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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center of
excellence in advanced technology applications that is dedicated to the reduction of earthquake losses
nationwide. Headquartered at the University at Buffalo, State University of New York, the Center
was originally established by the National Science Foundation in 1986, as the National Center for
Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout the
United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and post-
earthquake recovery strategies. Toward this end, the Center coordinates a nationwide program of
multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the National
Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the State of New
York. Significant support is derived from the Federal Emergency Management Agency (FEMA),
other state governments, academic institutions, foreign governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: to increase resilience by developing
seismic evaluation and rehabilitation strategies for the post-disaster facilities and systems (hospitals,
electrical and water lifelines, and bridges and highways) that society expects to be operational
following an earthquake; and to further enhance resilience by developing improved emergency
management capabilities to ensure an effective response and recovery following the earthquake (see
the figure below).
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A cross-program activity focuses on the establishment of an effective experimental and analytical
network to facilitate the exchange of  information between researchers located in various institutions
across the country. These are complemented by, and integrated with, other MCEER activities in
education, outreach, technology transfer, and industry partnerships.

The purpose of this study is to develop structural models and numerical techniques to perform
analysis of structures in damage states up to collapse. These are needed for determining functional
limit states required for performance and fragility based seismic design methodologies. The authors
explored alternatives to the widely used displacement-based incremental iterative algorithms. They
have developed a framework, termed a dynamical system, where displacements, internal forces and
other state variables can be treated uniformly (i.e., modeling of components is clearly separated from
the numerical solution). Two methods have been formulated: State Space and Lagrangian.

The State Space method considers the governing equations of motion and constitutive behavior of
a structure as constituting a constrained dynamical system which is represented as a system of
differential algebraic equations solved using numerical methods. The Lagrangian formulation is a
new form that involves displacement and velocities as well as internal forces and their impulses.  It
leads to the concept of a generalized momentum for framed structures. It extends to continua with
large deformations and can therefore also be used in geometric nonlinear analysis.

Both methods can potentially be used as alternatives to the conventional displacement-based
incremental iterative method for the analysis of structures to collapse. Both clearly distinguish the
modeling of components from the numerical solution. Thus, phenomenological models of compo-
nents such as structural steel connections, reinforced concrete elements, semi-active devices, shock
absorbers, etc. can be incorporated into the analysis without having to implement element-specific
incremental state determination algorithms.
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ABSTRACT 

Nonlinear analysis of structures has become increasingly important in the study of 

structural response to hazardous loads. Such analyses should include (i) the effects of 

significant material and geometric nonlinearities (ii) various phenomenological models of 

structural components and (iii) the energy and momentum transfer to different parts of 

the structure when structural components fracture. 

Computer analysis of structures has traditionally been carried out using the 

displacement method, wherein the displacements in the structure are treated as the 

primary unknowns, combined with an incremental iterative scheme for nonlinear 

problems. In this work, considering the structure as a dynamical system, two new 

approaches – (i) the state space approach and (ii) the Lagrangian approach are developed. 

These are mixed methods, where besides displacements, the stress-resultants and other 

variables of state are primary unknowns. These methods can potentially be used for the 

analysis of structures to collapse as demonstrated by numerical examples. Attention is 

focused on skeletal structures, although the extension of the methods to other systems is 

discussed. 

In the state space approach, the governing equations of motion and constitutive 

behavior of a structure are considered as constituting a constrained dynamical system, 

which is represented as a system of differential algebraic equations (DAE) and solved 

using appropriate numerical methods. A large-deformation flexibility-based beam 

column element is formulated, for use with the state space approach. 

In the Lagrangian approach, the evolution of the structural state in time is 

provided a weak formulation using Hamilton’s principle. It is shown that a certain class 
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of structures, referred to in this work as reciprocal structures has a mixed Lagrangian 

formulation in terms of displacements and internal forces. The Lagrangian is invariant 

under finite displacements and can be used in geometric nonlinear analysis. For 

numerical solution, a discrete variational integrator is derived starting from the weak 

formulation. This integrator inherits the energy and momentum conservation 

characteristics for conservative systems and the contractivity of dissipative systems. The 

integration of each step is a constrained minimization problem and is solved using an 

Augmented Lagrangian algorithm. 

In contrast to the displacement-based method, both the state space and the 

Lagrangian methods clearly separate the modeling of components from the numerical 

solution. Phenomenological models of components essential to simulate collapse can 

therefore be incorporated without having to implement model-specific incremental state 

determination algorithms. The state determination is performed at the global level by the 

DAE solver and by the optimization solver in the respective methods. The methods 

suggested herein can be coupled with suitable pre- and post- processors to develop a 

unified computational platform for analysis of collapsing structures. 
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1. INTRODUCTION 

1.1. Background and Motivation 

In recent years, the requirements of structural analysis have become more 

challenging. Some of the reasons for this are that: (i) New approaches to the design of 

structures for earthquakes and other hazardous loads are based on structural performance 

and use fragility functions as measures of performance. Such fragility quantification is 

carried out with respect to predefined performance limit states describing the condition of 

the structure in relation to usability and safety. Often, the limit states used in seismic 

design are well beyond linear elastic behavior, in many cases approaching collapse 

conditions. (ii) Structures in areas of low to moderate seismicity have traditionally been 

designed for gravity loads. Evaluation of such structures under more stringent loads 

prescribed by modern codes requires estimation of their strength and ductility reserves at 

various levels of ground motion. (iii) To study the effectiveness of structural protective 

devices and retrofit measures at higher levels of ground shaking requires analysis of 

highly nonlinear systems. Hence analysis methods that cater to these requirements should 

be developed. The objective of this work is to create a basis for the development of a 

unified approach for such analysis methods. Attention is focused here on skeletal 

structures (framed structures comprising components with one prominent dimension – 

beams, columns, truss members, energy dissipation devices etc.), common in buildings 

and bridges. It is shown however that the formulations derived here can be extended to 

continua. 

