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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national
center of excellence in advanced technology applications that is dedicated to the reduction
of earthquake losses nationwide. Headquartered at the University at Buffalo, State
University of New York, the Center was originally established by the National Science
Foundation in 1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions
throughout the United States, the Center’s mission is to reduce earthquake losses through
research and the application of advanced technologies that improve engineering, pre-
earthquake planning and post-earthquake recovery strategies. Toward this end, the Center
coordinates a nationwide program of multidisciplinary team research, education and
outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA),
and the State of New York. Significant support is derived from the Federal Emergency
Management Agency (FEMA), other state governments, academic institutions, foreign
governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by devel-
oping seismic evaluation and rehabilitation strategies for the post-disaster facilities and
systems (hospitals, electrical and water lifelines, and bridges and highways) that society
expects to be operational following an earthquake; and to further enhance resilience by
developing improved emergency management capabilities to ensure an effective re-
sponse and recovery following the earthquake (see the figure below).
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A cross-program activity focuses on the establishment of an effective experimental and
analytical network to facilitate the exchange of  information between researchers located
in various institutions across the country. These are complemented by, and integrated
with, other MCEER activities in education, outreach, technology transfer, and industry
partnerships.

This report describes the development of a novel uplift-prevention Friction Pendulum isolator called

the XY-FP. It presents the principles of operation and mathematical model of the XP-FP isolator,

describes its mechanical behavior through testing of a single isolator, and demonstrates its effectiveness

through testing of a quarter-scale steel-frame model structure. The computer program 3D-BASIS-ME

was modified to include an element representative of the mechanical behavior of the new XY-FP

isolator, and the validity and accuracy of analytical methods to predict its behavior is assessed. The

study shows that the XY-FP isolator provides effective uplift prevention regardless of the state of

displacement in the bearing, allows for decoupling of the bi-directional horizontal motion along two

orthogonal directions, and has the capability to provide distinct stiffness and energy dissipation along

the principal directions of the bearing. In addition, by encompassing much less structural material, the

isolator offers a lighter and more economical alternative to the standard Friction Pendulum bearing.

Moreover, it provides an architecturally flexible solution in terms of integration into a structural

system when space considerations are important.



 

ABSTRACT 

Notwithstanding its pervasive influence on seismic-resistant engineering, the efficacy of 

seismic isolation in structures subjected to strong ground excitation, including near-fault 

effects, is potentially compromised by excessive overturning moments capable of 

inducing undesirable uplift or tension in the isolation bearings. This report aims at 

extending the scope of seismic isolation by studying a novel sliding isolation bearing, 

denoted as XY-FP, that is capable of sustaining tensile forces, thereby preventing uplift. 

This report primarily focuses on: (i) introducing the concept and establishing the 

principles of operation and mathematical model of the new XY-FP isolator; (ii) 

developing an understanding of the mechanical  behavior of the XY-FP isolator through 

testing of a single isolator; (iii) generating experimental results through earthquake 

simulator testing of a quarter-scale five-story model to validate the effectiveness of these 

isolators in preventing uplift; (iv) modifying the computer program 3D-BASIS-ME to 

include an element representative of the XY-FP isolator; and (v) assessing the validity 

and accuracy of analytical methods to predict the behavior of such systems. 

The XY-FP isolation bearing consists of two opposing concave beams interconnected 

through an element which permits tension to develop in the bearing, thereby preventing 

uplift. Salient properties that distinguish the XY-FP isolator from the conventional 

Friction Pendulum (FP) isolator include: (i) effective uplift restraint regardless of the 

state of displacement in the bearing; (ii) decoupling of the bi-directional horizontal 

motion along two orthogonal directions; and (iii) capability of providing distinct stiffness 

and energy dissipation along the principal directions of the bearing.  

To demonstrate the validity of the concept and provide evidence for the effectiveness of 

the XY-FP isolator in uplift restraint, an extensive testing program on the earthquake 

simulator at the University at Buffalo was conducted on a slender quarter-scale five-story 

base-isolated model structure. The isolation system, comprised of four XY-FP isolators, 

was installed beneath a base and rotated for testing in different directions. The range of 

tests conducted represent the only available experimental data on XY-FP isolators and 

form the basis for comparison with and validation of the analytical predictions. 
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A comprehensive mathematical model capable of accommodating the mechanical 

behavior of the XY-FP isolator was developed and implemented in program 3D-BASIS-

ME. The new element representing the XY-FP isolator was synthesized by two 

independent uniaxial hysteretic elements allowing different frictional interface properties 

along the principal isolator directions under compressive or tensile isolator normal force. 

Contrary to the element representing the conventional FP isolator, the new element is 

capable of developing tension. This enhancement augments the potential of 3D-BASIS-

ME by providing a versatile tool for analysis of seismically isolated structures with XY-

FP isolators. 

The dynamic response of the five-story seismically isolated model was predicted 

analytically using 3D-BASIS-ME. The validity of the analytical model, with reference to 

the newly introduced element representing the XY-FP isolator, was investigated by 

comparison of analytical predictions with experimental results.  

Finally, a case study involving nonlinear response-history analysis of a seismically 

isolated structure subjected to bi-directional horizontal seismic excitation is presented to 

assess the impact of XY-FP isolator on the response of a real structure. 
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SECTION 1 

INTRODUCTION 

1.1 Background 

Having found a plethora of applications in many parts of the world, seismic isolation has 

emerged as a pragmatic approach to providing earthquake resistance to structural 

systems. Research developments in the areas of analytical modeling and experimental 

validation techniques paralleled by notable advances of seismic isolation device 

hardware, have provided the impetus for the increasing acceptance of seismic isolation. 

The fundamental principle underlying seismic isolation involves decoupling the structure 

from the damaging horizontal ground motion by means of additional flexibility and 

energy dissipation capability, thereby mitigating the severity of structural vibration and 

damage during seismic events (Naeim and Kelly, 1999; Skinner et al., 1993). Typified by 

either elastomeric or sliding bearings, the application of seismic isolation systems can 

result in significant reduction of the inertial forces developed in a structure during a 

severe earthquake. While this entails a desired reduction of the sustained overturning 

moments, the uplift forces may still be potentially large enough to be of concern, on 

account of the inherent incapacity of elastomeric and sliding bearings to resist uplift 

forces.  

In fact, a variety of conditions may contribute to the development of either tensile forces 

(in bolted rubber bearings) or uplift (in sliding bearings and doweled rubber bearings). 

These include slender structures with a large height-to-width aspect ratio, certain types of 

bridges with large ratio of height of the centroidal axis to the distance between the 

bearings, and bearings below braced columns or stiff walls. 

Tensile forces or uplift in isolation bearings may produce, under certain conditions, 

detrimental effects in the form of local instability or rupture of elastomeric bearings, and 

damage on sliding bearings due to large compressive forces upon impact following uplift. 

Loss of contact and impact on return can yield higher-mode response and large axial 

forces in columns. 
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A number of uplift-restraint seismic isolation systems have been proposed and some have 

been implemented. A brief account of these systems and their limitations is given below. 

• An uplift-restraint system consisting of two massive orthogonal steel arms (Figure 

1-1) was developed by Sumitomo Construction in Japan and used on the Excel 

Minami-Koshigaya 10-story building in Koshigaya City (Sumitomo Construction, 

1990). The opposing arms, connected to the superstructure and foundation, interlock 

upon uplift equal to the 1-cm default clearance, thus preventing further uplift of the 

superstructure. The system has not been tested and its impact on the behavior of the 

isolation system has not been assessed to the knowledge of the author.  

 

Uplift-restraint system 

 

Figure 1-1: Uplift-restraint system used on Excel Minami-Koshigaya building, Koshigaya 
City, Japan (Sumitomo Construction, 1990). 

• A mechanism that claims to provide uplift restraint and displacement control for 

elastomeric bearings was described by Kelly et al. (1987) and Griffith et al. (1988a, 

1988b, 1990). The system has been studied in earthquake simulator tests of 

seismically isolated structures. Incorporated within a central hole in elastomeric 

bearings, the device consists of two high-strength bolts contained in a cylindrical 

sleeve that allows a certain amount of free movement of the bolts (Figure 1-2). This 

mechanism can be activated only when the bearing undergoes substantial uplift or 

substantial lateral deformation. In effect, the system does not prevent uplift but rather 
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may restrict uplift to a limit, which is too large due to the dual function of the 

mechanism to also provide lateral displacement control. In addition to this limitation, 

the mechanism is hidden within the bearing inhibiting inspection without removal and 

disassembly of the bearing. 

 

Figure 1-2: Displacement-control, uplift-restraint device incorporated in elastomeric 
bearing (Kelly et al., 1987). 

• The technique of prestressing for the prevention of tensile force and uplift in isolators 

was described in Logiadis (1996) and Kasalanati and Constantinou (1999). 

Prestressing tendons were used to develop sufficient additional compressive force on 

the bearings so that tension or uplift was prevented. This system, while effective and 

predictable in behavior as demonstrated by testing, is complex and may impact the 

performance of the isolation system. 

• Uni-directional flat sliding bearings encompassing uplift-restraint devices as shown in 

Figure 1-3 were tested by Nagarajaiah et al. (1992) in an isolation system together 

with helical steel springs for providing restoring force. The same concept in uplift 

prevention may be used in sliding bearings with a curved surface as it has been done 

at the San Francisco approach to the Oakland Bay Bridge, where uni-directional FP 

bearings are utilized (Figure 1-4). It may be noted that this uplift restrainer allows for 

some uplift before it engages due to the cylindrical shape of the sliding surface. 

Extension of this type of restrainer to multi-directional sliding bearings is feasible if 

the displacement demand is low. 
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Figure 1-3: Uni-directional flat sliding bearing with uplift-restraint device (Nagarajaiah et 
al., 1992). 

 

Figure 1-4: View of uni-directional FP bearing with uplift restraint installed at the San 
Francisco approach to the Oakland Bay Bridge. 

Studied in this report is a novel uplift-prevention Friction Pendulum isolator, abbreviated 

hereafter as XY-FP (Figure 1-5). The XY-FP isolation bearing has the following unique 

properties: (i) it provides effective uplift prevention regardless of the state of 

displacement in the bearing; (ii) it allows for decoupling of the bi-directional horizontal 

motion along two orthogonal directions; and (iii) it has the capability of providing 

distinct stiffness and energy dissipation along the principal directions of the bearing. 

Additional benefits can be derived from the unique morphology of the new bearing. In 

particular, by encompassing much less structural material, the isolator offers a lighter and 

more economical alternative to the standard Friction Pendulum (FP) bearing. Moreover, 

it provides an architecturally flexible solution in terms of integration into a structural 

system for cases where space considerations are important. 
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Figure 1-5: View of the novel uplift-prevention XY-FP isolator. 

1.2 Motivation 

Thus far, seismically isolated structures have been designed so that uplift in sliding 

bearings or tension in elastomeric bearings is avoided. To accommodate this practice, 

changes to the structural system above the isolators were often deemed necessary. 

However, such changes may be extensive as illustrated in the Oakland City Hall (Honeck 

et al., 1993) with the construction of a large truss at the basement level to “spread out” 

the reactions, and in the Corinth Canal Bridges (Constantinou, 1998) with use of 

counterweights at the abutments. 

Uplift or tension in bearings is often undesirable due to concerns for failure of 

elastomeric bearings in tension or concerns for large bearing compressive forces on 

engagement following uplift (which may include impact effects). 

Recent applications of seismic isolation in California deal with substantial seismic 

loading, which includes near-fault effects, and desire to achieve specific performance 

levels. Tension or uplift in isolation bearings is often encountered. Cost, architectural and 

functionality constraints prevent the modification of the structural system to avoid uplift 

or tension in bearings. Accordingly, a need evolved to develop acceptable isolators with 

tension (or uplift restraint) capability and to better understand the phenomena of uplift or 

tension of isolators and their impact on the performance of structural and non-structural 

systems. 

Prompted by the need to respond to these developments, this research aims at extending 

the scope of seismic isolation by studying a novel uplift-restraint isolation bearing. With 
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the isolators capable of sustaining tension, the application of seismic isolation could be 

widely facilitated.                

1.3 Objective 

The principal objectives of this report can be summarized as follows: (i) to introduce the 

concept and establish the principles of operation and mathematical model of the newly 

introduced XY-FP isolator; (ii) to gain an understanding of the mechanical  behavior of 

the XY-FP isolator through testing of a single isolator; (iii) to generate experimental 

results through testing of a quarter-scale steel-frame model structure on the earthquake 

simulator at the University at Buffalo to validate the effectiveness of these isolators in 

preventing uplift; (iv) to modify the computer program 3D-BASIS-ME to include an 

element representative of the mechanical behavior of the new XY-FP isolator; and (v) to 

assess the validity and accuracy of analytical methods to predict the behavior of such 

systems. 

1.4 Outline 

This report is thematically organized into nine sections. The introductory section presents 

background information and embodies the prime motivation, objectives, and organization 

of the report. 

Section 2 describes the concept and presents the underlying principles of operation of the 

XY-FP isolator. A distinguishing feature of the new isolator is its capability to prevent 

uplift through a mechanism which permits tension to develop in the bearing. Further, the 

mathematical model for the new XY-FP isolator is formulated upon development of the 

force-displacement constitutive relationship. 

Section 3 presents experimental results from tests of a single XY-FP isolator conducted 

using the isolator testing machine currently available at the Structural Engineering and 

Earthquake Simulation Laboratory of the University at Buffalo. This section aims at 

gaining a better understanding of the behavior and mechanical properties of the isolators 

at hand. 

Section 4 provides information on the testing program on the earthquake simulator at the 
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University at Buffalo. The program involved a quarter-scale five-story base-isolated 

model structure subjected to a number of recorded ground motions having a broad range 

of frequency contents and amplitudes. The properties and dynamic characteristics of the 

non-isolated superstructure model were identified and are presented in this section. The 

isolation system, installed beneath a rigid base, was comprised of four XY-FP isolators. 

The instrumentation scheme employed in the testing program along with a complete list 

of tests conducted are presented. 

Section 5 includes a representative sample of experimental results from the earthquake 

simulator testing program described in Section 4. Interpretation of these results provides 

evidence for the effectiveness of the XY-FP isolator in uplift prevention. In addition, the 

experimental response forms the basis for comparison with and validation of the 

analytical predictions presented in Section 7.  

Section 6 outlines the modifications made in computer program 3D-BASIS-ME 

(Tsopelas, et al., 1994). While maintaining the main features of the program, the 

following enhancements are incorporated: (i) a new hysteretic element capable of 

modeling the behavior of the new XY-FP isolator; (ii) capability of accounting for initial 

non-zero displacement of the isolators; and (iii) a more accurate description of the 

additional bearing axial forces due to overturning effects. 

