4-2 shows the segmented high-damping rubber bearing (SHRB) used in this test (Masaki, 

1999).  The isolation system consisted of four stacks of three element bearings.  The thick plates 

between each bearing layer were designed to work as stabilizers during large displacement.  The 

element bearings had a maximum shear-strain capacity of 250%. The total maximum 

displacement of SHRB was around 200 mm. The nominal compressive stress was 4.0 MPa.  The 

design shear modulus and equivalent damping ratio at 100% shear strain was 0.61 MPa and 16%, 

respectively.  The diameter of the element bearing was 72 mm and the thickness of the unit 

rubber layer was 0.9 mm. The number of layers was 31 and the total rubber height was 27.9 mm.  

The first and second shape factors, S1 and S2, of the element bearings were 20 and 2.58.  The 

element bearing itself had poor stability characteristics because of its slim shape, or a small S2.  

Therefore, the stabilizing plates installed between each layer of SHRB allow large displacement 

without instability.  The design fundamental period of the transformer model sustained by the 

four SHRB was computed as 1.32 seconds.  The design properties are summarized in Table 4-1. 
 

Table 4-1 Design Properties of Segmented Rubber Bearings 

1.  Element bearing    
Unit rubber thickness tr 0.9 (mm) 
Number of layers nr 31 (-) 
Total rubber height hr 27.9 (mm) 
Rubber diameter D 72 (mm) 
First Shape Factor S1 20 (-) 
Second Shape Factor S2 2.58 (-) 
Effective area Aeff 4071.50 (mm2) 

Shear modulus G 0.418 (N/mm2) 
Shear stiffness Kh 60.99 (N/mm) 
Shear force at 300% Qmax 5615.7 (N) 

2.  Assembled bearing    
Shear stiffness KhT 81.3 (N/mm) 
Total rubber height Hr 111.6 (mm) 

3.  Design compressive force  141 (kN) 
4.  Fundamental period Tf 1.32 (sec) 
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Figure 4-2 Segmented High-Damping Rubber Bearing 
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4.4 Flexible Rubber Ring  

 

In order to evaluate the response of the bushing under a low frequency, like 3.0 Hz, a flexible 

rubber ring (shown in Figure 4.3) was specially designed and manufactured, and was mounted 

between the top of the turret and the flange of the bushing. The rubber ring was designed to 

contribute to the rocking motion of the bushing and shift the fundamental period of the bushing 

with its low tilting stiffness. The tilting stiffness rK  of the rubber ring is calculated by the 

following equation: 

 

 

 

 

 

 

where, 

bentE  is the apparent Young’s modulus of rubber  

0E   is Young’s modulus of rubber  ( )modulus shear:G,G3≈  =2.2MPa 

∞E   is bulk modulus of rubber =1200 MPa for this compound 

1S   is first shape factor of rubber ring 

κ               is correction factor,  =0.85 for this compound 

t  is rubber-layer thickness 

I  is second section modulus of the ring 

A low damping rubber compound was used, with a shear modulus of 0.4 MPa--one of the softest 

compounds in practical use for isolation bearings.  The design characteristics of the rubber ring 

are shown in Table 4-2. 
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Figure 4-3 Flexible Rubber Ring 
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Table 4-2 Design Parameters of Flexible Rubber Ring 

tr 30 (mm) Eb 2.845 (MPa) 
D 460 (mm) I 1.4094e+9 (mm4) 

d 356 (mm) Kr 133636.9 (kN・mm) 

A 66652.0 (mm2) W 3.43 (kN) 

S1 0.867 ( - ) σ  0.05199 (MPa) 

E 2 (MPa) hｇ 1000 (mm) 

k 0.85 ( - ) W hｇ2
3430000 (kN・mm2) 

Em 1200 (MPa) Tr 0.32 (sec) 
Eb' 2.851 (MPa) f 3.11 (Hz) 

 

4.5 Testing Program 

 

The differences between the Phase-2 and the Phase-1 testing programs were the isolator system, 

the input ground motion, the total weight of the model, the application of the flexible rubber ring, 

and the application of a scale factor. The scaling chosen in the test was based on constant stress 

and constant acceleration.  The scale factor applied was 0.6 for length and displacement, and 

0.60.5=0.775 for velocity and time. The relationship of constant stress scaling is summarized in 

Table 4-3. 

Table 4-3 Constant Stress Scale of Testing 

 0.6 scale model  
Length       L 0.6  
Time         L1/2 0.775  
Mass         L2 0.36  
Displacement  L 0.6  
Velocity       L1/2 0.775  

 
 Real model Test set-up 
Weight  391.7 kN 141 kN 
Natural period 1.76 sec 1.36 sec 
Bushing frequency 11.6 Hz 15 Hz 
Compressive stress 
on SHRB 

2.3 MPa 

 

Prior to the earthquake simulator tests, dynamic identification of the system was conducted.  The 

procedure of this test was the same as that of Phase-1, page 65, so the explanation is omitted.  
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The parameters of the earthquake simulator tests were: 1) base-isolated or fixed-base; 2) with 

rubber ring (low- frequency mode) or without rubber ring (high-frequency mode); 3) earthquake 

record; 4) intensity of earthquake record; 5) direction of shaking.  The earthquake records used in 

Phase-2 were 1995 Kobe (Takatori), 1999 Chi-Chi (TCU-129), and Art-693.  The 1999 Chi-Chi 

(TCU-129) is similar to 1940 El Centro in its frequency characteristics.  Art-693 was the 

artificially-generated wave based on the Required Response Spectrum IEEE-693.  The phase 

angles of the composed waves were randomly chosen and superimposed.  The response spectrum 

and Fourier spectrum of Art-693 are shown in Figure 4-4.  The typical dynamic characteristics of 

Art-693 is the high intensity in the low frequency range, similar to 1995 Kobe (Takatori), close 

to the fundamental frequency of the base-isolated transformer.  The shaking direction was uni-

axial in the x-direction, bi-axial in the x- and y-directions, tri-axial in the x-, y-, and z-directions, 

the same as Phase-1.  Bi-axial shaking in the x- and z-directions was added in Phase-2.  The 

combination of the record, intensity, and shaking direction in each test case is shown in Table 4-

4. 
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   Art-693: N-S Component 
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Art-693: E-W Component 

Figure 4-4  Response Spectrum of Artificial Wave: N-S and E-W Components 

of  ART-693 
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Table 4-4 Target PGA of Earthquake Simulator Testing in Phase-2 
(1) Base-isolated Case:  

   Unit, g  
Art-693 1999 Chi-Chi (TSU-129) 1995 Kobe (Takatori)  

NS EW UD NS EW UD EW  NS UD 
x y z x y z x Y z 

0.250   0.250   0.250   
0.375   0.375   0.375   

   0.500      
         

0.250 0.125  0.250 0.125  0.250 0.250  
0.375 0.250  0.375 0.250  0.375 0.250  

         
0.25  0.125    0.25  0.125 
0.375  0.25       

0.250 0.125 0.125 0.250 0.125 0.125 0.250 0.250 0.125 
0.375 0.250 0.250 0.375 0.250 0.250 0.375 0.250 0.250 

   0.500 0.250 0.250    
 
(2) Fixed-base Case: 
 

 

Art-693  1999 Chi-Chi (TSU-129) 1995 Kobe (Takatori)  
NS EW UD NS EW UD EW  NS UD 
x y z x y z x y z 

0.250   0.250   0.250   
0.375   0.375   0.375   

         
         

0.250 0.125  0.250 0.125  0.250 0.250  
0.375 0.250  0.375 0.250  0.375 0.250  
0.250 0.125 0.125 0.250 0.125 0.125 0.250 0.250 0.125 
0.375 0.250 0.250 0.375 0.250 0.250 0.375 0.250 0.250 

 

Each test case is identified by following parameters: 

• Earthquake record: Art-693, Chi-Chi, Kobe 

• Shaking direction and  target-PGA in x-direction:  

x375 = uni-axial shaking in x-direction, target PGA =0.375g, xyz250=tri-axial shaking in 

x-,y-, and z-direction, target PGA in x-direction is 0.250g 

• System: with (R) or without (F) rubber ring + base-isolated(B) or Fixed-base(F) 

RB = with rubber ring in base-isolated system, FR=without rubber ring in base-isolated 

system 
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An example of the notification of a test case is as follows. 

RF/Art/xz375: EQ record is Art-693, bi-axial shaking in x- and z-directions, target PGA of 

platform in x-direction is 0.375g, with rubber ring in fixed-base system 

 

4.6 Dynamic Characterization of Transformer Model and Bushing 

 

The dynamic identification of the transformer model and bushing was performed by a random 

vibration test using the same procedure as in Phase-1.  As predicted, the results were almost the 

same as Phase-1.  The 1st and 2nd mode of the transformer model without the bushing was around 

16.4 Hz, and 29.6 Hz in x, y, and yaw direction.  The 1st and 2nd mode of the 161-kV bushing 

without the rubber ring was 12.7 Hz and 16.3 Hz, whereas with rubber ring it was as follows: 1st 

mode - 3.9 Hz; 2nd mode - 12.6 Hz; and 3rd mode - 26.1 Hz.  The results are summarized in Table 

4-5. 