     1
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1.2. Challenges 

A precise definition of collapse is not attempted, but it is recognized as a 

condition where the structure has lost the abilities to sustain gravity loads or to 

shakedown under repeated lateral loading. Such a condition is presumed to be caused by 

three factors – (i) plasticity (the fact that the load carrying capacities of structural 

components are limited) – (ii) damage (the fact that the strength, stiffness and energy 

dissipation characteristics of structural components deteriorate under increased and 

repeated loading) and (iii) geometric nonlinearity or P-∆ effects (under large 

displacements, the gravity loads cause significant additional stresses in structural 

components). Of these, only factors (i) and (iii) are considered in this work. 

To accurately model the nonlinear response of the structure, detailed 

phenomenological models of parts of the structure such as members and connections are 

often necessary. For example, Mazzolani and Piluso (1996) present such models for 

structural steel connections and Hsu (1993) does so from reinforced concrete elements. It 

should be possible to seamlessly incorporate such models in the analysis. 

Moreover, when a component fractures, i.e. loses strength instantaneously, there 

is transfer of energy and momentum between various parts of the structure, which must 

be accounted for. 

1.3. Displacement-based Incremental Iterative Method 

The response variables of the structure which, when known, determine future 

response of the structure are called state variables. These include displacements, internal 

forces, plastic strains etc. A more detailed discussion of state variables is presented in 

Section 3. Computer analysis of structures has traditionally been carried out using the 
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displacement method, wherein the displacements in the structure are treated as the 

primary unknowns, combined with an incremental iterative scheme for nonlinear 

problems. Stresses and other state variables that appear in the mathematical model of the 

structure in constitutive relations, in mixed variational formulations or in any other 

fashion are treated “locally”, i.e. at the level of a unit of spatial discretization – a finite 

element, a quadrature point etc. In linear analysis, these additional state variables are 

“condensed out” of the system of equations. In nonlinear analysis, however, every 

iteration of the solution process at an increment comprises of two stages: (i) a global 

stage where the primary unknowns, the displacements, are obtained using the 

“condensed” equation system (ii) and a local stage where all other state variables are 

updated. The local stage is referred to as the incremental state determination and requires 

element-specific algorithms (see for example, Neuenhofer and Filippou (1997), de Souza 

(2000) and Lowes and Altoontash (2002)).The widespread use of the displacement 

method is primarily because the techniques of nonlinear structural analysis have grown as 

extensions to those of linear analysis and have most often been implemented in general 

purpose computer programs originally designed for linear analysis. The displacement 

method also enables the automatic construction and efficient structuring of the stiffness 

matrix, which plays a central role in linear analysis. 

1.4. Mixed Methods 

More recently, however, mixed methods have been explored wherein the fields of 

displacements, stresses (or stress-resultants), strains, plastic multipliers etc. are all given 

separate spatially discretized representations (see for example, Washizu (1982), Simo et 

al. (1989) and Han and Reddy (1999)). 
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The advantage of the flexibility formulation of beam-column elements, resulting 

from force-interpolation functions being always exact even when the element is non-

prismatic and undergoes inelastic behavior, has been well documented (see for example, 

Park et al. (1987) and Neuenhofer and Filippou (1997)). The yield function in plasticity 

theory that defines the elastic domain (see for example, Simo and Hughes (1998)), and 

the damage function in damage mechanics (see for example, De Sciarra (1997)) are most 

naturally expressed in terms of stresses and stress-like quantities (or stress-resultants) 

using the tools of convex analysis. Thus stress-resultants play an important role in 

nonlinear analysis.  

The use of mixed methods alleviates locking effects at the element level due to 

deformation modes in linear elastic structures (see for example, Hughes (1987)) and 

yielding modes in elastic-plastic structures (see for example, Comi and Perego (1995)). 

Moreover, various state variables besides forces and displacements play important roles 

in modern structural protective systems such as active and semi-active devices.  

These factors motivate an approach where besides displacements, stress-resultants 

and other variables of state play a fundamental role. 

1.5. Dynamical Systems Approach 

In this work a variant of the mixed formulation is adopted, where the structure is 

viewed as a dynamical system. A dynamical system is a collection of states along with a 

means of specifying how these states evolve in time. Two such means of specifying the 

evolution of the states are studied: 

1. The State Space Approach: The evolution of states is characterized as the solution of 

a system of first order differential equations. However, not all states are independent 
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and free. Some states are constrained by (i) algebraic equations – holonomic 

constraints (e.g. the equilibrium equations that constrain stress-resultants, kinematic 

constraints on displacements such as in rigid floor diaphragms etc.), (ii) inequality 

constraints (e.g. yield condition on stress-resultants) and (iii) non-integrable 

constraints involving velocities – nonholonomic constraints (e.g. the inequality 

constraints on certain state variables can be expressed as nonholonomic constraints 

in the conjugate variables; for example, the yield condition on the stress-resultants 

leads to nonholonomic constraints in terms of strain rates as will be seen later). The 

first order differential equations of evolution along with the holonomic constraints 

(algebraic equations) and the nonholonomic (implicit differential equations) 

constraints form a system of differential algebraic equations (DAE). 