Section 7 is devoted to the analytical prediction of response. The validity of the analytical 

model, with reference to the newly introduced element representing the XY-FP isolator, 

was investigated by comparison of analytical predictions with experimental results. The 

good agreement attests to the accuracy of the analytical model even under extreme 

dynamic conditions.  

Section 8 presents a case study which involves analysis of a seismically isolated structure 

and assessment of the impact of XY-FP bearing on its response. Nonlinear response-

history analysis of the seismically isolated structure subjected to bi-directional horizontal 

seismic excitation was performed using programs SAP2000 and 3D-BASIS-ME. First, a 

comparison is made between results from SAP2000 and 3DBASIS-ME analysis based on 

an isolation system model consisting solely of FP isolators. Moreover, results from 

3DBASIS-ME analysis of the model with only FP isolators are compared to results from 
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analysis of the model with isolators prone to uplift being replaced with XY-FP isolators.  

Section 9 presents a summary of key findings and conclusions drawn from this report. 

The report is further augmented by five appendices. Appendix A presents information on 

the pushover analysis of the five-story frame model considered in this study. The 

complete presentation of experimental results of the five-story base-isolated model 

structure from the earthquake simulator testing program is given in Appendix B. 

Appendix C presents comparisons of experimental and 3D-BASIS-ME analytical results 

for the isolated structure at hand. Appendices D and E include comparison of analytical 

results pertaining to the case study considered in this report. Presented in Appendix D are 

results generated by programs SAP2000 and 3DBASIS-ME from analyses of the model 

with solely FP isolators. In Appendix E results from 3DBASIS-ME analysis of the model 

with only FP isolators are compared to results from analysis of the model with isolators 

prone to uplift being replaced with XY-FP isolators. 
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SECTION 2 

DESCRIPTION AND MATHEMATICAL MODEL OF XY-FP 

ISOLATOR  

2.1 Introduction 

A novel uplift-restraint Friction Pendulum isolator, abbreviated hereafter as XY-FP, is 

studied in this report. This section introduces the principles of operation and establishes a 

mathematical model of the new XY-FP isolator. 

2.2 Principles of Operation  

While a conventional Friction Pendulum in principle (Zayas et al., 1987; Mokha et al., 

1988), the new isolator consists of two opposing concave stainless steel-faced beams 

forming a bi-directional (XY) motion mechanism (Figure 2-1). Under the imposed 

constraint to remain mutually perpendicular (except for small rotation about the vertical 

axis), the two beams can move independently relative to each other. In particular, the 

kinematics involved consists of two independent components: (1) sliding of the upper 

beam along the (fixed) lower beam; and (2) sliding of the upper beam with respect to the 

connecting block in a direction perpendicular to the axis of the lower beam. Moreover, 

the XY-FP isolator is designed for the capability of small rotation (approximately 4 

degrees) about the vertical axis to accommodate torsion of the structure.  

 

Figure 2-1: Three-dimensional view of the uplift-restraint XY-FP isolator. 
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In addition to geometric considerations, a distinguishing feature of the new XY-FP 

isolator is its capability to prevent uplift. The configuration through which the two parts 

are interconnected permits tension to develop in the bearing, thereby preventing uplift.  

The XY-FP isolation bearing has the following unique properties: (1) it provides effective 

uplift prevention; (2) it allows for decoupling of the bi-directional motion along two 

orthogonal directions; and (3) it has the capability of providing distinct stiffness and 

energy dissipation along the principal horizontal directions of the bearing. The latter 

property can be exploited, for example, in bridges where different response in terms of 

displacement may be desired along the longitudinal and transverse directions. Neither a 

conventional FP nor a rubber bearing can offer feasible displacement control in 

orthogonal directions. Additional benefits can be derived from the unique morphology of 

the new bearing. In particular, by encompassing much less structural material, the XY-FP 

isolator offers a lighter and more economical alternative to the FP bearing. Moreover, it 

provides an architecturally flexible solution in terms of integration into a structural 

system for cases where space consideration is important, e.g., where the cylindrical shape 

of the conventional FP bearing becomes awkward or problematic under walls, as in the 

proximity of elevators and stairs.  

2.3 Mathematical Model 

In formulating the mathematical model for the new XY-FP isolator, separate force-

displacement constitutive relationships were developed discretely for compressive and 

tensile bearing normal load. It is also important to note that the bi-directional motion 

admits decoupling along the principal axes of the bearing. Accordingly, the constitutive 

relationship can be conveniently stated with respect to the local co-ordinate system. 

Figure 2-2 depicts a plan view of the bearing, whose orientation is defined by the angle 

θ  the bottom beam makes with the global X axis, in its deformed position 

 under the action of a horizontal force . The 

corresponding displacement vector in the local axis system is given by  

T

x yU U U⎡= ⎣ ⎤⎦ ⎤⎦
T

x yF F F⎡= ⎣
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Figure 2-2: Plan view of XY-FP isolator in its deformed position. 

 1

2

cos sin
sin cos

x

y

UU
UU

θ θ
θ θ

⎧ ⎫⎧ ⎫ ⎡ ⎤
=⎨ ⎬ ⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

⎨ ⎬  (2-1) 

The displacement components  and  are associated with independent motions along 

the bearing principal axes, namely sliding of upper beam along the lower beam (local 

axis 1), and sliding of upper beam in direction perpendicular to the lower beam (local 

axis 2). Figure 2-3 shows free body diagrams of the mobilized bearing segments under 

compressive and tensile bearing normal force. 

1U 2U

Equilibrium of forces in the horizontal (along axes 1 and 2) and vertical directions for 

each configuration of Figure 2-3 requires that 

 cos sin 0
ii fF F Sϕ ϕ− − =  (2-2) 

 sin cos 0
if

N F Sϕ ϕ− − + =  (2-3) 

where  denotes the two principal isolator directions;  is the horizontal force of 

the isolator in the -direction;  is the friction force mobilized on each beam;   is the  

1, 2i = iF

i
if

F N
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Figure 2-3: Free body diagrams of (a) connecting slider for motion along local axis 1, and 
(b) upper concave beam for motion along local axis 2, under compressive and 
tensile normal force. 

normal force on the bearing, positive when compressive;  is the reaction force 

component normal to the sliding surface; and 

S

ϕ  is the angle between the normal to the  

sliding surface and vertical direction. (It should be noted that the points of application of 

forces are not clearly shown in Figure 2-3. The exact location of these points is only 

important for the consideration of moment equilibrium and not of equilibrium of forces 

as considered herein). 

Combining Equations (2-2) and (2-3) gives 

 tan
cos

if
i

F
F N ϕ

ϕ
= +  (2-4) 
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In view of the dependency of ϕ  on the displacement component  given by iU

 sini iU R ϕ=  (2-5) 

Equation (2-4) can be written as 

 ;    1, 2
cos cos

if
i i

i

FNF U i
R ϕ ϕ

= + =  (2-6) 

where iR  is the radius of curvature of the circular trajectory of the pivot point of the 

slider on top of each beam. This radius is equal to the radius of curvature of the surface of 

each beam minus the small height of the pivot point to the surface. Equation (2-6) 

describes the resisting force of the isolator along the i -direction in the general case of 

large values of angle ϕ . It is synthesized by two components, one representing the 

pendulum effect associated with a restoring force (in the case of compressive normal 

load), and the other representing the contribution of friction developed at the sliding 

interface. 

Assuming small angles of rotation ϕ , Equation (2-6) reduces to the linearized form  

 ;    1, 2
ii i f

i

NF U F i
R

= + =  (2-7) 

in which the friction forces associated with the two beams are 

 
1 1 1 2 2 2

2

sgn( ) sgn( ) sgn( )f side
NF N U U N U U
R

µ µ µ= + +�
1

� �  (2-8) 

 
2 2 2 1 1 1

1

sgn( ) sgn( ) sgn( )f side
NF N U U N U U
R

µ µ µ= + +�
2

� �  (2-9) 

where 1µ  and 2µ  are the sliding friction coefficients of the lower and upper concave 

beams, respectively; sideµ  is the coefficient of friction associated with side contact 

surface between the connecting block and the beams; and  is the signum function 

operating on the sliding velocities. 

sgn( )
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Equations (2-8) and (2-9) reveal the interaction between lateral forces and friction forces. 

For instance, when the bearing upper beam moves with respect to the connecting block in 

direction perpendicular to the lower beam (along axis 2), the developed shear force  is 

transferred onto one side of the lower beam. Thus, the side contact surface of the lower 

beam is acted upon a normal force of magnitude 

2F

2F , which results in increasing the 

friction force on the lower beam, should motion along axis 1 occurs. Analogous 

considerations can be made for the effect of lateral force  on  as dictated by 

Equation (2-9). 

1F
2f

F

It should be noted that, the contribution of lateral forces  and  in friction forces  

and , respectively, is small, on account of the fact that, 

1F 2F
2f

F

1f
F side i Nµ µ  is of higher order 

and can be neglected, and ( )iN R Ui  is less than 0.2 N , since FP bearings are typically 

designed for displacement 0.2U R< .  Therefore, the additional friction force is always 

less than 0.2 side Nµ , with the maximum value attained only at the extreme displacement.  

Supportive evidence of the small effect of lateral force interaction is provided graphically 

in Figure 2-4 wherein simulated isolator force–displacement loops under bi-directional 

motion are plotted against loops under uni-directional (along local axis 1) motion. In 

particular, the imposed bi-directional motion in the upper graph of Figure 2-4 consists of 

a linear displacement pattern in which 1 2 0 sinU U U tω= = , whereas the bi-directional 

motion in the lower graph consists of an 8-shaped displacement pattern in which 

1 0 sinU U tω=  and 2 0 sin 2U U tω= , with 0 200U = mm and ω π=  rad/sec. Identical 

isolator interface conditions were assumed with sliding friction coefficient 

1 2 0.05sideµ µ µ= = =  and radius of curvature 990R =  mm. It can be seen from these 

plots that the error in the isolator force  neglecting the effect of lateral force  is only 

about 5 percent. 

1F 2F

Neglecting the effect of lateral force on friction force, as will be considered hereafter, the 

forces needed to induce displacement [ ]1 2
TU U U=  on the bearing in the local co-

ordinate system are given collectively by 
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Figure 2-4: Effect of lateral force interaction in XY-FP isolator. 
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1U⎧ ⎫⎡ ⎤⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

�
�  (2-10) 

The error involved in the linearization of Equation (2-6) is insignificant for all practical 

purposes, since, as mentioned above, FP bearings are typically designed for displacement 

, so that 0.2U < R cos 1ϕ ≈ . 

In general, the normal force on the isolation bearing is a fast-varying function of time due 

to the effect of vertical earthquake motion and the overturning moment effects. For a 

vertically rigid superstructure, the normal force on the bearing at any given time is 

synthesized by 

 1 gv OMu NN W
g W

⎛ ⎞
= + +⎜

⎝ ⎠

��
⎟  (2-11) 
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where  is the weight acting on the isolator; W gvu��  is the vertical ground acceleration 

(positive when the direction is upwards); and  is the additional axial force due to 

overturning moment effects (positive when compressive). 

OMN

Evaluation of the bearing normal force according to Equation (2-11) is of utmost 

importance for the accuracy of the XY-FP model. The fluctuation in the bearing axial 

force caused by the vertical component of ground motion and overturning moments can 

be large enough to cause reversal of the axial force from compression to tension. 

The theoretical force-displacement relation of the XY-FP isolator under compressive and 

tensile normal force is depicted in Figure 2-5. Coefficients 1µ  and 2µ  can have different 

values depending on whether the bearing is in compression or tension.  It may be noted 

that under tension the bearing has negative stiffness. This does not imply system 

instability, since it is virtually impossible to have all bearings in tension at the same time.  

 

Figure 2-5: Force-displacement relation of XY-FP isolator under (a) compressive and (b) 
tensile normal force.  

In view of Equation (2-10), the horizontal stiffness of the isolator along the  principal 

direction is derived as 

-thi

 i
i

NK
R

=  (2-12) 

which yields the period of free vibration as 
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( / )

i
i

i

2 RWT
W R g g

π= = π  (2-13) 

where  denotes the two principal isolator directions and W  is the weight acting on 

the isolator. As in the conventional FP isolator, the period is independent of the supported 

mass and dependent only on the geometry of the bearing. 

1, 2i =

Having defined the constitutive relation of the bearing with respect to the local co-

ordinate system (Equation (2-10)), the corresponding force-displacement relationship in 

the global co-ordinate system can be readily derived as 

 1

2

cos sin
sin cos

T
x

y

F F
F F

θ θ
θ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎢ ⎥−⎣ ⎦ ⎩ ⎭⎩ ⎭

⎨ ⎬  (2-14) 

To gain insight of the global behavior of the isolation system, it is appropriate to extend 

this discussion by considering a system of two isolators. First, the case of an isolation 

system consisting of two conventional FP isolators supporting a wall of weight  is 

considered (Figure 2-6(a)). In the presence of sufficient overturning moment 

2W

M , where 

one of the isolators experiences uplift, redistribution of loads occurs and the total weight, 

, is sustained by the other isolator. It is evident that, both the restoring force and the 

friction force of the system as a whole remain unchanged.  

2W

Next, consider the case where the isolation system is comprised of two uplift-restraint 

XY-FP isolators (Figure 2-6(b)). Under significant overturning moment, one of the 

isolators will develop tension, with the sustained compressive load on the adjacent 

isolator increased to satisfy equilibrium. The negative stiffness of the isolator in tension is 

balanced by the increased stiffness of the isolator in compression, resulting in the same 

total system stiffness (restoring force). However, tension development in the XY-FP 

isolator impacts the friction force of the isolation system. For the exaggerated conditions 

prevailed in this example, in which 50% of the isolators sustain tension and the 

magnitude of the tensile force is 100% of the initial compressive load W , the global 

friction force increases from 2µW  to 4µW . 
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Figure 2-6: Behavior of system of two isolators: FP vs. XY-FP isolators. 
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SECTION 3 

TESTING OF XY-FP ISOLATOR 

3.1 Introduction 

To gain a better understanding of the behavior and mechanical properties of the XY-FP 

isolators, tests of a single isolator were conducted using the isolator testing machine in 

the Structural Engineering and Earthquake Simulation Laboratory of the University at 

Buffalo (Kasalanati and Constantinou, 1999).  

3.2 Theoretical Background 

Presented briefly herein, is the theoretical basis of certain aspects of frictional behavior 

that are relevant to the interpretation of experimental results at the macroscopic level. A 

detailed presentation of frictional aspects pertaining to sliding isolators can be found in 

Constantinou et al. (1999). 