 

The most interesting point is that the fundamental frequency of the bushing was shifted to 3.9 Hz 

by the rubber ring, as expected.  Considering the scale factor, the equivalent frequency of the 

bushing in the real scale is 3.9 x 0.775 = 3.02 Hz.  According to a field investigation, the largest 

size bushing in the field (500-kV) sometimes had around 3.0 Hz of dominant frequency 

(Villaverde, 1999).  The transfer function of the bushing with and without the rubber ring is 

shown in Figure 4-5. 

 

Table 4-5 Dynamic Identification Test Results 

 x y yaw-x yaw-y 
Bushing without RR 12.7 12.7 12.7 12.7 
Bushing with RR 3.9 3.9 3.9 3.9 
Transformer only 16.4 16.4 26.5 26.0 
Rigit Frame only 23.1 26.3 23.4 29.4 
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4.7 Test Results 

 

4.7.1 Uni-Axial Shaking 

 

4.7.1.1 Response of Transformer/Bushing Systems 

 

Figures 4-6 and 4-7 show the time histories in cases of RB/Art693/x375 and RF/Art-693/x375.  

The effect of base isolation was observed comparing both records.  The FFT analysis of the data 

at the bottom of the transformer and the top of the bushing, in RB, RF, FB, and FF/Art-693/x375 

are shown in Figures 4-8, 4-9, 4-10, and 4-11.   The isolation-period of the RB and FB systems 

estimated by FFT analysis varied from 0.69 Hz (FB) to 1.20 Hz (RB).  Tests were conducted first 

for RB and then for FB.  The stiffness of the isolators in the FB system was lower than in the RB 

system, caused by the load-history effect of high-damping rubber bearings.  In Figure 4-12, the 

maximum response acceleration at the transformer-bottom, transformer-top, and bushing-top 

under uni-axial shaking in each system is plotted for the cases of Art-693 and Kobe.  The order 

of response acceleration under all motions was FF > RF >> RB ≈ FB.  In the FF system, the 

response acceleration in the bushing top was significantly amplified. The amplification factor of 

the bushing in the fixed-base system became larger as PGA increased.  On the other hand, the 

amplification factor of the bushing top in the RF system remained small even as PGA increased.  

Figures 4-13 to 4-15 show the distribution of the response acceleration and response relative 

displacement along the height of the system under Art-693/x375.  The result shows the 

interaction effect between the bushing and the transformer model.  In the FF system, the 

fundamental frequency in the transformer (16 Hz) was close enough to that of the bushing (12 

Hz) to cause amplification, while in the RF system they were almost decoupled since the 

fundamental frequency of the bushing was reduced to 3.0 Hz by the rubber ring.  According to a 

survey by this author, the fundamental frequency of a transformer body generally varies from 15 

Hz to over 30 Hz.  The results in this study indicate the relationship of the bushing frequency to 

the transformer frequency has significant influence in the amplification of the response in the 

bushing and will be one of the major reasons for severe damage in bushings.  The results in the 

RB and FB systems show good reduction in acceleration.  There was no obvious difference in 
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the accelerations between the RB and FB systems, regardless of the difference in the 

fundamental frequency of the bushing.  

 

The response displacements in four systems under each input motion were compared. The 

displacement at the bottom of the transformer in the RB and FB systems, which indicate the 

shear deflection of SHRB, is around 85 mm under Art-693/x375g in a scaled system. In real-

scale, this 85 mm is translated to 85/0.6 = 142 mm. Considering the many cable connections in 

actual transformer systems, this response displacement was controlled in a quite reasonable 

range.  As summarized in Chapter 2, a major difference between base-isolation for transformer 

systems versus conventional isolation, such as building isolation, is the higher stiffness for 

limiting the displacement in a transformer.  As a result, the isolation period will be less than 1.5 

seconds, whereas the period of a conventional system is generally over 2.5 seconds.  

 

Figure 4-16 shows a performance curve of the flexible rubber ring under Kobe (Takatori), uni-

axial shaking.  The force-displacement curve represents the relationship between the rotation 

angle and the assumed bending moment computed from the response acceleration at the top of 

the bushing.  The maximum horizontal displacement at the top of the bushing was 20 mm.  The 

damping ratio computed from the force-displacement curve was around 5%.  The initial purpose 

of applying this rubber ring was to reduce the apparent fundamental frequency of the bushing 

and to evaluate the base-isolation effect in the flexible bushing system.  However, the results in 

the fixed-base system with the rubber ring (RF-system) indicated that this flexible-joint system 

itself had significant effect in reducing the response of acceleration in the bushing.  If there are 

no other problems in mounting these joints on the turret in an actual transformer, the rubber ring 

can be one of the effective measures in improving the seismic performance of 

transformer/bushing systems. 

 

4.7.1.2 Performance of Isolation System 

 

Figures 4-17 and 4-18 show the force-displacement curve of the total SHRB system under uni-

axial shaking. The shapes of these plots demonstrate visco-elastic characteristics.  These shapes 

were more rounded and each plot did not trace the same path, whereas the curve in Phase-1 
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showed a reasonable bi-linear curve. This phenomenon can be explained by the load-history 

dependency and velocity-dependency in the restoring force of the high-damping rubber 

compound.  

 

In Figure 4-19, the force-displacement curves of RB/Art-693/x375 (Test-A, hereafter) and 

FB/Art-693/x375 (Test-B) are plotted and compared.  Test-A was performed first and Test-B 

followed one day later.  The curve of Test-A shows higher load than Test-B at the same 

horizontal displacement. This indicates the stiffness was softened by the load-history effect of 

the high-damping rubber bearing during Test-A, which is called the “scragging” effect or 

Mullins’s effect (Mullins, 1962).  In this test, carbon and resin are physical links between 

polymers and fillers that are added for damping and reinforcement.  When the vulcanized rubber 

in the virgin state is first subjected to loading, these physical links are destroyed and the stress 

will be relaxed upon the next loading.  After some time interval (10 to 24 hours), a percentage of 

the destroyed links will re-generate and, as a result, the restoring force characteristics will 

partially recover, but never to the virgin state. This is called the recovery phenomena. Murota 

(1994) studied the recovery phenomena of a 450 mm-diameter high-damping rubber bearing for 

over 100 days.  It was concluded that the bearing recovered to almost 90% within seven days, 

with full recovery in about three months.  According to the FFT analysis for Test-A (Figure 4-8) 

and for Test-B (Figure 4-10), the fundamental frequency was 1.2 Hz in Test-A and 0.69 Hz in 

Test-B.  This difference was obviously caused by the difference in stiffness of the bearing during 

each test. 

 

The maximum shear-strain experienced during the entire test program was 178% in 

FB/Kobe/x375, as shown in Figure 4-20.  The predicted ultimate shear strain of the SHRB was 

around 200%, corresponding to a ratio of the diameter to the displacement of 0.8. 

 

The initial sustaining load of each SHRB was 39.5 kN at EN, 37.8 kN at ES, 36.8 kN at WN, and 

38.7 kN at WS, for an average of 38.2 kN.  The average compressive stress was 2.35 MPa.  The 

change of vertical load on each SHRB in FB/Kobe/x375 is shown in Figure 4-21. The load 

change due to the overturning moment of the transformer was approximately ± 20 kN.  

Therefore, approximately ±50% of the static vertical load changed during Kobe/x375. 



 111

4.7.2 Bi-, and Tri-Axial Shaking 

 

Figure 4-22 shows the comparison of response acceleration in uni-, bi-, and tri-axial shaking of 

RB/Art-693 and RB/Chi-Chi. There was no significant difference in these responses.  In Phase-1, 

there were obvious differences in the response acceleration between uni-axial shaking and bi-, or 

tri-axial shaking.  A large difference was particularly noted in the bushing response observed 

during tri-axial shaking in Phase-1. However, in Phase-2 with SHRB, the response in tri-axial 

shaking did not show any amplification at the bushing top.   

 

Figure 4-23 compares the curves of the total system under FB/Kobe/x250 and FB/Kobe/xz250.  

There is no significant difference between these curves.  This fact indicates the effect of z-

motion was negligible in SHRB systems as long as the compressive stress was kept low enough, 

whereas z-motion significantly affected the characteristics of the slider system in Phase-1. Figure 

4-24 compares the force-displacement curves in the Phase-1 and Phase-2 tests.  The force and 

displacement of SHRB in Figure 4-24 was corrected to the same loading conditions. 

 

4.8 Summary  

 

The isolation system consisting of segmented high-damping rubber bearings performed very well 

during testing, as well as the sliding system in Phase-1.  With SHRB, the response acceleration 

of the bushing was reasonably reduced even in tri-axial shaking.  So, the problem observed in the 

Phase-1 test with the sliding bearing system did not occur.  The shear restoring force 

characteristics of the SHRB was not entirely affected by the ground motion because the design 

compressive stress was relatively low. 