2. The Lagrangian Approach: The evolution of the states is characterized by the 

stationarity of the time integral of a certain functional (Hamilton’s Principle). The 

time integral depends on a system Lagrangian function and a system Dissipation 

function, both functions of the state variables and their rates of change with time. 

The various constraints are embodied in these functions. 

The state space approach uses the strong form of the governing equations in time, while 

the Lagrangian formulation uses the weak form. This distinction is discussed in greater 

detail in Section 5. The two approaches reveal different properties of the structural 

system and lead to different numerical methods as shown in Fig. 1.1. 

Both methods consider material and geometric nonlinearity. In contrast to the 

displacement-based method, both the state space and the Lagrangian methods clearly 

separate the modeling of components from the numerical solution. Phenomenological 
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Fig. 1.1. Schematic of Development in this Work 
 

models of components essential to simulate collapse can therefore be incorporated 

without having to implement model-specific incremental state determination algorithms. 

The state determination is performed at the global level by the DAE solver and by the 

optimization solver in the respective methods. The Lagrangian formulation results in the 

concept of the generalized momentum of the structure as shown in Section 5. This could 

provide insights into the momentum transfer that occur when there is component fracture. 

It has be shown that for systems such as elasto-plastic structures where loading 

and unloading occur on different paths, the stiffness matrix (the tangent stiffness matrix, 

in the case of nonlinear analysis) which plays such a central role in linear systems, is no 
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more than an iteration matrix. The indefiniteness of the tangent matrix is not related to 

instability (see for example, Nguyen (2000)). The approach followed in this work 

eliminates the need for a global tangent stiffness matrix. The present formulations are 

likely to enable a broader notion of stability, although this is only briefly studied here. 

The proposed methods follow a generalized approach which addresses modeling and 

solution through rigorous formulations which make very few assumptions to obtain the 

solution of complex non-linear problems.  While traditional displacement methods 

address implicitly the model and the solution, the proposed methods distinguish the 

modeling of components from the numerical solution. The advantage of such 

formulations is indicated in this report. 

The second formulation, the Lagrangian approach, implicitly addresses the 

equilibrium and the conservation of impulse, within a variational formulation. This 

approach allows addressing problems involving sudden collapse, or sudden degradation 

before collapse, which involves instantaneous lack of equilibrium and impulses. 

Moreover, the suggested formulation opens the way to addressing impulse driven 

processes such as blasts and impacts in complex structures without or with modern 

protective systems. As such this method pioneers a generalized approach to solving 

complex nonlinear dynamics problems. 

1.6. Scope and Outline 

In Section 2, constitutive relations of uni-axial and multi-axial ideal and kinematic 

hardening plasticity are established in two equivalent forms – the rate form and the 

dissipation form – for use in the State Space Approach and in the Lagrangian Approach 

respectively. In Section 3, the State Space Approach is developed. The governing 
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equations of motion and constitutive behavior of a structure are considered as constituting 

a constrained dynamical system, which is represented as a system of Differential 

Algebraic Equations (DAE). These equations are solved using appropriate numerical 

methods. An inelastic large deformation beam-column element is formulated in Section 4 

for use with the state space approach, starting from the finite deformation compatibility 

equations and applying the principle of virtual forces in rate form. The element uses 

stress-resultant-strain constitutive equations and includes the effect of axial force-bending 

moment interaction. The element is utilized in structural analysis to collapse. In Section 

5, the evolution of the structural state in time is provided a weak formulation using 

Hamilton’s principle. It is shown that a certain class of structures, referred to here as 

reciprocal structures, has a mixed Lagrangian formulation. This class includes structures 

with a wide range of material behavior including hyperelasticity, rate-independent 

plasticity, viscoelasticity, viscoplasticity, tension- or compression-only resistance etc. 

The resulting Lagrangian has some special properties: (i) The generalized displacements 

that appear in the Lagrangian consist of both physical displacements at certain nodes and 

the impulses of the forces in certain members, leading to the idea of a generalized 

momentum; (ii) The Lagrangian is invariant under finite displacements and can be used in 

geometric nonlinear analysis. A discrete variational integrator is derived in section 6, 

starting from the variational statement of Hamilton’s Principle to numerically integrate 

the Euler-Lagrange equations in time. This integrator inherits the energy and momentum 

conservation characteristics for conservative systems and the contractivity of dissipative 

systems. The integration of each step is a constrained minimization problem and is solved 

using an Augmented Lagrangian algorithm. Finally, the work is summarized and some 
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conclusions are drawn in Section 7. Since the State Space and Lagrangian Approaches 

were at first developed independently, their implementations are currently not on par with 

each other. The implementation status is shown in Table 1.1. While the state space 

formulation has been implemented for all four features of Table 1.1, the Lagrangian 

formulation is yet to be implemented for large deformations and post-yield hardening. 