The coefficient of sliding friction mobilized on a typical sliding bearing interface is 

modeled by the following equation: 

 max max min( ) a u
s f f f eµ −= − − �  (3-1) 

where minf  and maxf  are the minimum and maximum values of the coefficient of friction, 

respectively, and  is a parameter which controls the variation of the coefficient of 

friction with velocity (Constantinou et al., 1990). The dependency of the coefficient of 

friction on velocity is illustrated in Figure 3-1.  

a

In general, parameters maxf , minf , and  are functions of bearing pressure and 

temperature. However, the dependency of 

a

minf  and  on pressure is insignificant 

(compared with that of 

a

maxf ) and can be neglected (Tsopelas et al., 1994). A 

representative expression describing the variation of parameter maxf  with pressure is 

given by 

 max max 0 max 0 max p( ) tanh( )f f f f pε= − −  (3-2) 
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Figure 3-1: Dependency of coefficient of friction on velocity. 

where p is the bearing pressure; max pf  is the maximum value of the coefficient of friction 

at very high pressure; max 0f  is the maximum value of the coefficient of friction at zero 

pressure; and ε  is a constant that controls the variation of maxf  between very low and 

very high pressures. 

Figure 3-2 presents the assumed variation of friction parameter maxf  with pressure, which 

is typical of the behavior of sliding bearings (Soong and Constantinou, 1994). Parameter 

maxf  is important in that it describes the maximum friction force that is transmitted 

through the bearing. 

 

Figure 3-2: Variation of friction parameter maxf  with pressure. 
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3.3 Testing Machine Description 

The apparatus shown in Figure 3-3 is comprised of the following components: (a) two 

horizontal beams – a lower support beam fixed to the rigid floor and an upper loading 

beam driven by a horizontal actuator; (b) three actuators – one horizontal actuator to 

impose the lateral displacement and two vertical actuators to both support the loading 

beam and maintain the axial load on the bearing; and (c) three load cells monitoring the 

load on the bearing – one reaction load cell (placed directly under the bearing) that 

measures directly both the axial and shear forces experienced by the bearing, and a load 

cell connected to each of the vertical actuators to control the vertical load.  

The control strategy for these bearing tests consisted of maintaining the prescribed axial 

load on the bearing while imposing the desired lateral displacement. A detailed 

description and principles of operation of the testing machine can be found in Kasalanati 

and Constantinou (1999). 

 

Figure 3-3: Schematic of isolator testing apparatus. 

3.4 Testing Program 

The isolator testing program involved a series of laboratory tests conducted on a single 

XY-FP isolator on the aforementioned apparatus (Figure 3-4). The isolator used in these 

tests was manufactured by Earthquake Protection Systems in Vallejo, California, with the 

dimensions shown in Figure 3-5. It was constructed of stainless steel and was designed to 
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have a displacement capacity of 203 mm (8 in). The radius of curvature of each concave 

beam is 990 mm (39 in.). Views of XY-FP isolator during testing in 0°, 45°, and 90° 

orientation are presented in Figure 3-6. 

 

Figure 3-4: Photograph of isolator testing apparatus. 

 

Figure 3-5: Two-dimensional view of the uplift-restraint XY-FP isolator used in this 
study. 

The conditions pertaining to the displacement-controlled testing included a range of 

isolator orientation angles, normal loads (compressive and tensile), and peak sliding 

velocities. Table 3-1 presents the values of the variables used in the isolator testing 

program. 
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Figure 3-6: Views of XY-FP isolator during testing in 0°, 45°, and 90° orientation. 

Table 3-1: Values of parameters used in isolator testing program. 

Isolator Orientation 0°, 45°, 90° 

Normal Load (kN) 27, 54, 108  : compression 
27                : tension 

Displacement Amplitude,  (mm) 0u 100 

Frequency, f  (Hz) 0.01, 0.1, 0.3, 0.6, 0.8 

Velocity Amplitude, 0 2v 0fuπ=  (mm/s) 6.3, 63, 188, 377, 503 

The imposed displacement history is illustrated in Figure 3-7. The test started with an idle 

time of 10 sec fronted by a built-up segment of 60 sec in which a displacement amplitude 

 is reached under very low sliding velocity. During this build-up time, truly quasi-static 

conditions are present permitting measurements of the breakaway (or static) coefficient  
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Figure 3-7: Imposed displacement history for XY-FP isolator testing. 
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of friction at initiation of motion and of the sliding coefficient of friction at very low 

velocity (parameter minf ). Subsequently, it is followed by an idle time of 10 sec and 

three-and-a-quarter cycles of harmonic displacement history as indicated in Figure 3-7. 

3.5 Test Results 

To expand our understanding of the behavior of the new XY-FP isolator, frictional force-

displacement loops are plotted for different values of bearing pressure, peak sliding 

velocity, and bearing orientations. The recorded shear force was used to extract various 

frictional characteristics of interest. The frictional force during sliding in the “build-up 

time” interval upon division by the normal force results in the sliding friction coefficient 

at very low velocity, minf . The value of the coefficient of friction at peak velocity (zero 

displacement), occurring at the first cycle, is practically the maximum sliding coefficient 

of friction, maxf . Information on the breakaway (or static) friction was not extracted since 

special specimen preparation was needed (see Constantinou et al., 1999 for details). In 

general, the breakaway coefficient of friction value is less than maxf  for the tested 

conditions of normal temperature. 

Figure 3-8 shows representative force-displacement loops of the XY-FP isolator that 

demonstrate the effect of normal force and sliding velocity on the coefficient of friction. 

In particular, plotted in Figure 3-8(a) are force-displacement relationships for isolator 

angle of 0 degrees at peak sliding velocity of 503 mm/s for compressive normal loads of 

27, 54, 108 kN and tensile normal load of 27 kN. These plots reveal the dependency of 

the coefficient of friction on the apparent pressure in a manner qualitatively analogous to 

the curve of Figure 3-2. The difference in the measured friction force between 

compression and tension tests for normal load of 27 kN is attributed to the fact that the 

contact area under tension is smaller so that the apparent pressure is larger, resulting in a 

smaller value for the coefficient of friction.  

The array of loops in Figure 3-8(b) reveal the dependency of the coefficient of friction on 

the velocity of sliding. These results concern tests for isolator angle of 90 degrees at 

compressive normal load of 54 kN and peak sliding velocities of 6.3, 63, 188, and 377 
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Figure 3-8: Recorded normalized force-displacement loops of XY-FP isolator 
demonstrating the effect of (a) normal force, and (b) sliding velocity. 
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mm/s. Collectively, the dependency of the coefficient of friction on the sliding velocity 

for each of the two component bearing beams is depicted in Figure 3-9. Superposed to the 

experimental results, are theoretical predictions of Equation (3-1) upon calibration with 

appropriate selection of parameters. Values of the parameters are presented in Table 3-2. 

Evidently, Equation (3-1) describes well the observed dependency of the sliding 

coefficient of friction on velocity. 

Table 3-2: Parameters used in calibration of the equation describing the dependency of 
coefficient of friction on velocity (Equation (3-1)). 

Lower Bearing Beam Upper Bearing Beam 

Normal Load (kN) Normal Load (kN) 
Compressive Tensile Compressive Tensile

Parameters in Equation (3-1)  
 
 

27 54 108 27 27 54 108 27 

minf  0.061 0.044 0.032 0.058 0.046 0.045 0.026 0.070 

maxf  0.142 0.110 0.070 0.079 0.137 0.106 0.066 0.083 

α (s/m) 112 61.9 67.2 48.9 11.3 14.7 14.8 62.0 

Figure 3-10 presents recorded normalized force-displacement loops for compressive and 

tensile normal loads and for isolator orientations of 0, 90, and 45 degrees. Results are 

plotted for the highest values of normal load and sliding velocity of Table 3-1, since more 

uncertainties in the frictional characteristics of the isolators and in the measurement 

system are to be expected under low velocity and pressure. These plots serve to verify 

that the equivalent friction force in any given direction can be approximated by the 

friction forces acting along the isolator principal axes 1 and 2 as the projection of their 

vectorial sum onto the direction of interest. With reference to Figure 3-10(a), the 

normalized friction force along the testing (global X) direction, from the 45-degree test 

for compressive normal load of 108 kN and sliding velocity of 503 mm/s is 0.087Xµ = . 

Under the same values of testing parameters, the normalized friction forces from testing 

in 0- and 90-degree orientations are 1 0.063µ =  and 2 0.056µ = , respectively. The 

vectorial sum of  and 1µ 2µ  gives a resultant of 0.084resµ =  with practically the same 

projection onto the X direction, , 0.084res Xµ = . Evidently, the recorded value of Xµ  
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Figure 3-9: Dependency of coefficient of friction on velocity of sliding. 

compares well with the calculated ,res Xµ . The minor discrepancy is attributed primarily to 

the variability in the friction values from test to test and secondarily to the interaction 

between lateral force and friction force as described in Section 2.3. Account for this 

effect could not be facilitated by the single-bearing testing machine used in the testing 

program. 
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Figure 3-10: Recorded normalized force-displacement loops of XY-FP isolator for 
different isolator orientations for (a) compressive and (b) tensile normal 
load. 
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It can be argued that the comparison above involved friction forces based on 

incompatible velocities. Namely, all tests of Figure 3-10(a) were contacted under the 

same peak sliding velocity (503 mm/s) disregarding the fact that during the 45-degree test 

the velocity components along the isolator principal axes were smaller. This, clearly, is 

crossed out by considering high sliding velocity wherein friction becomes practically 

constant, as dictated by Equation (3-1). 

One may observe in Figure 3-10 that the slopes of the normalized force-displacement 

loops, say in the portion corresponding to the built-up of displacement amplitude wherein 

velocity effects are not present to cause any distortion, are slightly different for isolator 

orientations of 0 and 90 degrees. The slopes (stiffnesses), theoretically given by 1/ iR , 

were expected to be equal in view of identical radii of curvature of the two concave 

bearing beams confirmed through measurement and verified via analogous loops from 

shake-table testing (see Section 5). The discrepancy may be attributed to the fact that in 

the 0-degree configuration (see Figure 3-6) the P − ∆  moment is transferred directly on 

the load cell, while in the 90-degree configuration the moment is transferred above. This 

resulted in a difference in the state of stress in the load cell between the two 

configurations, which was reflected in the measurements due to channel cross-talk. The 

error in the measurements could not be corrected because of the nonlinear nature of the 

interaction between the electronic circuits in the load cells measuring axial force, shear 

force, and bending moment. 
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SECTION 4 

MODEL FOR EARTHQUAKE SIMULATOR TESTING 

4.1 Introduction 

The testing program on the earthquake simulator at the University at Buffalo involved a 

five-story base-isolated model structure. The superstructure consisted of a steel frame 

used in previous testing of energy dissipation systems at the University at Buffalo (e.g., 

Chang et al., 1993). The properties and dynamic characteristics of the model excluding 

the isolation system and fixed at the base were identified and are presented in Section 4.6. 

The isolation system, comprised of four XY-FP isolators, was installed beneath a base 

and rotated for testing in different directions. Specifically, tests were done at 0-degree, 

45-degree, and 90-degree angle of lower bearing beam with respect to the direction of 

horizontal excitation. The testing program utilized a number of recorded ground motions 

with a wide range of both frequency content and amplitude. 

4.2 Model Description 

Figures 4-1 and 4-2 show a photograph and a schematic of the model, respectively. At a 

quarter length scale, the single-bay moment-resisting steel frame is square in plan with a 

dimension of 1.321 m. The story heights are 1.092 m for the first story and 1.194 m for 

the other stories, for a total height of 5.868 m. The member layout is identical for all 

stories. The floors are comprised of MC6x12 channel sections. The cross sections of 

columns, beams, channels, and bracing are shown in Figure 4-3.  

The model scale was chosen to be 4. In conforming to the similitude law, artificial mass, 

in the form of steel plates and lead blocks, was added to the structure at all floor levels. 

Table 4-1 presents the relevant scale factors associated with testing. The structure was 

attached to a rigid base under which the isolation system was installed. The distribution 

of mass is effectively 13.75 kN (3.1 kip) per floor and 37.8 kN (8.5 kip) for the base, for 

a total weight of 106.5 kN (24 kip). Installed beneath the rigid base, the isolation system 

consisted of four identical uplift-prevention XY-FP isolators. The isolator dimensions are 

shown in Figure 3-5. 
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Figure 4-1: Photograph of tested five-story isolated model structure on the seismic 
simulator at the University at Buffalo. 
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Figure 4-2: Schematic of tested 5-story isolated model structure. 

 

Figure 4-3: Member cross sections for model structure. 
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Table 4-1: Scale factors for model structure. 

Quantity Dimension Scale Factor 

Linear Dimension L 4 
Displacement L 4 

Time T 2 

Velocity LT-1 2 

Acceleration LT-2 1 

Frequency T-1 1/2 

Stress / Pressure ML-1T-2 1 

Force MLT-2 16 

Strain - 1 

4.3 Pushover Analysis 

A pushover analysis of the model structure fixed at the base and exclusive of the isolation 

system was performed for the strong (N-S) direction of the model to identify its collapse 

mechanism and calculate the base shear strength. The base shear strength of the frame 

was also established using the method presented in Ramirez et al., 2001 (see Appendix 

A). These results are confirmed by pushover analysis using the program SAP2000 

(Computers and Structures, 1998). The analysis determined that the model exhibits 

proper behavior with plastic hinges developing in the beams and that the base shear 

strength of the model is approximately equal to its weight. 

4.4 Instrumentation 

The instrumentation of the five-story model structure consisted of accelerometers and 

displacement transducers which recorded the horizontal accelerations and displacements 

of the frame at floor levels, the rigid base, and the shake table. In addition, the first-story 

columns were instrumented with strain gauged load cells to measure the first-story shear 

force. Figure 4-4 depicts the instrumentation scheme employed in the testing program. A 

list of monitored channels and their corresponding descriptions are given in Table 4-2. 

As depicted in Figure 4-4 accelerations were recorded on the east and west side at each 
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floor, the base, and the table in the horizontal direction.  In addition, the longitudinal, 

transverse, and vertical acceleration of the center of the base plate were recorded. 

Horizontal displacements with respect to a stationary frame were recorded on the east and 

west side at the 1st, 3rd, and 5th floor, the base, and the table. The 2nd and 4th floor 

accommodated only one displacement transducer on the west side. Furthermore, two 

displacement transducers were installed to measure the relative displacement of the base 

with respect to the table. 