 

The rubber ring worked well as designed. The initial purpose of applying the ring was to study 

the difference in the bushing response with a low-frequency type (3 Hz) and a high-frequency 

type (12 Hz).  Before testing, it was predicted that the bushing would show a larger response 

with the rubber ring.  However, the test results showed the rubber ring worked to decouple the 

frequency of the bushing from the transformer body and the response was dramatically improved.  

It is deduced from the results that the interaction of the transformer body and the bushing is one 
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of the significant reasons for amplification of the bushing-response, and the flexible joint for the 

bushing will be an effective countermeasure.  A new idea of seismic protection for the bushing 

will be proposed as a result of these tests.  A rubber ring of high-damping material may be more 

effective than the standard material used in these tests. 

 

Load-history dependence of high-damping rubber bearings was seen during the entire test 

program, which is typical of these compounds.  The difference in the stiffness affected the 

isolation period and the response of the system.  The characteristics should be carefully 

considered at the design stage of the isolation system with high-damping rubber bearings. 
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Figure 4-5 Dynamic Identification Test Results of Bushing with/without Flexible 
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Figure 4-6 Time Histories of Response Acceleration in RB/Art-693/x375 

bushing
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Figure 4-7 Time Histories of Response Acceleration in RF/Art-693/x375 

bushing
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Figure 4-8 Normalized Fourier Amplitude of RB/Art-693 /x375 
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Figure 4-9 Normalized Fourier Amplitude of RF/Art-693 /x375 
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Figure 4-10 Normalized Fourier Amplitude of FB/Art-693 /x375 
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Figure 4-11 Normalized Fourier Amplitude of FF/Art-693 /x375 
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Figure 4-12 Maximum Response Acceleration in Art-693 and Kobe 
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Figure 4-13 Maximum Response Acceleration and Displacement at each 

Measurement Point:Chi-Chi/x375 
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Figure 4-14 Maximum Response Acceleration and Displacement at each 

Measurement Point: Art-693/x375 
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Figure 4-15 Maximum Response Acceleration and Displacement at each 

 Measurement Point: Kobe/x375 
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Figure 4-16 Shear Force-Horizontal Displacement Relationship of Bushing with 

Rubber Ring: RB/Kobe/x375 
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Figure 4-17 Force-Displacement Curve of Isolation System in RB/Art-693/x375 
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Figure 4-18 Force-Displacement Curve of Isolation System in RB/Kobe/x375 
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FB/Art-693/x375: ( 1 day after RB/Art-693/x375 ) 

Figure 4-19 Load History Dependence of High-damping Rubber Bearing 
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Figure 4-20 Force-Displacement Curve of SHRB in RB/Kobe/x375 
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Figure 4-21 Vertical Load Change of each SHRB in FB/Kobe/x375 
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Figure 4-22 Comparison of Maximum Response Acceleration in Uni-, Bi-, and 

         Tri-Axial Shaking : RB/Art-693, and RB/Chi-Chi 
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Figure 4-23 Comparison of Force-Displacement Curve under x-, and xz-Shaking 
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Corrected Force-Displacement Curve at Phase-1: Kobe/FB/x500 

-300 -200 -100 0 100 200 300
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Displacem ent(m m )

S
h
e
ar
 f
o
rc
e
/
 S
tr
u
c
tu
re
 w
e
ig
h
t 
(-
)

 
Corrected Force-Displacement Curve at Phase-2: Kobe/FB/x375 

 
Figure 4-24 Comparison of Force-Displacement Curve of Slider System (Phase-1) 

 and SHRB System (Phase-2) 
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SECTION 5 
NUMERICAL ANALYSIS 

 

5.1 Overview 

 

In this chapter, the numerical analysis of the base-isolated transformer/bushing system is studied 

and discussed.  The simulation was carried out with a commercial program called SAP2000 

Nonlinear.  With this tool we can develop a numerical model of the test set-up in Phase-1 and –2 

to verify the test results, especially focusing on the response of the bushing and the performance 

of the isolator system.  The main focus of the analytical study is the problem of interaction with 

vertical motion and bushing response, which was observed in Phase-1 testing with hybrid 

isolation system.  

 

5.2 Mathematical Model of the System 

 

The mathematical model of the transformer/bushing systems tested in Phase-1 and Phase-2 was 

basically defined as shown in Figure 5-1.  The transformer was considered as a single mass 

supported by a linear spring in the shear direction.  In other directions, the model was considered 

rigid.  The bottom of the transformer was modeled as a rigid beam/shell, and isolators were 

installed beneath the corners. The bushing was modeled as a rigid beam with several lumped 

masses and was supported by a linear-rotation spring attached to the transformer.  The stiffness 

for the other directions was considered rigid.  

 

According to the analysis of the test data, the movement of the porcelain bushing during shaking 

was dominated by the rotation at the mounting flanges connected to the turret of the transformer.  

The rotational flexibility of the bushing is determined by the rubber-gasket installed at the 

interface of mounting face, which is usually installed for the prevention of oil spills.  The results 

of dynamic identification of the bushing revealed that the 2nd mode frequency is over 25 Hz and 

its contribution to the entire response was considered very low.  Therefore, in this simulation, the 

bushing was simply modeled as a rigid beam supported by rotational spring at the interface of the 

transformer top and the bushing flange.  
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Figure 5-1 Numerical Model of Transformer/Bushing System  

in Phase-1 and –2
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The equations of motion governing the test system in the x-direction are defined below (the 

rotational motion of the transformer and the shear motion of the bushing are neglected in these 

equations): 

 

  

The equation of motion in the z-direction was simplified by assuming the stiffness of bushing 

and transformer in the z-direction is rigid: 

 

( ) ( )( )Gzmmmzkzczmmm gbvvb +++−=++++ 2111121   

where, 

bb x,m  is mass and absolute displacement of basement, expressed as a rigid beam/shell  

11 , xm  is mass and  relative displacement of upper part of transformer 

22 , xm  is representative mass and  relative displacement of bushing 

iR  is the horizontal reaction force of ith isolator, which is expressed as a function of the 

deflection iδ  and the deflection rate iδ  as  ( )iii fR δδ ,=  

1,1 ck  is the shear stiffness and damping coefficient of the transformer, 

rr ck ,  is  the rotation stiffness and damping coefficient of the bushing,  

h  is the representative height of bushing = height from end to gravity center of the bushing 

G is gravity 

 

Furthermore, the rotation angle of the bushing is assumed small enough to have a linear 

relationship with the displacement in the x-direction as follows:  

 

 

 

( ) ( )
( ) ( ) ( )
( ) ( )
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1122111111

1111
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−

+
−

+
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(5-1) 

(5-3) 

(5-2) 
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where, 

2θ  is the rotation angle of the bushing from vertical axis. 

 

5.3 Numerical Expression of Isolator Characteristics 

 

The characteristics of isolators are dependent on deflection (or strain rate of deflection) and 

compressive force.  Many analytical models have been developed and proposed by researchers.   

The nonlinear element for isolators used in this analysis was based on the research of 

Nagarajaiah for the development of the computer code 3D-BASIS.  The isolator devices in that 

report were classified into elastic element, hysteretic element, frictional element, and viscous 

element.  The elastic element is generally called the bi-linear model, and is determined with the 

parameters of initial stiffness, ratio of post-yield stiffness to initial stiffness, and yield load.  The 

hysteretic element is the model for high-damping rubber bearings and lead-rubber bearings, 

while the frictional element is for sliders.  A viscous damper is the model for energy dissipation 

in visco-elastic dampers and hydraulic dampers.  In this study, the sliders for Phase-1 were 

modeled with a frictional element.  

 

5.3.1 Friction Force of Sliding Bearing 

 

The friction force characteristics of sliding bearings are expressed in the following equation: 

 

         vds PF ⋅= µ  

 

where, sF  is the friction force generated along the locus of bearings in x-y plane, dµ  is the 

dynamic-friction coefficient during sliding motion.  Static-friction ( sµ ), generally called “break-

away” coefficient, is the friction at the start of sliding. vP  is the compressive force on the 

bearings. 

 

As many experimental data have shown, dµ  is dependent on compressive stress σ  and sliding 

rate v . It is also sometimes defined by the following function: 

(5-4) 
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( ) ( ) 0µσµ ⋅⋅= gvfd  

 

where, functions of ( )vf  and ( )σg  are empirically derived from test data which was introduced 

in Chapter 3, and 0µ  is the base friction coefficient at a very low sliding rate.  Among many 

expressions proposed for ( )vf  and ( )σg  in the literature, the author chose the following 

expression: 

 

( ) ( ) ( )vavf ⋅−⋅−−= exp1ψψ  

 

 

 

where, maxµ  is the maximum friction at large rate of sliding, a  is a constant. 