Table 1.1. Status of the State Space and Lagrangian Implementations 
 

Feature State Space Approach Lagrangian Approach 

Plasticity Implemented Implemented 

Hardening Implemented Formulated 

Large Displacements Implemented Implemented 

Large Deformations Implemented Formulated 

 



 

 



2. MATERIAL NONLINEARITY: CONSTITUTIVE RELATIONS OF PLASTICITY 

2.1. Background 

Structural materials and components have limits on strengths coupled with 

different loading and unloading paths, leading to nonlinear inelastic behavior. This 

section addresses formulations of hysteretic behavior with deterioration. The 

formulations are structural extensions of plasticity theory. The constitutive laws 

commonly used for analysis of structures with nonlinear inelastic material properties are 

based on classical plasticity theory. They are characterized by a yield surface, a flow rule 

and a hardening rule (see for example, Lubliner (1990) and Simo and Hughes (1998)). 

When working with macro-elements such as members of a frame, it is favorable to 

formulate constitutive equations in terms of stress resultants and their conjugate strain 

quantities rather than in terms of stresses and strains. For example, in a beam, the 

constitutive relationship is defined between the cross-sectional stress resultants – axial 

force and bending moment, and the strains – centroidal axial strain and curvature. 

Classical plasticity theory may be applied in this context by looking at the principle of 

maximum dissipation as holding in an integral sense (Lubliner (1990)). In its classical 

form, the maximum dissipation principle states that for a given strain rate, the stress is 

such that it maximizes the rate of energy dissipation. This statement can be approximated 

by stating instead that the integrals of the stresses over a cross-section (stress-resultants) 

are such that the total rate of energy dissipation over the cross-section is maximized for 

given plastic strain rates that satisfy compatibility (e.g. plane sections remain plane). The 

material in this section, although not original, is presented in order to establish the 

relations of plasticity in forms that are suitable for use in the following sections. 
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k 

Fy 
ε εp

F 

 

Fig. 2.1. 1D Elastic-Ideal Plastic System 
 

2.2. One Dimensional Plasticity 

Consider the one-dimensional elastic-ideal plastic system of Fig. 2.1. The total 

deformation can be decomposed as: 

 e pε ε ε= +  (2.1) 

where εe is the elastic deformation and εp is the plastic deformation. The stiffness of the 

spring is k and the force in the spring is given by: 

 ( )e pF k kε ε ε= = −  (2.2) 

The slider shown in the figure is characterized by the convex yield condition: 

 ( ) 0yF F FΦ = − ≤  (2.3) 

When Φ = 0, sliding occurs and plastic strain develops. Let the absolute value of the 

sliding rate, called the plastic multiplier, be λ (λ > 0, when sliding). Then, 

 ( )sgn
p

p F
t

εε λ∂
= =

∂
�  (2.4) 
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where sgn(x) = 1 if x = 0 and x/|x| otherwise (the signum function). Or using equation 

(2.3): 

 p

F
ε λ ∂Φ

=
∂

�  (2.5) 

This is the flow rule. When Φ < 0, no sliding occurs and λ = 0. Hence, 

 
0   when   0
0   when   0
0  cannot occur

λ
λ

= Φ <
> Φ =

Φ >
 (2.6) 

These conditions can be summarized as follows: 

 ( )0 0 0Fλ λ≥ Φ ≤ Φ =  (2.7) 

Equations (2.7) can be recognized as the Kuhn-Tucker optimality conditions (see for 

example, Fletcher (2000)). It is also seen that when Φ(F) = 0, i.e. when yielding has 

occurred, 0
t

∂Φ
Φ = ≤

∂
� , for if 0Φ >� , then ( ) ( ) ( )2 0t t t t O tΦ + ∆ = Φ + Φ∆ + ∆ >�  for 

sufficiently small ∆t. Hence when Φ(F) = 0: 

 0λΦ =�  (2.8) 

This is known as the consistency condition of classical plasticity. 

2.3. One Dimensional Plasticity - Rate Form 

Equation (2.2) can be written in rate form as: 

 ( )pF k ε ε= −� � �  (2.9) 
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Since F
F

∂Φ
Φ =

∂
�� , it can be concluded from equation (2.8) that when Φ(F) = 0, 

0F
F

λ ∂Φ
=

∂
� . Substituting in equation (2.9), we have: 

 ( ) 0pF k
F F

λ λ ε ε∂Φ ∂Φ
= − =

∂ ∂
� � �  (2.10) 

If λ ≠ 0, then ( ) 0pk
F

ε ε∂Φ
− =

∂
� �  ⇒ 0k

F F
ε λ∂Φ ∂Φ − = ∂ ∂ 
�  ⇒ 

 
( )

( )2 sgnF

F

k F
k

ε
λ ε

∂Φ
∂

∂Φ
∂

= =
� �  (2.11) 

If λ = 0, then either Φ<0 (unyielded) or Φ� <0 with Φ=0 (unloading). Let H(x) be the 

Heaviside step function: H(x) = 1 if x≥0, H(x) = 0 if x<0. It is seen that λ = 0 if and only 

if H(Φ)H( Φ� ) = 0. Combining this with equation (2.11), the following results are 

obtained: 

 ( ) ( ) ( )sgnH H Fλ ε= Φ Φ� �  (2.12) 

Noting that sgn(F)sgn(F) = 1, we have: 

 ( ) ( ) ( )sgnp F H Hε λ ε= = Φ Φ�� �  (2.13) 

 ( ) ( )1 21pF k k H Hε ε ε= − = −� � � �  (2.14) 

where H1 = H(Φ), the step function signifying yielding and H2. = H( Φ� ), that signifies 

unloading from the yield surface. This is the statement of ideal plasticity in rate form. 