 

Figure 4-4: Instrumentation diagram for the 5-story test frame. 

To assess the accuracy of important recordings, measurements were contrasted with 

corresponding calculated quantities. For example, to check the direct acceleration 

measurements, recorded floor absolute displacements were double-differentiated to 

obtain floor acceleration histories. In addition, the first-story shear was calculated by 

summing the floor inertial forces (product of floor mass and floor acceleration) and 

compared to the recorded first-story shear force. 
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4.5 Testing Program 

The testing on the earthquake simulator at the University at Buffalo utilized the slender 

five-story model structure described above. The testing program involved a number of 

actual horizontal and vertical ground motions having a variety of frequency content and 
 

Table 4-2: List of data acquisition channels (with refernce to Figure 4-4) 

Channel Notation Instrument Unit Response Measured 

1 Time CLOCK sec  Time 

2 ABW ACCL g  Base Horizontal Acceleration - South West 

3 ABE ACCL g  Base Horizontal Acceleration - South East 

4 A1W ACCL g  First Floor Horizontal Acceleration - South West 

5 A1E ACCL g  First Floor Horizontal Acceleration - South East 

6 A2W ACCL g  Second Floor Horizontal Acceleration - South West

7 A2E ACCL g  Second Floor Horizontal Acceleration - South East 

8 A3W ACCL g  Third Floor Horizontal Acceleration - South West 

9 A3E ACCL g  Third Floor Horizontal Acceleration - South East 

10 A4W ACCL g  Fourth Floor Horizontal Acceleration - South West 

11 A4E ACCL g  Fourth Floor Horizontal Acceleration - South East 

12 A5W ACCL g  Fifth Floor Horizontal Acceleration - South West 

13 A5E ACCL g  Fifth Floor Horizontal Acceleration - South East 

14 AT ACCL g  Table Horizontal Acceleration 

15 ABCEW ACCL g  Base Horizontal Acceleration – C.M. (EW) 

16 ABCNS ACCL g  Base Horizontal Acceleration – C.M. (NS) 

17 ABCV ACCL g  Base Vertical Acceleration – C.M. 

18 D5W DT inch  Fifth Floor Displacement - South West Corner 

19 D5E DT inch  Fifth Floor Displacement - South East Corner 

20 D4W DT inch  Fourth Floor Displacement - South West Corner 

21 D3W DT inch  Third Floor Displacement - South West Corner 

22 D3E DT inch  Third Floor Displacement - South East Corner 

23 D2W DT inch  Second Floor Displacement - South West Corner 

24 D1W DT inch  First Floor Displacement - South West Corner 
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Table 4-2: List of data acquisition channels (cont.) 

Channel Notation Instrument Unit Response Measured 

25 D1E DT inch First Floor Displacement - South East Corner 

26 DRBW DT inch Base Relative Displacement - South West 

27 DRBE DT inch Base Relative Displacement - South East 

28 DBW DT inch Base Displacement - South West 

29 DBE DT inch Base Displacement - South East 

30 DBEW DT inch Transverse Base Displacement - East 

31 ALAT ACCL g Table Horizontal Acceleration 

32 SHEAR LOAD 
CELL kips First Story Shear Force 

34 DTH DT inch Table Horizontal Displacement – South Center 

amplitude. Table 4-3 lists the earthquake motions used for the simulator testing together 

with their peak ground motion characteristics at the prototype (full) scale. Each record 

was compressed in time by a factor of two to conform to the similitude requirements of 

Table 4-1. 

Figures 4-5 through 4-13 present the recorded histories of the table motion in nine tests 

with these earthquake inputs.  The acceleration and displacement records were measured 

directly, whereas the velocity record was calculated by differentiating the displacement 

record.  Each of these figures presents the 5-percent damped response spectrum (in 

prototype scale) of the table motion, and the spectrum of the target history.  It can be 

observed that the shake table reproduced motions that are in acceptable agreement with 

the target motions in the period range of the isolated model structure. 

The isolation system was rotated below the base plate for testing in different directions. 

Specifically, tests were undertaken at 0-degree, 45-degree, and 90-degree angle of the 

lower bearing beam with respect to the direction of horizontal excitation. A complete list 

of tests conducted is presented in Table 4-4. In this table, V  denotes the vertical 

earthquake component. 
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Table 4-3: List of earthquake motions and their characteristics in prototype scale. 

Peak Ground Motion 
Notation Excitation Component

Disp. 
(mm) 

Vel. 
(mm/s)

Accel.
(g) 

El Centro S00E Imperial Valley, 1940 S00E 109 335 0.34 

El Centro V Imperial Valley, 1940 Vertical 92 107 0.21 

Taft N21E  Kern County, 1952 N21E 67 157 0.16 

Taft V Kern County, 1952 Vertical 45 66 0.11 

Newhall 90º  Northridge-Newhall, LA County Fire 
Station, 1994 90º 176 748 0.58 

Newhall 360º Northridge-Newhall, LA County Fire 
Station, 1994 360º 305 947 0.59 

Newhall V Northridge-Newhall, LA County Fire 
Station, 1994 Vertical 163 315 0.55 

Sylmar 90º  Northridge-Sylmar, Parking Lot, 1994 90º 152 769 0.60 

Sylmar V Northridge-Sylmar, Parking Lot, 1994 Vertical 85 191 0.54 

Kobe N-S  Kobe Station, Japan, 1995 N-S 207 914 0.83 

Kobe V Kobe Station, Japan, 1995 Vertical 103 383 0.34 

Pacoima S74W  San Fernando, Pacoima Dam, 1971 S74W 108 568 1.08 

Pacoima S16E  San Fernando, Pacoima Dam, 1971 S16E 365 1132 1.17 

Pacoima V San Fernando, Pacoima Dam, 1971 Vertical 182 565 0.71 

Hachinohe N-S  Tokachi, Hachinohe, Japan, 1968 N-S 119 357 0.23 
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Figure 4-5: Histories and response spectra of shake table motion for El Centro S00E 
200% excitation. 
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Figure 4-6: Histories and response spectra of shake table motion for Taft N21E 400% 
excitation. 
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Figure 4-7: Histories and response spectra of shake table motion for Newhall 90 100% 
excitation. 
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Figure 4-8: Histories and response spectra of shake table motion for Newhall 360 100% 
excitation. 
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Figure 4-9: Histories and response spectra of shake table motion for Sylmar 90 100% 
excitation. 

 
43



 

0 5 10 15

Ta
bl

e 
V

el
oc

ity
 (m

m
/s

ec
)

-600

-400

-200

0

200

400

600

0 5 10 15

Ta
bl

e 
A

cc
el

er
at

io
n 

(g
)

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

Time (sec)
0 5 10 15

Ta
bl

e 
D

isp
la

ce
m

en
t (

m
m

)

-60

-40

-20

0

20

40

60

Period (sec)
0 1 2 3 4 5

Sp
ec

tra
l A

cc
el

er
at

io
n 

(g
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Simulation
Target

Kobe N-S 100%

Prototype Scale
5% Damping

Model Scale

Model Scale

Model Scale

 

Figure 4-10: Histories and response spectra of shake table motion for Kobe N-S 100% 
excitation. 
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Figure 4-11: Histories and response spectra of shake table motion for Pacoima S74W 
100% excitation. 
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Figure 4-12: Histories and response spectra of shake table motion for Pacoima S16E 
100% excitation. 
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Figure 4-13: Histories and response spectra of shake table motion for Hachinohe N-S 
100% excitation. 
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Table 4-4: List of earthquake simulator tests conducted on the 5-story model structure.  

Isolated 

Isolator Orientation Excitation Component Intensity 

 
Fixed 
Base 

 0º 90º 45º 

S00E 

33% 
50% 

100% 
200% 

√ 
- 
- 
- 

- 
√ 
√ 
√ 

- 
- 
- 
√ 

- 
- 
√ 
√ 

El Centro 

S00E + V 200% - √ √ √ 
S74W 100% - √ - - 

Pacoima 
S74W + V 100% - √ - - 

S16E 

75% 
100% 
125% 
150% 

- 
- 
- 
- 

√ 
√ 
- 
- 

- 
√ 
√ 
√ 

- 
√ 
√ 
- 

Pacoima 

S16E + V 100% - √ √ √ 

N21E 
50% 

100% 
400% 

√ 
√ 
- 

- 
- 
√ 

- 
- 
- 

- 
- 
- Taft 

N21E + V 400% - √ - - 
Hachinohe N-S 100% - √ - - 

90º 100% - √ √ √ 
Sylmar 

90º + V 100% - √ √ √ 
90º 100% - √ - - 

Newhall 
90º + V 100% - √ - - 

360º 100% - √ √ √ 
Newhall 

360º + V 100% - √ √ √ 
N-S 100% - √ - - 

Kobe 
N-S + V 100% - √ - - 

4.6 Identification of Dynamic Characteristics of Model Structure 

The testing program involved identification tests aimed at determining the dynamic 

characteristics of the non-isolated 5-story superstructure. The fixed-base condition was 

attained by locking the rigid base to the shake table via side plates, thereby preventing 

any relative motion of the base and table. The tests were conducted using banded white 

noise excitation with acceleration amplitude of 0.05g and frequency content in the range 

of 0 to 40 Hz. 
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The shapes, frequencies, and damping ratios of modes within the tested frequency range 

were determined using modal identification techniques. The method is based on the 

experimentally-recorded floor acceleration histories and frequency response of the floor 

transfer functions (Bracci et al., 1992). The transfer function is defined as an output 

structural response normalized by a superimposed input base motion in the frequency 

domain. In particular, the transfer function for the j -th floor was obtained as the ratio of 

the Fourier transform of recorded horizontal acceleration of the j -th floor to the Fourier 

transform of the recorded base acceleration.  

Equation (4-1) shows the general equation of motion of a base excited multi-degree-of-

freedom lumped mass structure. 

 [ ]{ } [ ]{ } [ ]{ } [ ]{ } ( )gM u C u K u M R u t+ + = −�� � ��  (4-1) 

where [ ]M  is the mass matrix, [  is the damping matrix, [  is the stiffness matrix; 

, { , and {  are the vectors of relative acceleration, velocity, and displacement of 

the degrees of freedom, respectively; {

]C ]K

{ }u�� }u� }u

}R  is a unit vector; and  is the ground (base) 

acceleration history. 

( )gu t��

Expressing the displacement vector in terms of modal coordinates, : ky

  (4-2) 
1

{ } { }
N

k k
k

u φ
=

= ∑ y

where { }kφ  is the k -th mode shape and  is the number of degrees of freedom. N

The amplitude of the acceleration transfer function of degree of freedom j  may be 

obtained as the amplitude of the ratio of the Fourier Transforms of the acceleration of 

degree-of-freedom j  to the acceleration of the ground: 

 
2

2 2
1

(2 )( )
2

N
k k k k

j
k k k

iH
i

ωξ ω ω
jk

k

ω φ
ω ω ωξ ω=

−Γ +
=

− +∑  (4-3) 

where kω  and kξ  are the -th mode frequency and damping ratio, k jkφ  is the component 
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of mode shape kφ  corresponding to the degree of freedom j , ω  is frequency, and kΓ  is 

the -th modal participation factor given by k

 { } [ ]{ }
{ } [ ]{ }

T
k

k T
k k

M R
M

φ
φ φ

Γ =  (4-4) 

For a lightly damped structure, the -th peak of the amplitude of the transfer function 

occurs at frequency 

k

kω . Furthermore, if we assume well separated modes, the term in 

front of jkφ  in Equation (4-3) can be neglected for all frequencies kω ω≠ . Accordingly, 

Equation (4-3) simplifies to 

 
2(1 4 )( )

2
k k

j k jk
k

H ξω φ
ξ

Γ +
=  (4-5) 

It should be noted that the peak of the j -th transfer function at the -th natural 

frequency is proportional to the magnitude of the -th mode shape corresponding to the 

k

k

j -th degree of freedom. The constant of proportionality is a function of the damping 

ratio and modal participation factor for the -th mode. Since the constant of 

proportionality is the same for all degrees of freedom for the -th mode, the ratio of the 

peaks in the transfer functions for the different degrees of freedom at the -th natural 

frequency are equal to the ratio of the mode shapes for the -th mode.  

k

k

k

k

Thus the position and magnitude of the peaks of experimental transfer functions of all 

degrees of freedom directly yield the frequencies and mode shapes. The phase angles for 

the mode shapes can also be determined experimentally from the Fourier Transform of 

the story accelerations as a function of the natural frequencies as  

 1 ( )( ) tan
( )

i
i

i

I
R

ωθ ω
ω

− ⎛ ⎞
= ⎜

⎝ ⎠
⎟  (4-6) 

where ( )iI ω  and ( )iR ω  are the imaginary and the real parts of the Fourier Amplitude of 

the j -th story acceleration at the i -th frequency iω , respectively. Therefore, by 

comparing the phase angles for each story at the natural frequencies, the mode shape 
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phases can be determined. 

In addition, the corresponding damping ratios for the -th mode, k kξ , can be estimated 

from the experimentally determined j -th story transfer function magnitude, -th mass 

normalized mode shape at the 

k

j -th degree of freedom, and the -th modal participation 

factor as  

k

 

12
2 ( )

4j k
k

jk k

H ω
ξ

φ

−
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟=
⎜ ⎟

−
⎢ ⎥Γ⎝ ⎠⎣ ⎦

 (4-7) 

Figure 4-14 presents the experimentally obtained acceleration transfer function 

amplitudes for banded (0-40 Hz) white noise base excitation. These transfer functions 

were used to extract the dynamic characteristics reported in Table 4-5. 

The dynamic characteristics of the fixed-base structure were also analytically determined 

using the program SAP2000 (Computers and Structures, 1998). The first three mode 

shapes are graphically portrayed in Figure 4-15 and all extracted data pertinent to the 

superstructure identification (natural frequencies, damping ratios, and mode shapes) are 

listed in Table 4-5. The agreement between experimentally derived and analytically 

calculated modal characteristics is excellent. 
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Figure 4-14: Floor transfer function amplitudes for banded (0-40 Hz) white noise base 
excitation. 
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Table 4-5: Dynamic characteristics of fixed-base model structure. 