  

 

 

where,  0σ  is the nominal compressive stress and b  is a constant. 

 

In this simulation, to make the model simple, the effect of the change of compressive stress to 

the friction coefficient, the function of ( )σg  in (5-7), was neglected.  

In bi-lateral shaking, the friction forces in the x- and y-directions, xF  and yF , are expressed with 

sF  as follows: 
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5.3.2 Restoring Force Characteristics of High-Damping Rubber Bearings 

 

High-damping rubber bearing was treated as hysteretic model in this analysis. The governing 

equation for load-deflection is expressed by the following equation developed by Wen 1976: 

 

( ) Ω⋅⋅−+⋅= Ycuc QKQ αα 1  

where,  

                 is  the initial stiffness , YQ  is the yield strength and Yu  is yield displacement. 

 

cα is the ratio of post-yield stiffness to initial stiffness, and Ω is a hysteretic dimensionless 

quantity which is governed by the following equation: 

  

( )( ){ } uuSignCu c
n

Y ⋅+Ω⋅⋅Ω−=⋅Ω ητ  

 

where, τ , cη , C , and n  are dimensionless quantities that control the shape of the force-

displacement curve. 

 

The bi-axial model of the hysteretic element was developed by Park (1986), which was derived 

from the extension of the uni-axial equation as follows: 

 

 

 

 

where, xα and yα  are the ratio of post-yield stiffness to initial stiffness in the x, and y directions, 

YxQ  and YyQ are the yield strength,                                     are the initial stiffness for x, and y 

directions, respectively. xΩ  and yΩ , the hysteretic dimensionless quantities, are governed by the 

following coupled differential equations: 
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where, I  is unit matrix , and C and η  is dimensionless quantities that control the shape of the 

hysteresis loop. 

 

5.4 Comparison with Phase-1 Test Results 

 

Numerical simulation was conducted for several selected cases in Phase-1 and Phase-2 in order 

to calibrate the numerical model by the test results, especially focusing on the phenomenon in tri-

axial shaking observed in Phase-1. 

 

At first, simulation of a fixed-base system under uni-axial shaking was carried out to calibrate 

the model of the transformer/bushing system. The stiffness’ for both the transformer and bushing 

were chosen according to the results of the dynamic characterization test described in Chapter 4.  

Each element was modeled to match the fundamental frequency of the 1st mode obtained in the 

tests.  The damping ratio was defined as modal damping of 2% for all modes.  The ground 

motion measured on the shake table, AX1 in Figure 3-3 Chapter 3, was applied as the input data 

for the simulation. 

 

The selected cases used for the simulations were, Northridge/x375, Kobe/x375, and El 

Centro/x375. The comparison of test results and numerical simulation in time histories of 

response acceleration at transformer bottom, transformer top, and bushing top, are shown in 

Figures 5-2, 5-3, and 5-4.   

 

The maximum values of response acceleration in each case are summarized in Table 5-1.  

Although the results of the numerical simulation and the test have some degree of difference in 

maximum response acceleration, the time history data show good agreement in the shape of the 

envelope. 
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Table 5-1 Comparison of Test Results and Numerical Simulation of Fixed-Base 

System in Uni-Axial Shaking 

El Centro/x375 Northridge/x375 Kobe/x375 Unit: g 
Test Simulation Test Simulation Test Simulation 

Tr. Bottom 0.351 0.347 0.416 0.376 0.361 0.372 
Tr. Top 0.747 0.476 0.646 0.431 0.569 0.709 
Bush. Top 3.66 3.21 2.75 2.65 2.90 3.74 

 

The simulation results of the base-isolated system under uni-axial shaking are shown in Figures 

5-5, 5-6, and 5-7.  Basically, the results show good agreement at all measurement points, 

although there were some differences at the transformer top. The response of the test results 

includes the high-frequency mode in its wave-configuration, which was not observed in the 

results of the numerical simulation because the higher mode was neglected in this simplified 

model.  Performance curves of the isolation system in the test results and the numerical 

simulation are compared in Figures 5-8 and 5-9.   The simulation results agree with the test 

results and prove that the bilinear model was adequate enough to express the properties of sliders.  

The maximum response acceleration is shown in Table 5-2. 

 

Table 5-2 Maximum Response Acceleration of Test Results and Numerical 

Simulation of  Base-Isolated System in Uni-Axial Shaking : Phase-1 

El Centro Northridge Kobe Unit: g 
Test Simulation Test Simulation Test Simulation 

Tr. Bottom 0.197 0.187 0.182 0.181 0.270 0.212 
Tr. Top 0.217 0.188 0.195 0.184 0.283 0.214 
Bush. Top 0.352 0.391 0.326 0.361 0.344 0.337 

 

Next, the response acceleration under bi-axial shaking in the base-isolated system was simulated 

and compared with the test results.  Figures 5-10 and 5-11 show the comparison of the Kobe and 

Northridge test results and simulation results.  The simulation results of acceleration at each 

measurement point basically show good agreement with the test results.  There remained some 

degree of difference in peak response acceleration at the bushing-top.  Figure 5-12 shows the 

comparison of the performance curves between the test and the simulation.  The result shows that 

the numerical model adequately expresses bilateral performance of sliders.  The maximum 

response acceleration at each component is shown in Table 5-3. 
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Table 5-3 Maximum Response Acceleration of Test Results and Numerical 

 Simulation of Base-Isolated System in Bi-Axial Shaking : Phase-1 

El Centro Northridge Kobe Unit: g 
Test Simulation Test Simulation Test Simulation 

Tr. Bottom 0.184 0.184 0.179 0.167 0.227 0.202 
Tr. Top 0.197 0.185 0.179 0.170 0.262 0.203 
Bush. Top 0.416 0.345 0.279 0.257 0.257 0.307 

 

Figures 5-13 and 5-14 show the comparison of acceleration in tri-axial shaking.  The simulation 

results also show good agreement.  The maximum acceleration is shown in Table 5-4.  In Figure 

5-15, the force-displacement curves of the isolation system in tri-axial shaking, Kobe/xyz375, 

were compared.  Although there are some differences in maximum displacement, overall 

agreement is seen.   

 

Table 5-4 Maximum Response Acceleration of Test Results and Numerical 

Simulation of Base-Isolated System in Tri-Axial Shaking : Phase-1 

El Centro Northridge Kobe Unit: g 
Test Simulation Test Simulation Test Simulation 

Tr. Bottom 0.198 0.181 0.270 0.178 0.241 0.213 
Tr. Top 0.319 0.190 0.558 0.186 0.353 0.246 
Bush. Top 0.471 0.442 1.012 0.869 1.100 0.898 

 

In summary, the numerical simulation with the proposed model compared well to the test results. 

 

5.5 Study on Amplification in Bushing under Phase-1 Tri-Axial Shaking 

 

In order to study the amplification phenomenon of the bushing response in tri-axial shaking with 

the hybrid system in Phase-1, a parametric simulation was conducted. 

 

5.5.1 Response under Sinusoidal Wave Input 

 

At first, to simplify the problem, the response to the sinusoidal wave was evaluated.  The 

transformer was considered a rigid body.  The natural period of the bushing in rotation was fixed 

as 15 Hz.  Assumptions for the isolation system were as follows: 
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1) Friction coefficient = 0.12 at maximum velocity 

2) Linear restoring element with fundamental period of 2.0 sec. in x-direction 

3) Compressive stiffness was assumed rigid 

The numerical model of the system is shown in Figure 5-16. 

 

The input motions were applied to the x- and z-directions.  These inputs were 0.5g of amplitude 

with a frequency of 2 Hz in the x-direction, and 0.4g with 15 Hz in the z-direction.  They are 

expressed as follows: 

x-direction: ( ) Hzftfgxg 2,2sin5.0 11 == π , z-direction: ( ) Hzftfgz g 15,2sin4.0 22 == π  

 

The simulations were conducted for xz-shaking and x-shaking. The maximum response 

accelerations are summarized in Table 5-5.  In the case of xz-shaking, the maximum acceleration 

at the bushing was amplified 1.98 times the acceleration at the transformer, whereas it was 

amplified 1.25 times in the case of x-shaking. 

 

Table 5-5 Maximum Response Acceleration under Sinusoidal Wave Input 

Unit: g x0.5gz0.4g x0.5g 
Transformer 0.198 0.151 
Bushing Top 0.392 0.189 

 

Figures 5-17 and 5-18 show the time history of the input and the response for both cases.  The 

response acceleration at the transformer under xz-shaking shows high-mode vibration 

corresponding to the vertical motion of the ground.  This component was transmitted from the 

vibration of the slider frictional force.  The response at the bushing-top shows a complicated 

form--the motion with its natural period stimulated by inertia force at the change of direction of 

the sliding force, and the motion influenced by the high-mode vibration transmitted from the 

transformer.  This is considered the mechanism of amplification of the bushing response with the 

sliding bearing system. 
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5.5.2 Response under Earthquake Input 

 

Next, the response to earthquake inputs with various combinations of frequency characteristics 

of the components was investigated.  The bushing natural frequency and vertical natural 

frequency of the isolation system were considered as variable parameters of the system to be 

investigated.  The structure of the numerical model was the same as that used in the former 

sinusoidal input investigation. The following parameters were fixed: 

1) Ground motion:  

a) x-direction=Northridge (Sylmar) N11E 0.5g 

b) z-direction= Northridge (Sylmar) UD 0.4g (or 0 for reference) 

2) Mass of bushing:  0.5% of transformer-mass 

3) Sliding isolation system properties:  

a) Friction coefficient = 0.12 at maximum velocity 

b) Linear restoring element with fundamental period of 2.0 sec. in x-direction 

 

The variable parameters were as follows: 

Natural frequency of bushing, fb:  5 to 40 Hz. 