Two further generalizations can be performed at this stage. First, the step function H1 can 

be smoothened as follows: 
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 1

N

y

FH
F

=  (2.15) 

where N is a real number and ideal plasticity is recovered as N → ∞. Second, H2 can be 

modified as follows: 

 ( ) ( ) ( )( ) ( ) ( )
2

1 sgn sgn 1 sgn sgn1 sgn
2 2 2

F F F F
H H

+ ++ Φ
= Φ = = =

� ��
�  (2.16) 

Furthermore, since the directions of the rate of change of force and the rate of change of 

strain are presumably the same, sgn( F� ) = sgn(ε� ). Hence: 

 ( ) ( )2 1 2

1 sgn
sgn

2
F

H F
ε

η η ε
+

= = +
�

�  (2.17) 

where η1 = η2 = 0.5 for classical ideal plasticity. But The shape of the unloading curve 

can be varied by varying η1 and η2. However, the sum η1 + η2  must be equal to one to 

satisfy the yield condition (Constantinou and Adane (1987)). Thus equation (2.14) may 

be written as: 

 ( )( )1 21 sgn
N

y

FF F
F

η η ε ε
 
 = − +
 
 

� � �  (2.18) 

This is identical to the Bouc-Wen model without hardening (Wen (1976)). Sivaselvan 

and Reinhorn (2000) derived such relationships between other one dimensional 

constitutive models and also extend the rate model to include various deterioration effects 

stiffness and strength degradation and pinching. 
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Notice that as mentioned in Section 1, the inequality constraint (2.3) has led to the 

nonholonomic constraint (implicit differential equation (2.18) connecting the rate of 

change of stress to the rate of change of strain. 

 

 

k

Fy 

η 

ε εp

F 

 

Fig. 2.2. Visco-plastic Regularization 
 

2.4. One Dimensional Plasticity – Dissipation Form 

Next, consider the elastic-visco-plastic system of Fig. 2.2. This is the visco-plastic 

regularization of the ideal plastic system of Fig. 2.1 (Duvaut and Lions (1976) and Simo 

and Hughes (1998)). If the force in the spring is F, then the force in the damper is: 

 
( ) ( ) ( )
0                           if  0               if  

sgn
  if  sgn   if  

yy
damper y

slider y y y

F FF F
F F F F

F F F F F F F F F

 ≤ ≤ = = = − − > − >  
(2.19) 

Hence: 

 ( )1 1 sgnp
damper yF F F Fε

η η
= = −�  (2.20) 
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where η is the coefficient of the regularizing viscous damper and <x> = (x+|x|)/2, the 

ramp function also known as the Mackaulay Bracket. The above constitutive equation 

can be derived from a convex dissipation function as follows: 

Assume the function ϕ(F) to be a penalty function that penalizes F’s that lie outside the 

elastic region: 

 ( ) 21
2 yF F Fϕ
η

= −  (2.21) 

Then: 

 ( ) ( )1 sgnp
y

F
F F F

F
ϕ

ε
η

∂
= = −

∂
�  (2.22) 

In the limit of the viscous coefficient, η, going to zero, the dissipation function ϕ of 

equation (2.21) becomes: 

 ( )
0  if  

 if  
slider y

slider y

F F
F

F F
ϕ

 ≤= 
∞ >

 (2.23) 

where Fslider is the force in the slider. In the language of Convex Analysis and Sub-

differential Calculus, this function is referred to as the Indicator function of the elastic 

domain. The Indicator Function of a convex set C is defined as: 

 
0  if  

 if  C

x C
x C

∈
= ∞ ∉

U  (2.24) 

Thus, if C is the elastic domain, { }: yC x x F= < , then ( ) ( )CF Fϕ = U . The plastic strain 

rate is such that: 

 ( )p Fε ϕ∈∂�  (2.25) 
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where ∂ is the multi-valued sub-gradient operator. For a comprehensive treatment of this 

subject, the reader is referred to Hiriart-Urruty and Lemaréchal (1993) and for a 

discussion in the context of Plasticity Theory, to Han and Reddy (1999). However, since 

the tools of Sub-differential Calculus are not absolutely essential for the developments in 

this work and in order to keep the notation tractable, it is chosen to carry out all 

derivations involving the dissipation function using the well-behaved regularized form 

and impose the ideal-plastic limit as a final step. 

2.5. Kinematic Hardening – Series vs. Parallel Models 

The experimentally observed one-dimensional behavior of many materials and 

components can be idealized as follows: (i) after yielding, the slope of the force-

deformation curve is positive, but smaller than that in the elastic region; (ii) under cyclic 

loading, the force lies between two parallel lines as shown in Fig. 2.3. This behavior is 

known as kinematic hardening and is closely related to the Bauschinger Effect in 

structural steel. Kinematic hardening can be modeled using the series model as show in 

Fig. 2.4 or using the parallel model as shown in Fig. 2.5 (Nelson and Dorfmann (1995), 

Thyagarajan (1989) and Iwan (1966)). 

In this work, we use the parallel model for kinematic hardening. The constitutive 

equations are as follows: 

 p hF F F= +    and   p hF F F F kα ε= − = −  (2.26) 

where Fp is the elastic-plastic force and Fh is the hardening force as shown in Fig. 2.5. 