Mode Shape 
Mode Method Frequency 

(Hz) 
Damping 

Ratio Floor 1 Floor 2 Floor 3 Floor 4 Floor 5

Experimental 2.3 0.061 0.200 0.460 0.740 0.960 1.000 
1 

Analytical 2.4 - 0.120 0.380 0.640 0.850 1.000 
Experimental 8.6 0.019 -0.526 -1.000 -0.807 0.044 0.877 

2 
Analytical 8.2 - -0.481 -1.000 -0.837 0.010 0.962 

Experimental 16.4 0.011 1.000 0.903 -0.779 -1.000 0.690 
3 

Analytical 16.4 - 1.000 0.958 -0.742 -0.983 0.833 
Experimental 24.2 0.016 -1.000 0.333 0.637 -0.943 0.333 

4 
Analytical 26.3 - -1.000 0.272 0.653 -0.922 0.385 

Experimental 29.7 0.018 0.810 -1.000 0.895 -0.551 0.223 
5 

Analytical 34.6 - 0.914 -1.000 0.898 -0.578 0.178 

 

-1 0 1-1 0 1

Experimental
Computed

-1 0 1

1st Mode 2nd Mode 3rd Mode

5th

4th

3rd

2nd

1st

 

Figure 4-15: Schematic of influential mode shapes of fixed-base model structure. 
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SECTION 5 

EARTHQUAKE SIMULATOR TESTING RESULTS 

5.1 Introduction 

The results of the earthquake simulator testing program described in Section 4 are 

presented in this section. The range of tests performed on the model structure provides 

evidence for the effectiveness of the newly introduced isolator in uplift prevention. In 

addition, the experimental response data form the basis for comparison with and 

validation of the analytical predictions presented in Section 7. 

5.2 Test Results 

The experimental results for the five-story isolated model structure are summarized in 

Tables 5-1 through 5-3.  These tables present the experimentally recorded peak structure 

response in three different bearing orientations, namely at 0-, 45-, and 90-degree angle of 

lower bearing beam with respect to the direction of excitation. The excitation is identified 

with a percentage figure which denotes a scaling factor on the actual acceleration record. 

The parameters reported in Tables 5-1 to 5-3 refer to peak shake table motion, peak 

isolation system response, and peak superstructure response. In particular, the quantities 

reported concern: 

1. Peak values of horizontal shake table motion in terms of acceleration, velocity, and 

displacement. The accelerations and displacements are products of direct instrument 

recordings, as opposed to the velocities which were derived from the displacement 

records by numerical differentiation. 

2. Peak isolation system response in terms of:  

• Isolation system displacement: the initial, maximum, minimum, travel, and 

permanent values of the average of east and west base displacement with respect 

to the shake table. The displacement transducers monitoring the base 

displacement were not initialized prior to each test, thus yielding correct 

information on the initial and permanent displacement of the isolation system. 
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Apparently, the initial displacement in any test is identical to the permanent 

displacement from the immediate previous test. Figure 5-1 exemplifies a typical 

isolation system displacement history. The maximum travel displacement of the 

isolation system is readily calculated as 

 { }, max  ,  travel max max in min inU U U U= − −  U  (5-1) 

Time

Is
ol

at
io

n 
Sy

st
em

 D
is

pl
ac

em
en

t

Permanent Disp.

Initial Disp.

Maximum Travel Disp.

Maximum Disp.

Minimum Disp.

 

Figure 5-1: Typical isolation system displacement history. 

• Base shear: the force at the isolation system level calculated as the peak value of 

the sum of recorded 1st-story shear and base inertial force. The inertial force at 

base level was calculated as the product of the base reactive mass and the average 

of the ABE and ABW recordings of base acceleration. 

• Bearing axial load: the maximum and minimum values of total axial load in 

bearing due to both static load and dynamic load from overturning moment effects 

and vertical input motion. The axial load in the isolator was calculated based on 

Equation (2-11). The additional axial force due to overturning moment effects, 

, was obtained by using the overturning moment, OMN OM , calculated from 

records of floor acceleration as follows:  

 

5

1

I
j j

jO
OM

F h
MN
L L

== ± = ±
∑

 (5-2) 

where  is the inertia force of floor , with  and  being the floor I
j jF m a= j j jm ja
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mass and recorded floor acceleration, respectively;  is the height of floor  

with respect to the base; and  is the frame span. Negative values indicate 

compression and positive values indicate tension. 

jh j

L

3. Peak superstructure response in terms of: 

• 1st-story shear: the peak value of the recorded 1st-story shear from strain gauge 

load cells.   

• Story drift: the peak value of the difference between the average displacement 

time histories of two adjacent floors, normalized by the story height. 

To assess the accuracy of important recordings, measurements were contrasted with 

corresponding calculated quantities. For example, to check the direct acceleration 

measurements, recorded floor absolute displacements were double-differentiated to 

obtain floor acceleration histories. In addition, the first-story shear was calculated by 

summing up floor inertia forces (product of floor mass and floor acceleration above and 

inclusive of the first story) and compared to the recorded first-story shear from strain 

gauge load cells. Along the same lines, the isolation system shear (base shear) was 

calculated based solely on floor/base acceleration recordings and compared to the value 

obtained by adding the recorded 1st-story shear and base inertia force. The 

aforementioned comparisons provide satisfactory evidence of the fidelity of the 

experimental results. 

5.3 Interpretation of Results 

During the initial phase of testing of the five-story model in its isolated condition it was 

observed that the system had undergone rocking. This was attributed to small 

imperfections inflicted upon the isolation system during installation. That is, the four 

isolators were not evenly aligned vertically below the rigid base. The problem was 

promptly resolved by inserting metallic shims between the isolators and the base plate.  

Due to the light weight of the model structure, the bearing pressures were very small, and 

modest changes in axial load produced a large variation in the frictional properties of the 

isolation system. Indeed, in view of Equation (3-2) and supportive evidence from testing
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of individual isolator presented in Section 3, the lower the bearing pressure, the less 

stable the frictional properties. This peculiarity of noticeable uncertainty in frictional 

properties refers only to the laboratory model at hand and does not apply for real-life 

applications, where the design is carried out for high loads.  

Because of the low contact pressure, the XY-FP isolators exhibited initially high sliding 

coefficient of friction, in the range of 0.12-0.15, limiting the isolation system 

performance. Accordingly, in order to render the isolation system more effective to 

facilitate larger displacements, successive lubrication of the bearing sliding interface was 

attempted during the testing program. The lubrication process resulted in a coefficient of 

friction in the range of 0.06 to 0.10. However, by virtue of the superficial application of 

the lubricant, the reduction in friction was not permanent and the coefficient of friction 

gradually increased with repeated testing as lubricant was lost, thus necessitating 

repetitive lubrication.  

In general, the shake table produced motions that are in acceptable agreement with the 

target motions in the period range of the isolated model structure. However, it is worth 

noting that the recorded histories of the table motion were not accurately reproduced 

among tests with inputs that were specified to be identical. This can be seen from the 

peak values of the generated table motion presented in Tables 5-1 through 5-3. This 

ambiguity can be explained along the lines of shake table-structure interaction. 

Furthermore, the shake table underwent perceptible vertical motion even when only 

horizontal table motion was imposed. Again, this can be interpreted as evidence of shake 

table-structure interaction during testing. The implications of this phenomenon were, in 

effect, to increase the severity of the testing by aggravating the earthquake induced axial 

load (compression and tension) on the bearings.  

One can observe from Tables 5-1 through 5-3 that the permanent displacement of the 

isolation system along the excitation direction was small and not cumulative in 

successive tests. Figure 5-2 depicts graphically the history of the permanent 

displacements from testing in different isolator orientations. Evidently, the tested XY-FP 

isolator provided sufficient restoring force and prevented permanent displacements to 

accumulate to unacceptable levels. 
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Figure 5-2: History of permanent displacements from testing in different isolator 
orientations. 

Figures 5-3 through 5-7 depict representative results from the range of tests performed on 

the model structure. The graphs present histories of the isolation system displacement, the 

normalized 1st-story shear, the bearing axial force, and the shear force-displacement 

loops for the isolation system. These results provide evidence of the effectiveness of the 

newly introduced XY-FP isolator in different orientations. Clearly, the new isolator is 

capable of developing tension, thereby providing uplift restraint. 

Of particular interest is the axial force histories associated with the isolators, herein 

plotted per isolator pair. Due to the slenderness of the structure (height to width aspect 

ratio approximately 4.5), large overturning moment effects were induced under strong 

base excitation. This was manifested as considerable variation in axial force, on the order 

of 100%. The effect of overturning moment is more pronounced in Figures 5-5 through 

5-7 where the fluctuations in the bearing axial forces caused by overturning moments 

were large enough to cause reversal of the axial force from compression to tension. 

Figure 5-7 provides evidence of the effect of the vertical component of ground motion on 

the response of the isolated structure. These results demonstrate that the vertical ground 

motion component has a minor effect on the isolation system displacement, yet a non- 

negligible effect on the isolation system force response, a deviation on the order of 15%, 

reflected primarily in the wavy form of the isolation system hysteresis loop. Analogous 

observations have been reported for the case of structures seismically isolated with 

conventional FP bearings (e.g., Constantinou et al., 1993; Al-Hussaini et al., 1994;  
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Figure 5-3: Experimental results in El Centro S00E 200% for bearing orientation of 0°. 
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Figure 5-4: Experimental results in Newhall 360 100% for bearing orientation of 0°. 
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Figure 5-5: Experimental results in Newhall 360 100% for bearing orientation of 90°. 
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Figure 5-6: Experimental results in Newhall 360 100% for bearing orientation of 45°. 
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Figure 5-7: Comparison of experimental results in Pacoima S74W 100% and Pacoima 
S74W+Vertical 100% excitations for bearing orientation of 0°. 
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Kasalanati et al., 1999; Mosqueda et al., 2004). The effect of the vertical component of 

ground motion is pronounced in the local response of the isolators. In effect, the vertical 

ground acceleration modifies the axial load on the bearing (Equation (2-11)), and 

therefore impacts both the restoring force and the friction force in the bearing constitutive 

relationship (Equation (2-7)). A parallel implication of the variation of the bearing 

pressure at the sliding interface is the modification of the coefficient of friction (see 

section 3.2). Figure 5-7 demonstrates that the amplification of the bearing axial force due 

to the vertical input may prove large enough to cause tension to develop in the bearing. 

It is worth observing that the peak axial load on the bearing occurs at a large lateral 

displacement but not exactly at the instant of peak isolation displacement. Upon noting 

that the bearing axial load is directly related to overturning moment, and hence to floor 

accelerations, the aforementioned discrepancy can be attributed to the fact that floor 

acceleration response was out of phase (higher mode response). Similar observations on 

floor acceleration profiles and their impact on the response of FP-isolated structures were 

also reported by Mokha et al. (1990) and Al-Hussaini et al. (1994). 
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SECTION 6 

MODIFICATION OF PROGRAM 3D-BASIS-ME 

6.1 Introduction 

Section 6 outlines the modifications made to computer program 3D-BASIS-ME 

(Tsopelas et al., 1994). While maintaining the key features of the program, the following 

enhancements are incorporated: (i) a new hysteretic element capable of modeling the 

behavior of the XY-FP isolator; (ii) a capability of accounting for initial non-zero 

displacement of the isolators; and (iii) a more accurate description of the additional 

bearing axial forces due to global overturning moment effects. 

6.2 Overview of Program 3D-BASIS 

The 3D-BASIS suite of computer programs was developed for the nonlinear dynamic 

analysis of three-dimensional seismically isolated structures. Capable of modeling 

various types of isolation devices with strong nonlinearities, 3D-BASIS provides a 

versatile tool for analysis and design of complex structures with modern isolation 

systems. As such, the program contributed in the verification and development of new 

standards for design of base isolated structures and facilitated the advancement of 

practical application of base isolation. 

Rooted in the core philosophy of its predecessors, 3D-BASIS-ME represents an enhanced 

version of program 3D-BASIS-M (Tsopelas et al. 1991), which is a further extension of 

the original program 3D-BASIS (Nagarajaiah et al. 1989, 1991b and 1993).  

Program 3D-BASIS-M is an improvement on the original version by offering the 

capability to analyze multiple superstructures on a single isolation basemat. This could be 

exploited, for example, in dynamic analysis of isolated structures consisting of several 

parts separated by thermal expansion joints, or isolated liquid storage tanks in which the 

liquid-tank system is modeled by two multi-degree-of freedom systems representing the 

impulsive and convective effects, respectively. 

Program 3D-BASIS-ME augments the potential of its predecessor by introducing new 
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elements for modeling Friction Pendulum (FP) bearings, high damping rubber bearings 

with stiffening behavior, and nonlinear viscous dampers. Furthermore, it accounts for the 

effects of vertical ground motion and overturning moment on the behavior of sliding 

bearings. 

Assumed to remain elastic at all times, the superstructure in 3D-BASIS-ME can be 

modeled via (i) a shear-type representation, or (ii) a full three-dimensional representation. 

In the shear-type representation, the stiffness matrix of the superstructure is internally 

constructed by the program, based on input story translational stiffnesses, rotational 

stiffness, and eccentricities of center of resistance with respect to the center of mass for 

each floor. It is assumed that the centers of mass of all floors lie on a common vertical 

axis, floors are rigid, and walls and columns are inextensible. In the full three-

dimensional representation, the dynamic characteristics of the superstructure in terms of 

frequencies and mode shapes are determined externally by other computer programs and 

imported to program 3D-BASIS-ME. In this way, the extensibility of the vertical 

elements, arbitrary location of centers of mass, and floor flexibility may be implicitly 

accounted for. In both options, each floor mass is lumped into a single point mass having 

three degrees of freedom (two lateral and one torsional) in the horizontal plane.  

The isolation system is modeled with spatial distribution and explicit nonlinear force-

displacement characteristics of the individual isolators. The isolation devices are 

considered rigid in the vertical direction and are assumed to have negligible resistance to 

torsion. 3D-BASIS-ME has the following elements for modeling the behavior of an 

isolator: (i) linear elastic element; (ii) linear and nonlinear viscous element for fluid 

viscous dampers or other devices displaying viscous behavior; (iii) hysteretic element for 

elastomeric bearings and steel dampers; (iv) stiffening (biaxial) hysteretic element for 

high damping rubber bearings; (v) hysteretic element for flat sliding bearings; and (vi) 

hysteretic element for spherical sliding (FP) bearings. 

The algorithm selected for the 3D-BASIS series is based on the solution of the equations 

of motion using a combination of Newmark’s integration method and a fourth-order 

Runge-Kutta scheme, complemented by a pseudo-load formulation and time marching 

procedure for accuracy and efficiency. The algorithm has been proven to be suitable for 
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analyzing highly nonlinear sliding isolation systems (Nagarajaiah et al., 1989, 1990, 

1991a, 1991b).  

6.3 Enhancements Introduced in Program 3D-BASIS-ME 

While maintaining the key features of the program, the following enhancements were 

incorporated into 3D-BASIS-ME: (i) a new hysteretic element capable of modeling the 

behavior of the XY-FP isolator; (ii) a capability of accounting for initial non-zero 

displacement of the isolators; and (iii) a more accurate description of the additional 

bearing axial forces due to overturning moment effects. 