Natural frequency of isolation system in vertical dir. fsv:  3 to 30 Hz, and rigid.  

The simulation cases are summarized in Table 5-6. 

 

Table 5-6 Cases of Parametric Study 

 
10 15 20 25 30 ∞  

3   ○    
5   ○    
10   ○    
15   ○    
20   ○    
25 ○ ○ ○ ○ ○ ○ 
30   ○    
40   ○    

Note: ○ = to be conducted 

fb (Hz) 
fsv (Hz) 
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The simplified governing equation of motion in the x-z plane is shown below: 

 

     ( ) gv xmPxSignxkxm 11111 −=⋅++ µ  

( ) ( ) g
rr xmxx

L
kxx

L
cxm 2122

2
122

2
22 −=−+−+  

( ) ( )( )Gzmmzkzczmm gvv ++−=+++ 2111121  

11 zkzcP vvv +=  

where, 

The equations indicate that there is a coupling term in the motions of the x- and z-directions 

through the friction force of the sliders, expressed as: 

 

 ( ) ( ) ( )11 zkzcxSignPxSign vvv +⋅=⋅ µµ      

 

Figure 5-19 shows the relationship of the maximum response acceleration at the bushing-top and 

at the transformer, versus the natural frequency of the bushing in the x- and in the xz-shaking.  In 

the x-shaking, the response acceleration of the bushing shows peak-values at 3 Hz and at 25 Hz. 

The peak at 3 Hz is considered as the frequency close to the resonance of the dominant 

frequency of ground motion in the x-direction, and is regardless of the ground motion in the z-

direction.  On the other hand, the peak at 25 Hz indicates the influence of the vertical motion.  

The second mode frequency of the system is around 20 Hz with a bushing frequency of 25 Hz, 

and corresponds to the natural frequency of the system in the z-direction.  Figure 5-20 shows the 

relationship of the maximum response acceleration at the bushing-top and at the transformer, 

versus the natural frequency of the system in the z-direction.  The peak at 20 Hz indicates the 

resonance to the 2nd mode frequency of the system.  These results clearly explain the 

phenomenon of amplification of the bushing top with the sliding bearing system, observed in 

Phase-1 testing. 

 

Finally, the effect of the friction coefficient to the response of each component was investigated.  

The friction coefficient of the sliding bearing varied from 0.04 to 0.16.  The bushing natural 

frequency and the vertical natural frequency of the total system were 25 Hz and 20 Hz, 

(5-15) 

(5-16) 
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respectively.  The simulation results are plotted in Figure 5-21.  The maximum response 

acceleration of the bushing top increases as the friction coefficient increases, whereas the 

response of the transformer increases slightly. The maximum response displacement increases as 

the friction coefficient decreases. The results indicate that the friction coefficient has a 

significant influence on the amplification of the bushing, and reasonable design of the friction 

coefficient in the balance of the displacement will mitigate this problem by using sliding 

bearings. Recently, many types of sliding bearings with different friction coefficients have been 

developed.  The low-friction type bearings are also available. 

  

This problem of amplification of the response acceleration in the superstructure component is not 

only present in the transformer/bushing system, but also in other similar equipment in substations 

on which relatively small mass components are mounted.  According to the results of the 

parametric study, the following conclusions are made: 

 

1) When the natural frequency of the bushing is close to the natural frequency of the system 

in the vertical direction, amplification occurs.  

2) Designing sliding bearings with lower frictions coefficients may control the amplification. 
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Figure 5-2 Comparison of Test Results and Numerical Simulation:  

161kV/F/El Centro/x375, Fixed-Base System 
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Figure 5-3 Comparison of Test Results and Numerical Simulation: 

161kV/F/Kobe/x375, Fixed-Base System 
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Figure 5-4 Comparison of Test Results and Numerical Simulation: 

161kV/F/Northridge/x375, Fixed-Base System 
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Figure 5-5 Comparison of Test Results and Numerical Simulation: 

161kV/B/El Centro/x375, Base-Isolated System 
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Figure 5-6 Comparison of Test Results and Numerical Simulation: 

161kV/B/Kobe/x375, Base-Isolated System 
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Figure 5-7 Comparison of Test Results and Numerical Simulation: 

161kV/B/Northridge/x375, Base-Isolated System 
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Figure 5-8  Force-Displacement Curve of Isolation System :  

161kV/B/El Centro/x375 
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Figure 5-9 Force-Displacement Curve of Isolation System : 161kV/B/Kobe/x375 
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Figure 5-10 Comparison of Test Results and Numerical Simulation: 

161kV/B/Kobe/xy375, Base-Isolated System 
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Figure 5-11 Comparison of Test Results and Numerical Simulation: 

161kV/B/Northridge/xy375, Base-Isolated System 



 154

-100 -50 0 50 100
-60

-40

-20

0

20

40

60
Test Results

Displacem ent(m m )

S
h
e
a
r 
fo
rc
e
 (
kN

)

xm ax= 53.3189

Q m ax= 44.2483

 

-100 -50 0 50 100
-60

-40

-20

0

20

40

60

Displacem ent (m m )

S
h
e
a
r 
F
o
rc
e
 (
kN

)

N um erical Sim ulation

xm ax= 49.6428

Q m ax= 45.4144

 
 

Figure 5-12 Force-Displacement Curve of Isolation System: 

161kV/B/Northridge/xy375 
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Figure 5-13 Comparison of Test Results and Numerical Simulation: 

161kV/B/Kobe/xyz375, Base-Isolated System 
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Figure 5-14  Comparison of Test Results and Numerical Simulation: 

161kV/B/Northridge/xyz375, Base-Isolated System 
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Figure 5-15 Force-Displacement Curve of Isolation System: 

161kV/B/Kobe/xyz375
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Figure 5-16 Simplified Model for Parametric Study 
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Figure 5-17 Sinusoidal Wave Input in Horizontal and Vertical Direction 
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Uni-Axial Shaking: x0.5g 
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Bi-Axial Shaking: x0.5g-z0.4g 

Figure 5-18 Comparison of Response Acceleration under x-, and xz-Shaking 
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Figure 5-19 Relationship of Bushing Natural Frequency in Horizontal Direction 

and Maximum Response Acceleration in x-direction   
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Figure 5-20 Relationship of System Natural Frequency in Vertical Direction and 

Maximum Response Acceleration in x-direction 
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Figure 5-21 Relationship of Friction Coefficient versus Maximum Response 

Acceleration and Maximum Response Displacement 
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5.6 Comparison with Phase-2 Test Results 

 

Since the load-deflection curve of Segmented High-Damping Rubber Bearing (SHRB) shows 

non-linear and visco-elastic behavior, the bi-linear model is not a precise model to express the 

shear characteristics.  However, considering the practical use of a commercial program for 

dynamics structures, a normal bilinear model was applied for simulation in this study. The 

bilinear model was defined to nearly match the actual curve chosen from the data obtained 

during earthquake simulator test in Phase-2.  Figure 5-22 shows the definition of the bilinear 

model overlaid on the force-displacement curve in the test case FB/Kobe/x375, which was 

selected as the master curve for modeling.  The parameter of the bilinear model was set as 

follows: 

1. Post-yield Stiffness: 0.4 (kN/mm) 

2. Characteristic Strength: 8.0 (kN) 

3. Initial Stiffness: 1.6 (kN/mm) 

 

The same numerical model for the transformer/bushing in calibration of Phase-1 was applied.  

The mass and stiffness of each element was defined so that the fundamental frequency matches 

the results of the dynamic identification tests in Chapter 4.   At first, the simulation of the fixed-

base system was conducted.  Figure 5-23 shows the comparison of both results in the Rubber 

Ring / Fixed-Base RF-system for Art-693/x375, which has a rubber ring installed between the 

bushing end and the turret mounting face, and also shows good agreement with the test results.  

The other fixed-base cases overall agree with these test results.  