The yield condition is given by: 

 ( ) ( )1 0p p
yF F FαΦ = − − ≤  (2.27) 
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Fig. 2.3. Kinematic Hardening 
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Fig. 2.4. Kinematic Hardening - Series Model 
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and the rate form of the plasticity relation by: 

 ( ) ( )1 21 1F k k H Hα ε α ε= + − −� � �  (2.28) 

where H1 and H2 may be the modified functions: 

 
( )1 1

N
p

y

FH
Fα

=
−

    and   ( )2 1 2 sgn pH Fη η ε= + �  (2.29) 

The elastic domain, ( ){ }: 1 yC x x Fα= < − . Then the dissipation function, regularized 

dissipation function and the dissipation form of the plasticity relation are given 

respectively by: 

 ( ) ( )p p
CF Fϕ = U  (2.30) 

 ( ) ( )
21 1

2
p

yF F Fϕ α
η

= − −  (2.31) 

 
( ) ( ) ( )1 1 sgn

p
p p

yp

F
F F F

F
ϕ

ε α
η

∂
= = − −

∂
�  (2.32) 

The series formulation will be discussed briefly in Section 5. In the State Space Approach 

of Sections 3 and 4, the rate forms will be used, while in the Lagrangian Approach of 

Section 5, the dissipation form will be used. 

2.6. Multi-dimensional Plasticity 

The relations of plasticity can be derived for the multi-dimensional case, i.e., 

where there is interaction between the stress-resultants, along similar lines as the one 

dimensional case. Equations (2.1)-(2.4) have their multi-dimensional analogues: 

 e p= +ε ε ε  (2.33) 
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 ( )p= −k ε εF  (2.34) 

subject to the yield condition: 

 ( ) 0Φ ≤F  (2.35) 

and the flow rule: 

 p λ ∂Φ
=

∂
ε�

F
 (2.36) 

where F is the stress-resultant vector, ε is the total deformation vector, εp is the plastic 

deformation vector, k is the cross-section elastic rigidity matrix consisting of the axial 

rigidity (EA), the flexural rigidity (EI) etc. and λ is the plastic multiplier. The Kuhn-

Tucker conditions: 

 ( )0 0 0λ λ≥ Φ ≤ Φ =F  (2.37) 

are identical to equations (2.7) except that the yield function Φ in now a function of F, 

the stress-resultant vector. Using the consistency condition, 0λΦ =� , the plastic 

multiplier, λ, and the plastic strain rate, pε� , are obtained in a fashion similar to equation 

(2.11) as: 

 ( )
( ) ( )

λ
∂Φ
∂

∂Φ ∂Φ
∂ ∂

=
T

T

kε

k

�F

F F

 (2.38) 

 ( )
( ) ( )

p
∂Φ
∂ ∂Φ

∂∂Φ ∂Φ
∂ ∂

=
T

T

kε
ε

k

�
� F

F

F F

 (2.39) 

The following equation (2.14), the rate of change of the stress-resultant vector is: 
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 ( )
( ) ( )1 2H H

∂Φ
∂ ∂Φ

∂∂Φ ∂Φ
∂ ∂

 
= − 

  

T

T

kε
kε

k

�� � F
F

F F

F  (2.40) 

where, as before, where H1 = H(Φ), the step function signifying yielding and H2. = 

H( Φ� ), that signifies unloading from the yield surface. By non-dimensionalizing the 

stress-resultants, it can be arranged that Φ(F) = Φ’(F) – 1. Then again, these step 

functions may be generalized as follows: 

 ( )1 1
N

H = Φ +F    and   ( )2 1 2 sgnH η η= + Tε�F  (2.41) 

Equation (2.40) can be attributed two geometric meanings: 

1. Let ( )
( ) ( )

ˆ
∂Φ
∂

∂Φ ∂Φ
∂ ∂

=
T

k
n

k
F

F F

. n̂  is the unit normal to the yield surface in the k-1 norm, 

i.e., 1

2 1ˆ ˆ ˆ 1−
−= =T

k
n n k n . Then when H1 = H2 = 1, i.e., when on the yield 

surface, ( )1ˆ ˆ− = − 
Tkε n k kε n� � �F . Thus F�  is the projection in the k-1 norm of kε�  on 

the tangent plane to the yield surface (Simo and Govindjee (1991)). 

2. The interaction matrix 

 ( )( )
( ) ( )

∂Φ ∂Φ
∂ ∂

∂Φ ∂Φ
∂ ∂

=
T

T

k
B

k
F F

F F

 (2.42) 

 is introduced. It can be verified from equation (2.39) that p =ε Bε� � . Also BB = B. 

Hence B is a projection matrix (Trefethen and Bau (1997)). B projects ε�  onto the 

normal ∂Φ
∂F  to the yield surface. The rate form of plasticity is therefore: 

 [ ]1 2H H= −k I B ε� �F  (2.43) 
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where I is the identity matrix. Observe the similarity between equations (2.43) and (2.14). 

The elastic domain is given by ( ){ }: 0C = Φ <F F . Hence, the dissipation 

function is ( ) ( )Cϕ = UF F . In the multi-dimensional case, there are several possible 

regularizations. Two of these are (Simo and Hughes (1998)): 

1. Duvaut-Lions Regularization: 

 ( ) 21
2 Cϕ
η

= -PF F F  (2.44) 

 where PCF is the orthogonal projection of F on the set C and ||.|| is the vector 2-

norm. 