6.3.1 New Hysteretic Element for XY-FP Isolator 

The mathematical model of the new XY-FP isolator has been established in Section 2.3. 

The force-displacement constitutive relationship, neglecting the interaction between 

lateral force and friction force, is given by Equation (2-10). To accommodate the 

mechanical behavior of the new XY-FP isolator, a new hysteretic element was 

incorporated into 3D-BASIS-ME. The new element is synthesized by two independent 

uniaxial hysteretic elements allowing different frictional interface properties along the 

principal isolator directions. It should be emphasized that, contrary to the element 

representing the conventional FP isolator, the new element is capable of developing 

tension. Moreover, different frictional interface properties can be assumed under 

compressive and tensile isolator normal force. 

In general, under harmonic or transient dynamic loading each sliding bearing undergoes 

different motion requiring multiple stick-slip conditions. Accordingly, the use of 

Coulomb model (Su et al., 1987; Mostaghel and Khodaverdian, 1987; Younis et al., 

1983; Goodman, 1963) under these conditions is complicated. Hence the Bouc-Wen 

plasticity model (Park et al., 1986; Wen, 1976) was adopted in modeling the XY-FP 

isolator because of its computational efficiency, which stems from the fact that tracing of 

the hysteresis loops in this model is not necessary.  

The horizontal forces in the XY-FP element in 3D-BASIS-ME are given by   
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where 1R  and 2R  are the radii of curvature of the lower and upper concave beams, 

respectively; 1µ  and 2µ  are the associated sliding friction coefficients;  and  are 

the displacements in local axis 1 and 2, respectively;  is the normal force on the 

bearing, positive when compressive; and 

1U 2U

N

1Z  and 2Z  are hysteretic dimensionless 

quantities governed by the following differential equations: 
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where  and  are the velocities in local axis 1 and 2, respectively; ,  1U� 2U� A β , γ , and η  

are dimensionless quantities that control the shape of the hysteresis loop; and  and  

represent displacement quantities.  

1Y 2Y

Constantinou et al. (1990) have shown that when 1A =  and 1β γ+ = , the model of 

Equation (6-2) reduces to a model of viscoplasticity that was proposed by Ozdemir 

(1976). In this case,  and  represent the yield displacements, while parameter 1Y 2Y η  

controls the mode of transition into the inelastic range. The model exhibits rate 

dependency, which reduces with increasing values of the exponent, η , and/or increasing 

values of the ductility ratio (maximum value of ).  /U Y

The conditions of separation and reattachment (stick-slip) are accounted for by variables 

1Z  and 2Z  in Equation (6-2). In this respect, quantity iZ  may be regarded as a 

continuous approximation to the unit step function,  in Equation (2-10). It should 

be noted that  during the sliding phase, whereas 

sgn( )iU�

= 1iZ ± 1iZ <  during the sticking phase 

(elastic behavior with very high stiffness).  

A limitation of the employed plasticity model is its inability to reproduce truly rigid-

plastic behavior. However, since Teflon-steel interfaces undergo very small elastic 

displacement before sliding, small value of yield displacement Y , in the range of 0.13-
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0.50 mm (0.005-0.02 in.) can be reasonably assumed  and, hence, the viscoplasticity 

model can be used (Constantinou et al., 1990). The model exhibits insignificant rate 

dependency for such low yield displacement and resulting ductility ratio, and for 

parameter values of 2η = , 0.1β = , and 0.9γ =  suggested by Constantinou et al. (1990). 

It should be emphasized that Equation (6-2) is uncoupled, representing two independent 

uniaxial hysteretic elements along the principal directions of the isolator. Accordingly, 

the biaxial interaction between forces in the two orthogonal directions is nonexistent, 

rendering the interaction surface to be square, as opposed to the circular interaction 

surface for the biaxial behavior of the spherical FP isolator (Figure 6-1). 

 

Figure 6-1: Force interaction curves for XY-FP and FP isolators.  

Recall that in the case of the conventional FP isolator, an arbitrary uni-directional motion 

entails a collinear resisting force. On the contrary, in the case of the XY-FP isolator, 

application of a horizontal force in an arbitrary direction results in a bi-directional motion 

realized along the two isolator beams. This is true even for orthotropic interface 

conditions, namely for identical frictional and geometric properties along the two 

component beams. An exception to this is when the applied force is either along a local 

axis or at 45 degrees with respect to a local axis, wherein uni-directional motion results 

along the corresponding force direction. 

In Equation (6-1), the normal force, , on an isolation bearing is, in general, a varying 

function of time due to the vertical component of ground motion and the overturning 

moment effects. For vertically rigid structures, the normal force on the XY-FP bearing at 

N
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any given time is given by 

 1 gv OMu NN W
g W

⎛ ⎞
= + +⎜

⎝ ⎠

��
⎟  (6-3) 

where  is the weight acting on the isolator; W gvu��  is the vertical ground acceleration, 

positive when directed upward; and  is the additional axial force due to overturning 

moment effects, positive when compressive. 

OMN

The new element for the XY-FP isolator in 3D-BASIS-ME requires a user-supplied 

subroutine, function FOVM, to calculate the additional axial force due to overturning 

moment effects. The function – called by the main program at each time step – returns to 

the main program the additional axial load FOVM on each bearing due to overturning 

moment effects. The definition of the additional force FOVM due to the overturning 

moments OVMX and OVMY is illustrated in Figure 6-2, in which FOVM is the normal 

force due to overturning moment, positive when compressive; OVMX and OVMY are 

the overturning moments about X- and Y-axis, respectively, positive in the direction 

shown in the figure (Tsopelas et al., 1994). 

 

Figure 6-2: Definition of overturning moments OVMX and OVMY, and additional force 
FOVM. 

Contrary to the element representing the conventional FP isolator, the new element is 

capable of capturing the uplift-restraint property of the XY-FP isolator allowing potential 

reversal of the bearing axial force from compression to tension. 
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Moreover, the dependency of the coefficient of friction on sliding velocity and bearing 

pressure is explicitly modeled in 3D-BASIS-ME according to Equations (3-1) and(3-2), 

respectively. 

Output data pertaining to the new element representing the XY-FP isolator are given in 

file ISOL8. The output file contains response histories of individual XY-FP isolators, in 

terms of (a) isolator shear forces in both local and global axes; (b) isolator axial forces; 

and (c) isolator displacements in both local and global axes. 

6.3.2 Account for initial non-zero displacement of the isolators  

The potentiality of permanent displacements in sliding isolation systems with reduced 

restoring force capability, or lack thereof, is often of concern, as the permanent 

displacements may accumulate to unacceptable levels in successive earthquakes (Roussis 

et al., 2002, 2003; Constantinou et al., 1991). Building codes and guide specifications for 

seismic isolation design, attempt to account for this possibility by either specifying 

minimum stiffness requirements or by penalizing systems with insufficient stiffness.  

To accommodate monitoring of the history of residual displacements in successive 

analyses, 3D-BASIS-ME was modified to account for initial non-zero displacements of 

the isolation system resulting from the permanent displacements in the immediate 

previous analysis. This option, available for the new XY-FP element, allows for input of 

the initial state of the isolation system in terms of the initial displacements along the X 

and Y directions and initial rotation of the center of mass of the base. 

6.3.3 A more accurate description of the additional bearing axial forces 
due to overturning moment effects 

A user-supplied subroutine, FOVM, is available in program 3D-BASIS-ME which 

accounts for the variability of axial forces in the isolation bearings due to overturning 

moment effects (Tsopelas et al., 1994). The function, which shall be modified by the user 

before each run, updates and returns to the main program the additional axial load FOVM 

on bearing i at every time step. The function assumes a unique relation between 

overturning moments and additional axial load on bearings. It should be noted that this is 

a simplification of a complex phenomenon, yet it is a commonly used engineering 
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approximation. 

In order to provide a more accurate representation of bearing axial forces, 3D-BASIS-ME 

was modified to include a direct relationship between floor inertia forces and additional 

axial load on bearings. At each time step of integration, the horizontal inertia forces,  

{ }IF , are calculated from the floor accelerations and multiplied by a coefficient matrix, 

[ ]T , to obtain the corresponding variation of vertical loads on the bearings due to 

overturning moment effects, { }OMN . The additional vertical load may be expressed as 

 { } [ ]{ }OM IN T F=  (6-4) 

where  { }  is the vector of bearing axial forces; ,1 ,2 ,1

T

OM OM OM OM nn
N N N N

×
⎡= ⎣ … ⎤⎦

[ ] 2n i
T

×
  is a coefficient matrix relating additional bearing axial forces to floor inertia 

forces;  { }   is the vector of floor inertia forces; n  

is the number of bearings; and  is the number of floors. 

, , ,1 ,12 1

T

I I ix I iy I x Ii
F F F F F

×
⎡= ⎣ … y ⎤⎦

i

The coefficient matrix, [ ]T , is evaluated externally by other computer programs and 

imported into program 3D-BASIS-ME through the file tmatrix.dat. It shall be calculated 

from linear static analyses of the structure supported on hinge supports and subjected to 

horizontally acting unit loads at the different floor levels. For example, the  column 

of matrix [
-thi

]T  is calculated as the local frame column loads upon application of a unit 

lateral force at the center of mass of the  floor, with the lateral forces of the 

remaining floors being zero. It should be noted that matrix 

-thi

[ ]T  in Equation (6-4) is 

single-valued in the case of the XY-FP isolator, regardless of whether the isolator is in 

tension or compression.  

The same equation is used in the program for establishing the relationship between the 

axial forces on isolators and floor inertial forces for conventional FP isolators. It should 

be noted that matrix [ ]T  is not single-valued in the case of FP isolators when uplift can 

occur, since different load distributions exist depending on what combination of isolators 

undergo uplift. Nevertheless, the single-valued matrix (which assumes that bearings can 
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sustain tension) is used in the program, and when a tensile value is detected, it is replaced 

by zero. This is an approximation because it does not account for redistribution of loads. 

However, the error involved is not significant, since typically the force that needs to be 

redistributed is small by comparison to the total weight, and only a small number of 

isolators undergo uplift at any instant of time. 
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SECTION 7 

ANALYTICAL PREDICTION OF RESPONSE 

7.1 Introduction 

The dynamic response of the five-story seismically isolated model structure was 

predicted analytically using 3D-BASIS-ME. The validity of the analytical model, with 

reference to the newly introduced element representing the XY-FP isolator, is 

investigated by comparison of analytical predictions with experimental results and 

conclusions on the accuracy of the analysis methods are derived. 

7.2 Analytical Model 

The dynamic response of the five-story structure was analytically predicted using the 3D-

BASIS-ME computer program. Assumed to remain elastic at all times, the 5-story 

superstructure model in 3D-BASIS utilized a three-dimensional representation. Each 

floor mass was lumped into a single point mass having three degrees of freedom (two 

lateral and one torsional) in the horizontal plane. The weight distribution, including the 

tributary weight from beams and columns, was estimated to be 37.8 kN (8.5 kip) at the 

base, 13.7 kN (3.08 kip) at the first and second floors, 13.8 kN (3.11 kip) at the third and 

forth floors, and 13.6 kN (3.05 kip) at the top floor, for a total weight of the model of 

106.5 kN (24 kip). The dynamic characteristics required as input to 3D-BASIS-ME for 

the superstructure modeling were obtained from identification tests of the non-isolated 

frame (Table 4-5). A total of three modes were used, with assumed damping ratios of 

0.06 in the first mode and 0.02 in the other two modes.  

The isolation system was modeled with spatial distribution and explicit nonlinear force-

displacement characteristics of the individual isolation devices. To accommodate the 

mechanical behavior of the XY-FP isolator, a new hysteretic element was incorporated 

into the program. Acknowledging that the bi-directional motion admits decoupling along 

the principal axes of the bearing, the new element is developed as two independent 

uniaxial hysteretic elements in the orthogonal directions. The element accounts for the 

conditions of separation and reattachment (stick-slip) along the sliding interface. It should 
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be emphasized that, contrary to the element representing the conventional FP isolator, the 

new element is capable of developing tension. Moreover, different frictional interface 

properties can be assumed along the principal isolator directions under compressive and 

tensile isolator normal force. A detailed description of the analytical model of the new 

isolator incorporated in 3D-BASIS-ME is given in Section 6.3.1. 

In modeling the isolation system in 3D-BASIS-ME, the frictional properties along the 

principal isolator directions under compressive and tensile isolator normal force were 

assumed to be identical. Owing to successive lubrication of the bearing sliding interface, 

and by virtue of the superficial application of the lubricant, the coefficient of friction 

varied during the earthquake simulator testing program. Accordingly, the isolators were 

modeled using values of coefficient of friction parameter maxf  in the range of 0.06 to 

0.10, based on the experimental results. In addition, the isolators were assigned the 

following properties: radius of curvature 990.6 mmR =  (39 in.),  (0.8 

s/in), , and a gravity load of 26.62 kN (5.98 kip). Moreover, a value for the 

yield displacement equal to 0.28 mm (0.011 in.) was assumed based on the mechanical 

properties of the sliding interface (Constantinou et al., 1990). 

0.031 s/mma =

min 0.03f =

The analysis accounted for (i) the variability of axial load in the isolators due to the 

vertical component of ground motion and the overturning moment effects; (ii) the 

dependency of friction on velocity; (iii) different orientations of the isolator with respect 

to the excitation (global-X) direction; and (iv) the initial non-zero displacement of the 

isolators (the permanent displacement from the previous test). 

7.3 Comparison of Experimental and Analytical Results 

The validity of 3D-BASIS model, especially with reference to the newly introduced 

element representing the XY-FP isolator, was investigated by comparison of analytical 

predictions with experimental results. Appendix C presents comparisons of experimental 

and analytical results produced by program 3D-BASIS-ME. A representative sample of 

results from Appendix C is presented in Figures 7-1 through 7-5. 

These figures depict results for horizontal and vertical input ground motions and for 

bearing orientation of 0, 90, and 45 degrees with respect to the horizontal excitation 
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direction. The comparison is made in terms of histories of the isolation system 

displacement, the 1st-story shear force, the bearing axial force, and the shear force-

displacement loops of the isolation system. 

The comparison made in terms of the axial force histories associated with the isolators is 

instrumental in validating the analytical techniques under extreme dynamic conditions. 