 

Next, the simulation of base-isolated cases was conducted. Figures 5-24 to 5-27 show the 

comparison of the results in the test and simulation in Rubber Ring / Base-Isolated RB-system/ 

Art-693/x375 and Kobe/x375, and without Rubber Ring Base-Isolated FB-system/ Art-693/x375 

and Kobe/x375. All of the results show good agreement.  In Figures 5-28 and 5-29, the 

performance curve in tests and simulation was compared.  The behavior for small displacement 

levels, as shown in Figure 5-28, shows good traceability whereas for large displacement levels, 

as shown in Figure 5-29, some differences are seen in the skeletons of the curve. The SHRB 
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shows high non-linearity in its load-deflection relationships.  The peak response acceleration 

value of the uni-axial shaking is summarized in Table 5-7. 

 

Table 5-7 Maximum Response Acceleration of Test Results and Numerical 

Simulation in Uni-Axial Shaking : Phase-2 

a) Without rubber ring system; 

FB/Art-693/x375 FB/Kobe/x375 Unit: g 
Test Simulation Test Simulation 

Tr. Bottom 0.266 0.246 0.401 0.463 
Tr. Top 0.277 0.229 0.430 0.464 
Bush. Top 0.181 0.240 0.444 0.494 

 

b) With rubber ring system; 

RB/Art-693/x375 RB/Kobe/x375 Unit: g 
Test Simulation Test Simulation 

Tr. Bottom 0.336 0.265 0.320 0.282 
Tr. Top 0.347 0.249 0.328 0.277 
Bush. Top 0.482 0.454 0.392 0.446 

 

Figures 5-30 and 5-31 show the comparison between the response acceleration and the 

performance curves in simulation and the test results in the cases of RB/Art-693/xy250.  In this 

case, the simulation result agreed sufficiently.  However, in the case of RB/Kobe/xy375 as 

shown in Figure 5-32, the locus of the force-displacement curve shows some difference from the 

test results.  In bi-axial and tri-axial shaking, the numerical model of SHRB was insufficient to 

express the multi-directional performance.  More accurate modeling of high-damping rubber 

bearings in multi-direction loading is still under development by many researchers. 

 

5.7 Case Study of Existing Transformer/Bushing System 

 

Through the comparison with test results, the accuracy of numerical simulation method was 

basically proven. Using the same concept of modeling, numerical simulation of real 

transformer/bushing system in the field was carried out and the seismic response was examined. 

The selected system was in the Tottori-prefecture, Japan, damaged in the 2000 Tottori-ken Seibu 

Earthquake, as introduced by Constantinou (1990).  The transformer system was a 500 kV/220 
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kV size installed in an ultra-high voltage substation, located about 5 km to the northeast of the 

epicenter.  The secondary-bushings (220 kV) of three similar transformer systems were all 

fractured at the fixed end.  The model of the system is shown in Figure 5-33.  The bushings had 

lengths of 5.788 m and a total weight of 5.99 kN.  These bushings were modeled as a lumped-

mass beam, and the sleeve and turret were modeled as a beam element.  Rotation-springs were 

connected between the bushing-end and the sleeve, the sleeve-end and turret, and the turret-end 

and the transformer-top.  The weight of the transformer body was 1784.7 kN.  Modal damping of 

5 % was considered for all modes.  The material constants and geometric constants of the 

bushing-element and each rotation-spring constant, are listed in Tables 5-8, 5-9, and 5-10. 

 

Table 5-8 Material Constants of Beam Element 

 

Young's 
Modulus 

(MPa) 

Poison's 
Ratio 

Damping 
Ratio 

Bushing 5.88E+04 0.23 0.05 
Sleeve 7.06E+04 0.28 0.05 
Turret 2.06E+05 0.33 0.05 

 

Table 5-9  Geometric Properties of Beam Element 

Element Cross-sectional 
Area (m2) 

Moment of Inertia 
(m4) 

Bushing-1 1.17E-02 8.62E-05 
Bushing-2 2.44E-02 1.35E-04 
Bushing-3 3.21E-02 2.68E-04 
Bushing-4 4.10E-02 4.81E-04 
Bushing-5 4.83E-02 7.57E-04 
Bushing-6 4.83E-02 9.06E-04 
Sleeve-1 2.34E-02 2.54E-04 
Sleeve-2 2.34E-02 2.54E-04 
Turret-1 1.52E-02 1.08E-03 
Turret-2 1.52E-02 1.08E-03 
Turret-3 1.52E-02 1.08E-03 
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Table 5-10  Stiffness of Rotation Spring 

Position of Spring Stiffness (N*m/rad) 
Bushing-Sleeve 2.42E+07 
Sleeve-Turret 4.90E+07 

Turret-Transformer 4.90E+07 
 

 

Segmented high-damping rubber bearings were designed for the isolator system. A sliding 

bearing system was also designed, modeled and simulated for comparison.  The design 

parameters for the high-damping rubber bearings are listed in Table 5-11. 

 

Table 5-11 Characteristics of Element Bearing of SHRB 

Diameter 225 (mm) 
Effective Area 39760.782 (mm2) 
Rubber Height 45 (mm) 
Shear Modulus 0.61 (MPa) 
Equivalent Damping Ratio 0.168 (-) 
Characteristic Strength 8.16 (kN) 
Post-Yield Stiffness 0.359 (kN/mm) 
Initial Stiffness 2.87 (kN/mm) 

  

One SHRB consists of 4 pieces of element bearings per one layer by 3 layers. Therefore, the 

properties of  the assembled SHRB was calculated as follows; 

1) Post yield stiffness K2 = 0.479 kN/mm 

2) Initial stiffness       K1 =  3.83 kN/mm 

3) Characteristic Strength Qd = 32.6 kN 

Four SHRBs were installed beneath the corner of the transformer. Therefore, the total 

performance of the isolation system is as follows; 

1) K2-total = 1.92 kN/mm 

2) K1-total = 15.3 kN/mm 

3) Qd-total = 130.4 kN 

The natural period of the system at displacement of 135 mm, which agree with shear strain of 

100% of the rubber bearing, was computed as 1.60 seconds.  The compressive stress on each 

element bearing was 2.86 MPa. 
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The period of each mode for fixed-base and base-isolated systems was calculated as follows: 

(Fixed-base) 

1st mode: 0.126 sec, 2nd mode: 0.0550 sec, 3rd mode: 0.0290 sec 

(Base-isolated with SHRB) 

1st mode: 1.59 sec, 2nd mode: 0.126 sec, 3rd mode: 0.0630 sec 

  

Next, the sliding bearing system was designed as follows. The friction coefficient was designed 

as 0.073 and the stiffness of low-damping rubber bearing was set as 0.958 kN/mm so as to have 

same bi-linear model of SHRB system. The vertical stiffness was designed as 458 kN/mm, 

corresponding to a vertical frequency of 7.94 Hz, which is the 1st mode frequency of the system 

in the horizontal direction. 

Time-history analysis was conducted under the following ground motions: 

1) Art-693: NS in x-direction | UD in z-direction (used in Phase-2 test) 

2) El Centro: NS in x-direction | UD in z-direction 

3) Kobe  (Takatori): EW in x-direction | UD in z-direction 

 

Acceleration and displacement at the bushing-top, the transformer-top, and the transformer-

bottom (just above isolation system) under Art-693 in SHRB system, for a PGA of 0.25g, 0.5g, 

0.75g, and 1.0g are shown in Table 5-12, and time histories of the response acceleration in Art-

693/x0.5gz0.4g for both fixed-base and base-isolated systems are shown in Figures 5-34 and 5-

35. 
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Table 5-12 Summary of  Time History Analysis : 

Art-693:PGA x0.5g + z0.4g 

PGA(g) Node Acceleration (g) Displacement (mm) 
  Bushing-top 0.192 104 

x0.25 Transformer-top 0.184 103 
  Transformer-bottom 0.182 103 
  Bushing-top 0.361 254 

x0.5 Transformer-top 0.339 252 
  Transformer-bottom 0.339 251 
  Bushing-top 0.533 416 

x0.75 Transformer-top 0.511 413 
  Transformer-bottom 0.508 411 
  Bushing-top 0.705 579 

x1.0 Transformer-top 0.684 575 
  Transformer-bottom 0.680 573 
  Bushing-top 0.362 254 

x0.5z0.4 Transformer-top 0.342 252 
  Transformer-bottom 0.339 251 

Fixed-base Bushing-top 2.55 10.6 
x0.5 Transformer-top 0.837 2.87 

  Transformer-bottom 0.677 0.810 
 

The results under uni-axial shaking x0.5g and tri-axial shaking x0.5gz0.4g show no significant 

difference.  For the SHRB system, the z-motion does not affect the response in the x-direction.  

In the fixed-base system, the amplification of the bushing-top exceeded 5.0.  This level of 

acceleration will cause damage on the connection of the bushing to the sleeve.  With the base-

isolation system, the amplification was about 0.65. The displacement of the isolator was 250 mm 

at a PGA=0.5g, and 411 mm at a PGA=0.75g. The total rubber height of the SHRB is 45x3=135 

mm. Therefore, at a PGA=0.75g, the rubber shear strain is around 300%.  At a PGA=1.0g, the 

displacement of the isolator was 573 mm, a shear strain of 424 %, which exceeded the ultimate 

strain of the bearings.  If a conventional bearing, either circular or square in shape, is applied, the 

minimum diameter, or length of a side, must be 600 mm to have enough stability for a 411 mm 

displacement under a PGA=0.75g.  A diameter of 600 mm will result in a higher stiffness and 

will increase the response acceleration. In Table 5-13, results of three different earthquakes for 

fixed-base, SHRB, and slider systems under x0.5g z0.4g shaking are compared. 