2. Perzyna Regularization: 

 ( ) ( ) 21
2

ϕ
η

= ΦF F  (2.45) 

 where <.> denote the Mackaulay brackets. The dissipation form of the plastic 

constitutive law is then: 

 ( )p ϕ∂
=

∂
ε�

F
F

 (2.46) 

Kinematic Hardening is again incorporated using the parallel model. The 

analogues of equations (2.27) and (2.28) are: 

 ( ) 0pΦ ≤F  (2.47) 

 ( ) ( )1 2H H= + −αkε I -α k I B ε� � �F  (2.48) 



 26

where α is the diagonal matrix of post-yield slope ratios, and Fp, the plastic component 

of the stress-resultant vector is p = -αkεF F . 

2.7. Yield Functions Φ 

Two yield functions are used in this work to model the behavior of beam-column 

cross sections. In the following, p, my and mz are the non-dimensional axial force, minor- 

and major-axis moments, 
y

Pp
P

= , 
y

y
y
y

Mm
M

=  and
z

z
z
y

Mm
M

= . P is the axial force and M’s, 

the bending moments on the cross-section. Superscripts y and z on the bending moments 

denote the axis of bending and subscript y denotes the yielding value of the stress-

resultant in the absence of the other stress-resultants. The stress-resultant 

vector, { }y zP M M=
T

F . 

1. Yield Function 1: This is the function given by Simeonov (1999) for structural steel 

I-sections and is given by: 

 ( )
1 21 2

1 21 2
1

11

y y z z

y y z z

c c p c c p
y z

b b pb b p

m m

pp

+ +

++

   
   Φ = + −

   −−   
F  (2.49) 

 where 1
yb , 2

yb  , 1
yc  , 2

yc  , 1
zb  , 2

zb  , 1
zc  and 2

zc  are coefficients that control the shape of the 

surface. The parameters of the surface a re explained in detail by Simeonov (1999). 

2. Yield Function 2: This is the yield function presented by McGuire et al. (2000) for 

wide-flanged structural steel I-sections and is given by: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

2 42

2 2 2 22 6          3.5 3 4.5 1

z y

z y z y

p m m

p m p m m m

Φ = + +

+ + + −

F
 (2.50) 
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When modeling kinematic hardening by the parallel model, the yield function has to be 

modified appropriately. In this case, the non-dimensional quantities used in equations 

(2.49) and (2.50) are
p

p
y

Pp
P

= , 
yp

y
yp
y

Mm
M

=  and 
zp

z
zp
y

Mm
M

=  where the plastic components, 

{ }p p yp zpP M M=
T

F , and P
yP , yp

yM  and zp
yM  are the plastic components of the 

respective yield values given by ( )1p
y yP Pα= − , ( )1yp y

y yM Mα= −  and ( )1zp z
y yM Mα= − . 

The biaxial hysteretic model used by Park et al. (1986) in random vibration, by 

Nagarajaiah et al. (1989) and Fenves et al. (1998) to model seismic isolation bearings and 

by Kunnath and Reinhorn (1990) to model the biaxial bending interaction in reinforced 

concrete cross-sections is in fact an application of equation (2.48) with a two dimensional 

circular or elliptic yield function. 

2.8. Summary 

The constitutive relations of classical plasticity theory have been established in 

forms suitable for use in following sections. In the state space approach of Sections 3 and 

4, the rate forms (2.18) and (2.48) will be used as non-holonomic constraints, while in the 

Lagrangian Approach of Section 5, the Dissipation Form (2.46) will be used. 
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3. THE STATE SPACE APPROACH 

3.1. Background 

In this section, an alternate method is proposed for the static and dynamic analysis 

of structures with inelastic behavior. The solution is aimed at performing analysis beyond 

the onset of yielding near collapse and at considering strength changes as well as stability 

issues. The governing equations of motion and constitutive behavior of a structure are 

considered as constituting a constrained dynamical system. This leads to an alternative 

approach to the formulation and solution of initial-boundary-value problems involving 

nonlinear distributed-parameter structural systems by solving the equations of balance 

and the constitutive equations simultaneously. 

For a dynamical system comprising lumped-parameter elements whose nodal 

force-displacement relationships are available directly (e.g. base isolation systems, 

various damping systems etc.), introducing nodal velocities and the forces in these 

elements as additional unknowns results in a set of explicit first-order Ordinary 

Differential Equations (ODE). Such dynamic system is unconstrained and can be solved 

using any appropriate numerical method. This approach has been extensively employed 

in the solution of dynamic linear and non-linear problems especially in structural control 

and non-deterministic analysis (see for example Nagarajaiah, Constantinou et al. (1989), 

Inaudi and de la Llera (1993), Casciati and Faravelli (1988) and Barroso et al. (1998)). 

However, in the general case, the dynamic system has holonomic as well as non-

holonomic constraints. When there are un-damped quasi-static degrees of freedom (i.e., 

the mass and/or damping matrix is singular) the equations of equilibrium in these degrees 

of freedom are holonomic constraints on the internal forces. When considering 
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distributed plasticity, the constitutive relations are non-holonomic constraints. The 

resulting system of equations not only consists of explicit ODE’s but also contains 

implicit ODE’s (arising from the non-holonomic constraints) and algebraic equations 

(arising from the holonomic constraints). The numerical solution of such systems of 

Differential-Algebraic Equations (DAE) is more complex than the solution of ODE’s and 

reliable methods for this purpose have been developed more recently (Brenan et al. 