The fluctuations in the fast-varying axial forces were predicted sufficiently accurately in 

the analysis on account of capturing the effects of overturning and the vertical component 

of ground motion. The experimental results shown in Figures 7-1 through 7-5, indicative 

of the phenomenon of uplift restraint, provide an effective means of verifying the 

accuracy of analytical predictions under highly nonlinear conditions.  

Figures 7-2 to 7-5 compare experimental and analytical results for combined horizontal 

and vertical components of Newhall 100% and Sylmar 100% excitations for bearing 

orientations of 0°, 90°, and 45°. The analysis, by accounting for the vertical motion 

effects, captures correctly the wavy form of the isolation system shear force-displacement 

loops.  

Evidently, there is good agreement between analytical and experimental results, with the 

analytical prediction not restricted to only peak response values but capable of 

reproducing almost every detail of the observed response history. Accordingly, the 

presented experimental results attest to the accuracy of the analytical model of the new 

isolator incorporated in 3D-BASIS-ME. This demonstrates that the behavior of XY-FP 

isolator is well understood to allow for accurate prediction of the response of isolated 

structures incorporating the new isolation bearing. 
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Figure 7-1: Comparison of experimental and analytical results for bearing orientation of 
0° for 100% Kobe N-S excitation. 
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Figure 7-2: Comparison of experimental and analytical results for bearing orientation of 
0° for 100% Newhall 360+vertical excitation. 
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Figure 7-3: Comparison of experimental and analytical results for bearing orientation of 
90° for 100% Newhall 360+vertical excitation. 
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Figure 7-4: Comparison of experimental and analytical results for bearing orientation of 
45° for 100% Sylmar 90+vertical excitation. 
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Figure 7-5: Comparison of experimental and analytical results for bearing orientation of 
45° for 100% Newhall 360+vertical excitation.
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SECTION 8 

A CASE STUDY 

8.1 Introduction 

Section 8 presents a case study which involves analysis of a seismically isolated structure 

and assessment of the impact of XY-FP bearing on its response. The structure utilized in 

the analysis is the new Acropolis Museum in Athens, Greece, currently under 

construction, directly at the foot of the Acropolis facing the Parthenon.  

In this section, nonlinear response-history analysis of the seismically isolated structure 

subjected to bi-directional horizontal seismic excitation was performed using programs 

SAP2000 and 3D-BASIS-ME. First, a comparison is made between results from 

SAP2000 and 3DBASIS-ME analysis based on an isolation system model consisting 

solely of Friction Pendulum (FP) isolators. Then, results from 3D-BASIS-ME analysis of 

the model with only FP isolators are compared to results from analysis of the model with 

isolators prone to uplift being replaced with XY-FP isolators. The input motions used in 

the analysis were arbitrarily scaled so that they cause significant uplift in the FP isolators 

or significant tension in the XY-FP isolators, in order to ascertain the impact of use of the 

XY-FP isolators in a real structure. 

8.2 Description of Seismically Isolated Structure 

The new museum of the Acropolis was designed as a four-story building above ground 

with up to four underground levels, of which one is for parking and one is for mechanical 

equipment (Figure 8-1). In plan the building is quadrilateral with sides measuring about 

60 m, 75 m, 40 m, and 100 m (Figure 8-2). The structural system is reinforced concrete 

frame mixed with shear walls. The distribution of gravity-carrying elements of the 

structure is highly asymmetric due to the existence of archaeological findings that cannot 

be moved or disturbed. The total seismic weight of the superstructure is  407 MN.  totW =

Figure 8-2 presents a plan view of the isolated structure with the basic dimensions and 

bearing locations shown. The most heavily and the least loaded bearings (gravity load 
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Figure 8-1: View of the new Acropolis Museum in Athens, Greece directly at the foot of 
the Acropolis. (http://www.archpedia.com/Projects-Bernard-Tschumi_01.html) 

 

 

Figure 8-2: Plan view of isolated structure. 
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consisting of dead load plus half of live load) are identified and the values of the load are 

shown on the plan. It may be noted that there is a substantial range of gravity loads on the 

bearings. 

The structure will be seismically isolated using 94 conventional FP bearings. The 

isolators were designed to have a displacement capacity of 250 mm, with radius of 

curvature  mm, and nominal value of the coefficient of friction under dynamic 

conditions equal to 0.04. Upper and lower bound values of the coefficient of friction 

when considering uncertainty in properties, aging, temperature, and contamination effects 

were determined to be 0.055 and 0.035, respectively. 

2235R =

8.3 Analytical Model in SAP2000 and 3D-BASIS-ME  

The seismically isolated structure with conventional FP isolators was analyzed in 

programs SAP2000 and 3DBASIS-ME. Furthermore, exploiting the newly developed 

capability of 3DBASIS-ME to model the behavior of the uplift-restraint XY-FP isolator 

(Section 6.3.1), analyses were performed on the seismically isolated structure with 

isolators prone to uplift being replaced with XY-FP isolators.   

Nonlinear response-history analysis, based on the Fast Nonlinear Analysis (FNA) 

method, was performed in SAP2000 (Computers and Structures, 1998), utilizing a three-

dimensional model (Figure 8-3). The model mass, represented as lumped masses at 

joints, was distributed at six levels along the height of the model. The properties of the 

structure are given in Table 8-1. 

Figure 8-4 illustrates the spatial distribution of the 94 seismic isolation bearings. The FP 

bearings were modeled in SAP2000 using the NLLINK element Isolator2 property. Each 

of these elements was assigned the following properties: radius of sliding surface 

 m; friction coefficient (fast) 2.235R = max 0.055f = ; friction coefficient (slow) 

; rate min 0.03f = 50α =  s/m; and an initial stiffness 67007k =  kN/m. A damping ratio 

of 0.04 was specified for the 18 modes used in the analysis. 

The gravity load on the bearings is typically generated in SAP2000 from loads applied to 

the superstructure. In this case the gravity load was specified as span force load along the 
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Figure 8-3: Schematic of SAP2000 model of the seismically isolated building used in the 
case study. 

 

 

Figure 8-4: Plan view of the base of the building model in SAP2000 showing the spatial 
distribution of seismic isolation bearings. 

 
90



 

Table 8-1: Properties of analyzed structure. 

Mass Eccentricities 
Level Height 

(m) MX 
(kN-s2/m) 

MY 
(kN-s2/m) 

IZ 
(kN-s2/m) 

X 
(m) 

Y 
(m) 

6 21.4 3512 3512 3125987 2.3 2.4 

5 19.4 2208 2208 1063811 2.6 2.8 

4 15.3 11049 11049 10627050 2.1 -1.2 

3 10.5 6207 6207 4201263 -8.4 6.9 

2 5.2 9504 9504 9501796 0.7 -1.7 

1 (Base) 0.0 9054 9054 8039340 0.0 0.0 
 

frame members. These forces were applied quasistatically, that is, dynamically over a 

long time duration, utilizing a ramp function with a duration of 10 sec (5 sec build-up 

time and 5 sec constant unit load) and a large modal damping ratio (= 0.99) to prevent 

oscillations.  

The dynamic response of the isolated structure was also predicted analytically using 

program 3D-BASIS-ME. The superstructure model in 3D-BASIS utilized a three-

dimensional representation. Each floor mass was lumped into a single point mass having 

three degrees of freedom (two lateral and one torsional) in the horizontal plane. The 

assumed mass distribution is given in Table 8-1. The dynamic characteristics required as 

input to 3D-BASIS-ME for the superstructure modeling were obtained using program 

SAP2000. A total of 15 modes were used with assumed damping ratio of 0.04. The 

periods of free vibration for the first five modes are presented in Table 8-2. 

Table 8-2: Periods of free vibration of the fixed-base structure. 

Mode Period (sec) 

1 0.401 

2 0.295 

3 0.208 

4 0.123 

5 0.080 
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The isolation system with the spatial distribution shown in Figure 8-4 was explicitly 

modeled with nonlinear force-displacement characteristics of the individual isolation 

devices. In modeling the FP bearings in 3D-BASIS-ME, the following parameters were 

used:  m,  , 2.235R = max 0.055f = min 0.03f = , 50α =  s/m, and  m. The 

assumed yield displacement is consistent with the isolator model in SAP2000 upon 

accounting for the flexibility of the (short) columns above the isolators. Further, the 

gravity load on each isolator was obtained from static analysis in SAP2000. The 

aforementioned parameters were also assigned to the XY-FP isolators with the frictional 

properties along the principal isolator directions under compressive and tensile isolator 

normal force assumed to be identical. The dependency of friction coefficient on 

instantaneous pressure was neglected in the analysis. 

0.004=Y

The analysis in program 3D-BASIS-ME accounted for the variability of axial load in 

isolators due to overturning moment effects via a user-supplied subroutine that was 

modified to include a direct relationship between floor inertia forces and additional axial 

load on bearings (Section 6.3.3). The required coefficient matrix, [ ]T , was evaluated 

externally by program SAP2000 from linear static analyses of the structure supported on 

hinge supports and subjected to horizontally acting unit loads at the different floor levels. 

The same coefficient matrix, [ ]T , was utilized in modeling the structure with both XY-

FP isolators and conventional FP isolators. In the case of the uplift-restraint XY-FP 

isolators, where there is a continuous transition from compression to tension and vice 

versa, matrix [ ]T  accurately predicts the additional axial load on the isolators due to 

overturning moment effects. On the contrary, the prediction of the isolator axial load 

based on matrix [ ]T  is an approximation when uplift occurs on conventional FP 

isolators. In such a case, while the total axial load of the isolator in uplift is replaced by 

zero, no redistribution of forces is accounted for. The error involved is small (as seen in 

the presented results in Section 8.4), since the phenomenon of uplift occurs 

instantaneously and only a small portion of isolators undergo uplift at any instant of time. 

In fact, the analytical prediction in terms of isolator loads is conservative, as the 

calculated total axial loads are slightly larger than the actual ones. It should be noted that, 
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by virtue of the three-dimensional formulation, SAP2000 allows for direct consideration 

of overturning moment effects.  

The structure was analyzed using three pairs of bi-directional seismic excitations. Each 

component was amplified by a factor so as to accentuate the overturning moment effects 

and increase the possibility of uplift occurrence. It should be noted that the scaled 

motions represented earthquakes significantly stronger than the maximum earthquake for 

the site of the Museum of the Acropolis. Table 8-3 lists the earthquake motions used in 

the analysis along with their peak ground motion characteristics and scale factors. A total 

of six seismic input combinations were considered by interchanging pair components in 

X and Y directions.  

Table 8-3: Selected ground motions and scale factors used in analysis. 

Ground Motion Station Component PGA 
(g) 

PGV 
(cm/s)

PGD 
(cm) 

Scale 
Factor 

180 0.34 33.45 10.87 
1940 El Centro 117 

(USGS) 270 0.21 36.92 19.78 
2.0 

021 0.16 15.30 9.25 
1952 Kern County 1095 

(USGS) 111 0.18 17.50 8.99 
4.0 

180 0.16 20.85 4.20 
1934 Lower California 117 

(USGS) 270 0.18 11.56 3.66 
4.5 

8.4 Analysis Results 

Nonlinear response-history analysis of the seismically isolated structure subjected to bi-

directional seismic excitations was performed using programs SAP2000 and 3D-BASIS-

ME. First, a comparison is made between results from SAP2000 and 3DBASIS-ME 

analysis based on an isolation system model consisting solely of FP isolators. Moreover, 

results from 3DBASIS-ME analysis of the model with FP isolators only are compared to 

results from analysis of the model with isolators subject to uplift being replaced with XY-

FP isolators. 

Only the upper bound on the coefficient of sliding friction, 0.055f = , is considered in 
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the analysis, as it yields the maximum forces on the superstructure and hence the most 

unfavorable overturning moment effects. 

Presented in Appendix D are results generated by programs SAP2000 and 3DBASIS-ME 

from analyses of the model with only FP isolators. A representative sample of these 

results is depicted in Figures 8-5 through 8-10 in terms of isolation system response, 

superstructure response, and individual bearing response in X and Y directions in Lower 

California 270-180 450% excitation. The generated results serve the purpose of 

demonstrating that programs SAP2000 and 3D-BASIS-ME produce comparable output.  

The local frame action and the large overturning forces generated by the strong input 

excitations resulted in large variations in the vertical loads on the bearings. These 

variations were large enough (compared to the static dead load on the bearings) to reduce 

the bearing load to zero and cause local uplift in the bearings (Figures 8-9 and 8-10). 

Table 8-4 presents information on the isolators that undergo uplift (with reference to 

Figure 8-4) in the six seismic input combinations used in the analysis. Graphical 

representation of the number of isolators experienced uplift at each time instant is given 

in Figure 8-11. It can be observed that even under such extreme loading conditions only a 

small fraction (about 15%) of the isolators undergo uplift at each time instant. 

In assessing the impact of the XY-FP bearing on the response of the seismically isolated 

structure, results from a 3DBASIS-ME analysis of the model with FP isolators only are 

compared to results from analysis of the model with isolators prone to uplift (per Table 

8-4)  being replaced with XY-FP isolators. Appendix E contains comparison of 3D-

BASIS-ME analysis results of the two models in terms of superstructure response, 

isolation system response, and individual bearing response in X and Y directions for the 

selected ground motions listed in Table 8-3.  

Figures 8-12 through 8-17 depict representative results from the range of analyses 

performed for the El Centro 180-270 200% excitation. In particular, Figures 8-12 and 8-

13 provide information on the superstructure response in X and Y directions, 

respectively, in terms of histories of total floor acceleration, total floor velocity, and story 

drift for the floor/story at which the maximum response occurs, as well as histories of the 

normalized first-story shear force. Figures 8-14 and 8-15 present histories of the isolation  
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Figure 8-5: Comparison of SAP2000 and 3D-BASIS-ME generated results in terms of 
superstructure response in X direction for the model with 94 FP isolators in 
scaled (factor 4.5) Lower California 270-180 excitation.  
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Figure 8-6: Comparison of SAP2000 and 3D-BASIS-ME generated results in terms of 
superstructure response in Y direction for the model with 94 FP isolators in 
scaled (factor 4.5) Lower California 270-180 excitation. 
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Figure 8-7: Comparison of SAP2000 and 3D-BASIS-ME generated results in terms of 
isolation system response in X direction for the model with 94 FP isolators 
in scaled (factor 4.5) Lower California 270-180 excitation. 
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Figure 8-8: Comparison of SAP2000 and 3D-BASIS-ME generated results in terms of 
isolation system response in Y direction for the model with 94 FP isolators 
in scaled (factor 4.5) Lower California 270-180 excitation. 
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Figure 8-9: Comparison of SAP2000 and 3D-BASIS-ME generated results in terms of 
response of bearing No. 55 in X direction for the model with 94 FP isolators 
in scaled (factor 4.5) Lower California 270-180 excitation. 
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Figure 8-10: Comparison of SAP2000 and 3D-BASIS-ME generated results in terms of 
response of bearing No. 55 in Y direction for the model with 94 FP 
isolators in scaled (factor 4.5) Lower California 270-180 excitation. 
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Table 8-4: FP isolators undergoing uplift identified from 3D-BASIS-ME analysis. 