 168

Table 5-13 Summary of  Time History Analysis in Fixed-Based, SHRB System, 

and Sliding Bearing System: x0.5g z0.4g Shaking 

Fixed-Base System 

Input Node Acceleration (g) Displacement (mm) 
  Bushing-Top 2.55 10.6 

Art-693 Transformer-Top 0.837 2.87 
  Transformer-Bottom 0.677 0.810 
  Bushing-Top 2.79 10.2 

El Centro Transformer-Top 1.02 2.49 
  Transformer-Bottom 0.833 7.86 
  Bushing-Top 1.82 9.15 

Kobe Transformer-Top 0.794 2.64 
  Transformer-Bottom 0.637 0.80 

 

Base-Isolated with SHRB System 

Input Node Acceleration (g) Displacement (mm) 
  Bushing-Top 0.362 254 

Art-693 Transformer-Top 0.342 252 
  Transformer-Bottom 0.339 251 
  Bushing-Top 0.201 93.6 

El Centro Transformer-Top 0.176 92.6 
  Transformer-Bottom 0.171 92.0 
  Bushing-Top 0.502 385 

Kobe Transformer-Top 0.485 383 
  Transformer-Bottom 0.479 382 

 

Base-Isolated with Sliding Bearing System   

Input Node Acceleration (g) Displacement (mm) 
  Bushing-Top 1.17 234 

Art-693 Transformer-Top 0.413 231 
  Transformer-Bottom 0.328 229 
  Bushing-Top 1.12 95.5 

El Centro Transformer-Top 0.371 92.4 
  Transformer-Bottom 0.272 90.6 
  Bushing-Top 2.40 323 

Kobe Transformer-Top 0.883 315 
  Transformer-Bottom 0.648 311 
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Table 5-14 Comparison of  Results of Slider System under x-, and xz- Shaking: 

Art-693 

PGA(g) Node Acceleration (g) Displacement (mm) 
  Bushing-Top 0.375 234 

x0.5 Transformer-Top 0.334 231 
  Transformer-Bottom 0.321 229 
  Bushing-Top 1.17 230 

x0.5z0.4 Transformer-Top 0.413 226 
  Transformer-Bottom 0.328 223 

 

Compared with the results of the SHRB system, the results for x0.5g were almost the same 

because their bilinear models were the same.  However, in the xz-shaking (x0.5z0.4), as shown 

in Table 5-14, the response at the bushing-top was stimulated up to 1.17 g, which was already 

indicated in the Phase-1 test and the prescribed parametric study in this chapter.  In Figure 5-36, 

the response acceleration under tri-axial shaking x0.5gz0.4g in the fixed-base, SHRB, and sliding 

bearing systems at each node is plotted and the distribution along the z-coordinate is presented.  

The amplification of the bushing response in sliding bearing system is clearly observed. 

 

The effect of friction coefficient of sliding bearing to the response of transformer/bushing system 

was studied. The results are summarized in Table 5-15, and the time histories, force-

displacement curves are shown in Figures 5-37 and 5-38.  It is interesting to note the response 

amplification becomes smaller when the friction coefficient becomes smaller.  Displacement 

becomes larger as friction coefficient becomes smaller.  However, the displacement with a  

friction coefficient of 0.03 was 262mm, and is still acceptable for the isolation system.  The 

lower friction coefficient, such as 0.029, may be better for sliding bearing system for 

transformer/bushing system. 
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Table 5-15 Effect of Friction Coefficient to Response of 

Transformer/Bushing System 

f.coef. μ  Node Acceleration (g) Displacement (mm) 
  Bushing-Top 0.560 267 

0.03 Transformer-Top 0.343 264 
  Transformer-Bottom 0.315 262 
  Bushing-Top 1.17 230 

0.073 Transformer-Top 0.413 226 
  Transformer-Bottom 0.328 223 
  Bushing-Top 1.82 199 

0.12 Transformer-Top 0.502 196 
  Transformer-Bottom 0.376 194 

 

 

Finally, an analysis was conducted for the system equipped with a rubber ring, as tested in 

Phase-2 testing.  The initial natural frequency of the bushing was 17 Hz. The rubber ring was 

designed to shift the frequency to 2 Hz.  The results are summarized in Table 5-16. 

 

Table 5-16 Simulation Results with Rubber Ring / Fixed-Base : Tri-Axial Shaking 

x0.5g z0.4g 

Acceleration (g) Displacement (mm) 
Input Node without RR with RR without RR with RR 

  Bushing-Top 2.55 1.51 10.6 99.0 (0.036) 
Art-693 Transformer-Top 0.837 1.19 2.87 2.37 

  Transformer-Bottom 0.677 0.738 0.810 0.758 
  Bushing-Top 2.79 2.20 10.2 116.2 (0.042) 

El Centro Transformer-Top 1.02 1.84 2.49 2.70 
  Transformer-Bottom 0.833 0.90 7.86 0.811 
  Bushing-Top 1.82 1.16 9.15 79.2 (0.029) 

Kobe Transformer-Top 0.794 0.752 2.64 1.60 
  Transformer-Bottom 0.637 0.630 0.80 0.719 

NOTE: (  ) in Bushing-Top with RR = Rotation Angle in radian 
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The reduction of acceleration compared to the bushing without the rubber ring was 

approximately 40% in Art-693, 20% in El Centro, and 36% in Kobe.  The purpose of the rubber 

ring is to absorb energy by deformation of the flexible rubber ring inserted between the bushing 

and the turret, and to protect the bushing from the damage of the mounting interface, where the 

“weak link” of the system occurs.  Even if there is no reduction of acceleration, the rubber ring 

can be expected as an effective measure to protect the bushing by absorbing energy.  The 

rotation angle was 0.029 to 0.042 radian (1.7 to 2.4 degrees), as shown in Table 5-16, and was 

small enough for the ring. 

 

5.8 Summary 

 

Through the study of numerical simulation of Phase-1 and Phase-2 testing, the applicability of 

the proposed simplified analytical model, consisting of two masses for the transformer and 

bushing and shear-rotation stiffness, was verified.  The numerical model for the hybrid isolation 

system in Phase-1 shows high similarity with the actual hysteretic behavior and proved the 

reliability of the computation.  

 

The amplification of the bushing response in the slider-isolation system observed in Phase-1 test 

was simulated.  The same phenomenon was reproduced by time-history analysis. The 

relationship of the natural frequency of the bushing to the vertical natural frequency of the 

system, and the response acceleration of the bushing was studied.  It was concluded that the 

amplification of the bushing was caused by the resonance of the vertical natural frequency of the 

system and the horizontal bushing frequency.  The vertical vibration of the system was linked to 

the friction force of the sliders, which was in turn transmitted to the bushing. 

 

A case study of an existing system was studied by a time-history analysis. Detailed information 

of the transformer/bushing system was obtained from the literature, and an isolation system was 

designed for this study.  Artificial waves based on the response spectrum of IEEE-693, 1940 El 

Centro, and 1995 Kobe (Takatori) were used as ground motions.  In the base-isolated system 

with segmented high-damping rubber bearings (SHRB), the peak response acceleration at the top 

of bushing was 60% of PGA, whereas in the fixed-base system it was more than 5 times PGA. 
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However, as predicted in the sliding bearing system, the acceleration at the bushing top was 

amplified and the peak acceleration was about 2 times PGA.  The sliding systems with different 

friction coefficients, 0.04 and 0.16, were subjected to simulation.  The results show that the 

lower friction coefficient will keep the amplification of the acceleration at the bushing low with 

some increase in displacement.  The low friction system may be an optimized solution of the 

sliding system for protection of the transformer/bushing system. Finally, the applicability of a 

rubber ring, developed in Phase-2 testing, was evaluated.  The acceleration of the bushing was 

reduced 20 to 40%, and the rotation angle of the rubber ring was 1.7 to 2.4 degrees--quite 

acceptable for the design of this flexible joint.  
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Figure 5-22 Numerical Model (Bi-linear Model) of SHRB defined from Test  
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Figure 5-23 Comparison of Test Results and Numerical Simulation:  

RF/Art-693/x375 
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Figure 5-24 Comparison of Test Results and Numerical Simulation:  

FB/Art 693/x375 
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Figure 5-25 Comparison of Test Results and Numerical Simulation: 

FB/Kobe/x375 
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Figure 5-26 Comparison of Test Results and Numerical Simulation:  

RB/Art-693/x375 
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Figure 5-27 Comparison of Test Results and Numerical Simulation: 