El Centro 200% Kern County 400% Lower CA 450% Bearing 
ID 180-270 270-180 021-111 111-021 180-270 270-180 

21 √ √ √ √ - √ 

30 √ √ √ √ - √ 

34 - √ - - - - 
49 √ √ √ √ √ √ 

51 √ √ √ √ - - 
55 √ √ √ √ √ √ 

57 √ √ √ √ - √ 

65 √ √ √ √ √ √ 

66 - - √ - - √ 

67 √ √ √ √ √ √ 

68 √ √ - - - - 
69 √ √ √ √ √ √ 

70 √ √ - - - - 
71 √ √ √ √ √ √ 

73 √ √ √ √ - - 
75 √ - - - - - 
77 √ - √ - - - 
79 √ √ √ √ √ √ 

80 - - √ - - √ 

81 √ √ √ √ - - 
82 √ √ √ √ - √ 

83 √ √ √ √ - √ 

84 √ √ √ √ √ √ 

85 √ - √ - - - 
86 √ √ √ √ √ √ 

87 √ - - - - - 
88 √ √ - - - √ 

92 √ √ - - - - 

Total # 25 22 21 17 9 17 
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system displacement, isolation system shear force, and the associated shear force-

displacement loops in X and Y directions, respectively. Individual bearing results for a 

typical bearing that experienced considerable and successive uplift/tension (bearing No. 

67) are shown in Figures 8-16 and 8-17 in terms of histories of bearing displacement, 

shear force, axial force, and shear force-displacement loops in X and Y directions,  
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Figure 8-11: Number of bearings in uplift per time instant. 

 
102



 

To
ta

l V
el

oc
ity

 (m
m

/s
ec

)

-1000

-500

0

500

1000

To
ta

l A
cc

el
er

at
io

n 
(g

)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

94 FP Bearings
25 XY-FP and 69 FP Bearings

D
rif

t (
m

m
)

-2

-1

0

1

2

X-Direction

Time (sec)

0 5 10 15 20 25 30

Sh
ea

r F
or

ce
 / 

W
ei

gh
t

-0.2

-0.1

0.0

0.1

0.2

5th Story

2nd Story

3rd Story

1st StoryWeight = 407 MN

 

Figure 8-12: Comparison of 3D-BASIS-ME generated results in terms of superstructure 
response in X direction between the model with 94 FP isolators and the 
model with 25 XY-FP + 69 FP isolators in scaled (factor 2.0) El Centro 
180-270 excitation. 
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Figure 8-13: Comparison of 3D-BASIS-ME generated results in terms of superstructure 
response in Y direction between the model with 94 FP isolators and the 
model with 25 XY-FP + 69 FP isolators in scaled (factor 2.0) El Centro 
180-270 excitation. 
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Figure 8-14: Comparison of 3D-BASIS-ME generated results in terms of isolation system  
response in X direction between the model with 94 FP isolators and the 
model with 25 XY-FP + 69 FP isolators in scaled (factor 2.0) El Centro 
180-270 excitation. 
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Figure 8-15: Comparison of 3D-BASIS-ME generated results in terms of isolation system  
response in Y direction between the model with 94 FP isolators and the 
model with 25 XY-FP + 69 FP isolators in scaled (factor 2.0) El Centro 
180-270 excitation. 

 
106



 

Sh
ea

r F
or

ce
 (k

N
)

-2400

-1600

-800

0

800

1600

2400

D
is

pl
ac

em
en

t (
m

m
)

-400
-300
-200
-100

0
100
200
300
400

FP Bearing
XY-FP Bearing

Time (sec)
0 5 10 15 20 25 30

A
xi

al
 F

or
ce

 (k
N

)

-10000

-5000

0

5000

10000

15000

X-Direction

Displacement (mm)

-300 -200 -100 100 200 300-400 0 400

Sh
ea

r F
or

ce
 (k

N
)

-1600

-800

800

1600

-2400

0

2400

Bearing 67

 

Figure 8-16: Comparison of 3D-BASIS-ME generated results in terms of response of 
bearing No. 67 in X direction between the model with 94 FP isolators and 
the model with 25 XY-FP + 69 FP isolators in scaled (factor 2.0) El Centro 
180-270 excitation. 
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Figure 8-17: Comparison of 3D-BASIS-ME generated results in terms of response of 
bearing No. 67 in Y direction between the model with 94 FP isolators and 
the model with 25 XY-FP + 69 FP isolators in scaled (factor 2.0) El Centro 
180-270 excitation. 
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respectively. Of particular interest is the axial force histories associated with the isolator. 

Due to strong seismic excitation large overturning moment effects were induced on a 

number of bearings, manifested as considerable variation in the axial force histories. For 

the isolator in question, the fluctuation in the bearing axial force was large enough, on the 

order of 200%, to cause reversal of the bearing axial force from compression to tension. 

Nevertheless, the development of tension in individual isolators, and by extension the 

increase of isolation system friction force (as discussed in Section 2.3), does not have any 

measurable effect on either the isolation system response (Figures 8-14 and 8-15) or the 

superstructure response (Figures 8-12 and 8-13). This is attributed to the fact that, 

typically, only a small number of the bearings (no more than 15%) are subjected to 

tension at any instant of time. 

The increase in global friction force due to tension development in XY-FP isolators may 

prove significant in rare cases in which adverse conditions prevail in terms of the number 

of bearings sustaining tension at any instant of time and the magnitude of the developed 

tensile force. A narrow building seismically isolated with only two rows of bearings (e.g., 

the Excel Minami-Koshigaya building in Japan (Sumitomo Construction, 1990)) under 

horizontal base excitation in the transverse direction, exemplifies these conditions. 

Indeed, by allowing 50% of the uplift-restraint bearings to sustain tension and provided 

that the bearing tensile force is significantly larger than the acting weight, the increase in 

global friction force can potentially impact the response of structural and non-structural 

systems. Nevertheless, even under such adverse conditions, the capability to predict the 

response is made available through the newly-developed and verified analytical model of 

XY-FP isolator. 
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SECTION 9 

SUMMARY AND CONCLUSIONS 

This report aimed at extending the scope of seismic isolation by studying a novel sliding 

isolation bearing capable of sustaining tension. With its appealing conceptual simplicity 

and its proven effectiveness, the new uplift-restraint isolator, termed the XY-FP isolator, 

has the potential to facilitate the application of seismic isolation even under the most 

extreme of conditions, including but not limited to near-fault strong ground motions and 

uplift-prone structural systems. 

This study primarily focused on: (i) introducing the concept and establishing the 

principles of operation and mathematical model of the new XY-FP isolator; (ii) 

developing an understanding of the mechanical  behavior of the XY-FP isolator through 

testing of a single isolator; (iii) generating experimental results through testing of a 

quarter-scale steel-frame model structure on the earthquake simulator at the University at 

Buffalo to validate the effectiveness of these isolators in preventing uplift; (iv) modifying 

the computer program 3D-BASIS-ME to include an element representative of the 

mechanical behavior of the new XY-FP isolator; and (v) assessing the validity and 

accuracy of analytical methods to predict the behavior of such systems. 

Even though a number of uplift prevention systems in seismic isolation have been 

proposed (and some have been implemented), their potential has been hindered by 

limitations stemmed from their intrinsic complexity, unpredictability, and/or deficiency 

to provide effective uplift prevention. Moreover, a number of such systems have not been 

tested and their impact on the behavior of the isolation system has not been assessed. 

Accordingly, a need evolved to develop acceptable isolators with tension (or uplift 

restraint) capability and to better understand the phenomena of uplift or tension of 

isolators and their impact on the performance of structural and non-structural systems. 

Studied in this report is an effective uplift-restraint isolation bearing synthesized by two 

opposing concave stainless steel-faced beams to form a bi-directional (XY) motion 

mechanism. The salient features that distinguish the XY-FP isolator from the 

conventional Friction Pendulum (FP) isolator include: (i) effective uplift prevention 
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regardless of the state of displacement in the bearing; (ii) decoupling of the bi-directional 

horizontal motion along two orthogonal directions; and (iii) capability of providing 

distinct stiffness and energy dissipation along the principal directions of the bearing. 

Additional benefits can be derived from the unique morphology of the new bearing. In 

particular, by encompassing much less structural material, the isolator offers a lighter and 

more economical alternative to the standard FP bearing, and by extension a higher 

manufacturing quality. Moreover, it provides an architecturally flexible solution in terms 

of integration into a structural system for cases where space considerations are important. 

A displacement-control testing program on a single XY-FP isolator was conducted to 

expand our understanding of its mechanical behavior and to extract various frictional 

characteristics of interest, under compressive and tensile normal load. The testing 

included a range of isolator orientation angles, normal loads (compressive and tensile), 

and peak sliding velocities. The generated results reveal the dependency of the coefficient 

of friction both on the apparent pressure and on the velocity of sliding. The studies also 

verified that, given the frictional properties of the two isolator component beams, the 

equivalent coefficient of friction can be calculated in any direction.  

The testing program on the earthquake simulator at the University at Buffalo involved a 

five-story base-isolated model structure and a number of recorded horizontal and vertical 

ground motions with a wide range of both frequency content and amplitude. The isolation 

system, comprised of four uplift-prevention XY-FP isolators, was installed beneath a 

base and rotated for testing in different directions (0-, 45-, and 90-degree angle). This 

series of tests represent the only available experimental data on XY-FP isolators.  

In this testing configuration, the bearing pressure was very small, and modest changes in 

axial load produced a large variation in the frictional properties of the isolation system. 

The small weight of the model structure and the four-bearing condition are “extreme” for 

building structures; much smaller variations in frictional response are to be expected in 

real-life applications. 

Of particular interest are the results pertaining to the axial force histories associated with 

the isolators. Due to the slenderness of the structure (height to width aspect ratio 

approximately 4.5), large overturning moment effects were induced on the bearings under 
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strong base excitation. This was manifested as considerable variation in axial force, on 

the order of 100%, which in some cases proved large enough to cause reversal of the 

bearing axial force from compression to tension. 

Results from a number of tests conducted with combined horizontal and vertical 

excitations provided evidence of the effect of the vertical component of ground motion 

on the response of the isolated structure. The results demonstrated that the vertical ground 

motion component had a minor effect on the isolation system displacement, yet a non-

negligible effect on the isolation system force response, a deviation on the order of 15%, 

reflected primarily in the wavy form of the isolation system hysteresis loop. The effect of 

the vertical component of ground motion was pronounced in the local response of the 

isolators. In effect, the vertical ground acceleration modified significantly the axial load 

on the bearings, causing, in some cases, tension to develop in the bearing. 

The range of tests performed on the model structure demonstrated the validity of the 

concept and provided evidence for the effectiveness of the XY-FP isolator in uplift 

prevention. Clearly, the new isolator is capable of developing tension, thereby providing 

uplift restraint. In addition, the experimental response formed the basis for comparison 

with and validation of the analytical predictions. 

A comprehensive mathematical model capable of accommodating the mechanical 

behavior of the XY-FP isolator was developed and implemented in program 3D-BASIS-

ME. In doing so, a new hysteretic element representing the XY-FP isolator was 

incorporated in 3D-BASIS-ME. The element is synthesized by two independent uniaxial 

hysteretic elements allowing different frictional interface properties along the principal 

isolator directions. It should be emphasized that, contrary to the element representing the 

conventional FP isolator, the new element is capable of developing tension and therefore 

providing uplift restraint. Moreover, different frictional interface properties can be 

assumed under compressive and tensile isolator normal force. This enhancement 

augments the potential of 3D-BASIS-ME by providing a versatile tool for analysis of 

seismically isolated structures with XY-FP isolators. 

The dynamic response of the five-story seismically isolated model was predicted 

analytically using 3D-BASIS-ME. The analysis accounted for the variability of the 
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isolator axial load due to the vertical component of ground motion and the overturning 

moment effects, the dependency of friction coefficient on velocity, different isolator 

orientations, and the initial non-zero displacement of the isolators.  

The validity of the 3D-BASIS-ME analytical model with reference to the newly 

introduced element representing the XY-FP isolator was investigated by comparison of 

analytical predictions with experimental results. The maximum deviation between peak 

experimental and analytical response quantities was on the order of 15% or less. The 

good agreement attests to the accuracy of the analytical model, evident even under 

extreme dynamic conditions entailing tension in the isolators. This demonstrates that the 

behavior of the XY-FP isolator is sufficiently well understood to allow for accurate 

prediction of the response of isolated structures incorporating the proposed isolation 

devices. 

A case study involved analysis of the new Acropolis Museum in Athens, Greece and 

assessment of the impact of XY-FP isolator on its response. Nonlinear response-history 

analysis of the seismically isolated structure subjected to bi-directional horizontal seismic 

excitation was performed using programs SAP2000 and 3D-BASIS-ME. The seismically 

isolated structure with solely conventional FP isolators was analyzed in program 

3DBASIS-ME to identify the isolators that undergo uplift. Additional analysis of the 

structure with an analogous isolation system model was performed in program SAP2000 

as a means for comparison. The generated results demonstrate that programs SAP2000 

and 3D-BASIS-ME produce comparable output.   

In addition, 3D-BASIS-ME analysis was performed on the seismically isolated structure 

with isolators prone to uplift being replaced with XY-FP isolators. These results 

demonstrate that tension in individual XY-FP isolators, and by extension the increase of 

isolation system friction force, did not have any appreciable effect on either the total 

isolation system response or the superstructure response. This is attributed to the fact that, 

typically, only a small number of the bearings (no more than 15%) are subjected to 

tension at any instant of time. 

The increase in global friction force due to tension development in XY-FP isolators may 

prove significant in rare cases in which adverse conditions prevail in terms of the number 
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of bearings sustaining tension at any instant of time and the magnitude of the developed 

tensile force. A narrow building seismically isolated with only two rows of bearings 

under horizontal base excitation in the transverse direction, exemplifies these conditions. 

Indeed, by allowing 50% of the uplift-restraint bearings to sustain tension, and provided 

that the bearing tensile force is significantly larger than the acting weight, the increase in 

global friction force can potentially impact the response of structural and non-structural 

systems. Nevertheless, even under such adverse conditions, the capability to predict the 

response is made available through the newly developed and verified analytical model of 

XY-FP isolator. 
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