RB/Kobe/x375 
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Figure 5-28 Comparison of Force-Displacement Curves in Test Results and 

Numerical Simulation: FB/Art-693/x375 
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Figure 5-29 Comparison of Force-Displacement Curves in Test Results and 

Numerical Simulation: RB/Kobe/x375 
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Figure 5-30 Comparison of Test Results and Numerical Simulation  

in RB/Art-693/xy375, x-dir. 
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Figure 5-31 Comparison of Force-Displacement Curves in Test Results and 

Numerical Simulation: RB/Art-693/xy375, x-dir. 
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Figure 5-32 Comparison of Force-Displacement Curves in Test Results and 

Numerical Simulation: RB/Kobe/xy250, x-dir. 
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Figure 5-33 Case Study: 220kV/500kV Transformer and Numerical Model 
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Figure 5-34 Time Histories of Fixed-Base System: Art-693 x0.5gz0.4g
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Figure 5-35 Time Histories of Base-Isolated System/SHRB: Art-693 x0.5gz0.4g  
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Figure 5-36 Maximum Response Acceleration at each Node in Fixed-Base, 

Base-Isolated-SHRB, and Base-Isolated-Slider System :  
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Figure 5-37 Comparison of Response Acceleration in Sliding System with 

Friction Coef.=0.073 and 0.03: Art-693 x0.5gz0.4g 
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Figure 5-38 Comparison of Force-Displacement Curves in Sliding System 

with Friction Coef. =0.073 and 0.03: Art-693 x0.5gz0.4g 
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SECTION 6 
CONCLUSIONS 

 
 
6.1  Background  

 

This report presents a comprehensive study using a tri-axial earthquake simulator to analyze 

applicability of base isolation technology for seismic protection of transformers.  The testing was 

carried out with a large-scale transformer model with a real porcelain bushing in two phases.  In 

Phase-1, the combination of sliding bearings and low-damping bearings for re-centering were 

developed and applied as an isolation system.  In Phase-2 testing, the segmented high-damping 

rubber bearings were used.  Analytical study by non-linear time history analysis was conducted 

to verify the test results and further study the dynamic response of the base-isolated transformer 

including the case study.  Finally, the case study of a real transformer system was conducted by 

non-linear time history analysis. 

 

6.2 Conclusions 

 

Many significant conclusions were made through this research.  They are listed as follows. 

 

1. This study represents the first effort in testing based-isolated large-scale 

transformer/bushing systems using an earthquake simulator. 

2. A base isolation system using conventional rubber bearings is not suitable for seismic 

protection of a lightweight structure such as a transformer (most of which are less than 2 

MN) because of its limited ability to lengthen the natural period of the entire isolated 

system.  This difficulty was alleviated in this study by: 1) combining sliding bearings 

with rubber bearings; and 2) using segmented high-damping rubber bearings. 

3. The effectiveness of the proposed base isolation system in reducing the response 

acceleration of the transformer/bushing systems was demonstrated in the uni-axial and bi-

axial earthquake simulator tests. 

4. The tri-axial earthquake simulator test with the sliding system provided highly valuable 

information, which was not previously available.  The response acceleration of the 
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bushing in the base-isolated system was sometimes larger than that of the fixed-based 

system.  This is believed to be due to the fact that the friction force of the sliding bearing 

is affected by the vertical load change of the system involving high-frequency 

components, stimulating the high-frequency mode of the bushing in the horizontal 

direction.  The vertical frequency characteristics are dependent on the compressive 

stiffness of the isolators.  Therefore, the compressive stiffness of the sliding system 

should be carefully designed not to induce the high-mode vibration of the bushing. 

5. On the other hand, no coupling effect was seen in the system of segmented high-damping 

rubber bearings. 

6. Rubber rings were developed for the purpose of adding flexibility at the fixed end joint 

between the bushing and the transformer top.  The rings worked well and the bushing 

acceleration was reduced in the testing.  The flexible ring absorbed energy by rotational 

deformation without any failure or instability and reduced the transmission of force to the 

bushing. 

7. The simplified numerical model for the transformer/bushing system was proposed and 

verified by comparing the results with the testing.  The rotational movement around the 

fixed end is dominant in bushings, whereas shear movement is dominant in transformers. 

8. The amplification of the bushing response with a sliding bearing system was verified by 

numerical simulation. 

9. The friction coefficient of sliding bearings has a significant effect on the amplification of 

the bushing in tri-axial shaking.  Lower friction coefficients, such as 0.04, are desired for 

application in the transformer system considering the bushing amplification. 

10. The case study of real power transformer system strongly supported the efficacy of base 

isolation. 
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APPENDIX A 
 

ADDITIONAL TEST RESULTS 
 

Transformers are cable-connected to equipment in substations. The seismic interaction between 

base-isolated transformers and other equipment is an important factor to be considered in the 

design of the system. As a preliminary study of the interaction problem, the transformer/bushing 

system in Phase-2 was cable-connected to a pole, fixed on the platform of the simulator, and then 

subjected to uni-axial shaking. An aluminum strand cable, which had been previously used in a 

substation, was connected from the top of the bushing to the pole top.  

 

A.1 Experimental Setup 

 

Figures A-1 and A-2 show the experimental setup. The purpose of the testing was to investigate 

the influence of the cable-connection to the response of the transformer model and the bushing. 

The specification of the cable was “954MCM AAC” (code word “Magnolia” in the ASTM 

B231) and its material was pure aluminum of “E. C. Grade.” The diameter was 28.55 mm and 

the tensile strength was 7420 kg. The stranding was of Class AA and 37×4.079 mm diameter, 

Figure A-3. As shown in Figure A-2, the length of the cable was 2660 mm and the horizontal 

distance from the pole to the bushing was 1880 mm. The horizontal displacement of the 

transformer to where the cable would start to harden and pull the pole was calculated from the 

geometry of Figure A-2 as 493.9 mm. The maximum displacement of the base-isolated 

transformer/bushing system was assumed as less than 200 mm according to the results in the 

Phase-2 testing. Therefore, the cable had enough length to accommodate the movement of the 

base-isolated transformer model without hardening.  

 

An H-beam measuring 200 mm x 200 mm x 16 mm was used as the pole fixed to the platform of 

the simulator. The natural frequencies of the pole with a clamped-free condition were calculated 

as 9.18 Hz in the 1st mode and 57.5 Hz in the 2nd mode. 
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A.2 Testing Program 

 

The earthquake records and the PGA are summarized in Table A-1. The 161-kV bushing was 

installed on to the transformer model without the use of a rubber ring. The transformer with and 

without an SHRB base isolation system was subjected to the uni-axial shaking.  

 

Table A-1 Program of Additional Testing 

Earthquake Record PGA in x-direction 
Art-693 0.25 g,  0.375 g 
Kobe (Takatori) 0.25 g,  0.375 g 
Chi-Chi 0.25 g,  0.375 g 

 

A.3 Test Results 

 

The maximum response acceleration at each measurement point in the fixed-base and 

base-isolated system is shown in Figure A-4. The effect of base isolation is very obvious. In 

Figures A-5 and A-6, the results of the response acceleration and displacement in the 

base-isolated system (with and without cable-connection), are compared. The results of the 

system without cable-connection were picked up from Phase-2 test results. A significant 

difference is observed in response acceleration at the top of the bushing for the with/without 

conditions of cable-connection. The response acceleration of the bushing top with 

cable-connection was amplified 1.5 to 2.0 times the acceleration at the transformer top.  

 

Figure A-7 shows the normalized Fourier amplitude of response acceleration at the bushing- top 

and the pole-top. According to the results, the pole has its dominant frequency at around 14.6 Hz. 

The Fourier amplitude at the bushing top also has a second peak around 14 Hz corresponding to 

the dominant frequency of the pole. This indicates an interaction between the cable-connected 

bushing and pole.  
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A.4 Summary 

 

The base-isolated transformer/bushing system with cable-connection was subjected to a uni-axial 

shaking test to investigate the interaction between the bushing and the ground-fixed pole.  

 

Although the results show some effectiveness of the base isolation in comparison with fixed-base 

system, an interaction exists between the bushing and the pole. Enough attention should be paid 

to the relationship between the transformer and other connected facilities in the design of base 

isolation systems. The test results prompt further study on this problem.  
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Figure A-1 Cable-Connected Base-Isolated Transformer Model 
 
 

 
 

 
Figure A-2 Geometry of the Test Setup  
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Figure A-3 An Aluminum Strand Cable: Class AA / 37×4.079 mm dia. 
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Figure A-4 Maximum Response Acceleration at each Measurement Point in the 

Fixed-Base and the Base-Isolated System 
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Figure A-5 Maximum Response Acceleration at each Measurement Point in the 

Base-Isolated System  
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Figure A-6 Maximum Response Displacement at each Measurement Point in the 

Base-Isolated System 
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Figure A-7 Normalized Fourier Amplitude at Bushing Top and Pole Top in 

Base-Isolated System under Art/x375 
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