(1996)) 

The structure, which is spatially discretized following a weak formulation, is 

completely characterized by a set of state variables. These include global quantities such 

as nodal displacements and velocities and local quantities such as nodal forces and strains 

at integration points. The evolution of the global state variables is governed by physical 

principles such as momentum balance and that of the local variables by constitutive 

behavior. The response of the system is described by a set of equations involving the state 

variables and their rates. 

3.2. Overview of Previous Work 

The state-space approach (SSA) involving DAE’s has been used extensively in 

multi-body dynamics of aerospace and mechanical assemblies (see for example, Bauchau 

et al. (1995) and Haug et al. (1997)). The first application of the state-space approach to 

finite-element solution of quasi-static distributed plasticity problems, is that of Richard 

and Blalock (1969), to solve plane-stress problems. Since this work considered only 

monotonic loading, the load factor (rather than time) served as the independent 

monotonically increasing variable. It is surprising, however, that no subsequent work in 

this direction has been reported until the beginning of the last decade. Hall et al. (1991), 
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used DAE’s to solve large deformation plasticity problems arising in punch stretching in 

metal forming operations. Papadopoulos and Taylor (1994), presented a solution 

algorithm based on DAE for J2 plasticity problems with infinitesimal strain. 

Papadopoulos and Lu (1998) subsequently extended this strategy to a generalized 

framework for solution of finite plasticity problems. Iura and Atluri (1995), used the 

DAE-based state-space approach for the dynamic analysis of planar flexible beams with 

finite rotations. The first formal description of the methodology of formulating initial-

boundary-value problems in nonlinear structural analysis was provided by Fritzen and 

Wittekindt (1997) and by Shi and Babuska (1997). These works provide the motivation 

for the approach proposed here. 

3.3. Section Outline 

The work reported here consists of four parts. First, a general procedure is 

presented for identifying the state variables of a spatially-discretized structure. Second, 

the algorithm for constructing the system of state equations is introduced, accounting for 

element connectivity, boundary conditions, constitutive relationships, and different types 

of excitation. Third, a nonlinear beam element based on force-interpolation and a 

constitutive macro-model is developed in this framework. Fourth, the above development 

is implemented in a computer program and the quasi-static and dynamic responses of a 

typical frame structure are validated against benchmark solutions. The DAE solver 

DASSL (Brenan, Campbell et al. (1996)) has been used in this work. 

3.4. State Variables and Equations of a SDOF System 

A nonlinear single-degree-of-freedom (SDOF) system, subjected to dynamic and 

quasi-static forces, will be used to illustrate the state-space formulation. The constitutive 
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model of equation (2.28) will be used to represent the system. The model in Fig. 3.1 has 

three state variables and, therefore, three state equations. 
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Fig. 3.1. SDOF System 
Let, 

 1y u=   ,  2y u= �   ,  3
p hy F F F= = +  (3.1) 

Then, for the dynamic problem the response is described by, 

 2 1 3 0my cy y P+ + − =� �  (3.2) 

 2 1 0y y− =�  (3.3) 

 ( ) ( )3 1 2 21 1 0y k k H H yα α− + − − =  �  (3.4) 

For this system, y1 and y2 are the global state variables and y3 is the local state variable. 

Correspondingly, (3.2) and (3.3) are the global state equations and (3.4) is the local state 

equation. In terms of the state variables H1 and H2 of equations (2.29) are as follows: 
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( )

3 1
1 1

N

y

y kyH
F

α
α

−
=

−
   and   ( )2 1 3 1 2 2sgnH y ky yη α η= − +    (3.5) 

Equations (3.5) are identical to equations (2.29) of Section 2 with the definitionsof the 

state variables y1, y2 and y3 in equation (3.1). It should be noted that the choice of state 

variables for this system is not unique. For example, an alternative, and probably more 

natural, formulation of the same problem can be devised using the hysteretic component 

of the restoring force as a local state variable. Let, 

 1y u= , 2y u= �  , 3
py F=  (3.6) 

Then, the response of the SDOF system is described by, 

 2 1 1 3 0my cy ky y Pα+ + + − =� �  (3.7) 

 2 1 0y y− =�  (3.8) 

 ( ) ( )3 1 2 21 1 0y k H H yα− − − =�  (3.9) 

H1 and H2 are then given by: 

 
( )

3
1 1

N

y

yH
Fα

=
−

   and   ( )2 1 3 2 2sgnH y yη η= +  (3.10) 

The first version, however, is preferred for reasons, which will become apparent later . In 

either case, we obtain a system of ODE. 

In contrast to the dynamic system (3.2)-(3.4), a quasi-static system subjected to 

identical force history, has only two state variables, hence, two state equations. Let, 

 1y u= , 2y F=  (3.11) 
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Then, the response of the SDOF system is described by, 

 2 0y P− =  (3.12) 

 ( ) ( )2 1 2 11 1 0y k k H H yα α− + − − =  � �  (3.13) 

In this case, the constitutive equation (3.13) is an implicit differential equation and the 

equation of equilibrium (3.12) is algebraic. Therefore, a set of DAE must be solved to 

obtain the quasi-static response of SDOF system with nonlinear restoring force. 

3.5. Differential-Algebraic Equations (DAE) 

A DAE system is a coupled system of N ordinary differential and algebraic 

equations, which can be written in the following form: 

 ( ), ,t =Φ y y 0�  (3.14) 

where Φ, y and y�  are N-dimensional vectors; t is the independent variable; y and y�  are 

the dependent variables and their derivatives with respect to t. Some of the equations in 

(3.14), however, may not have a component of y� . Consequently, the matrix 

 i

jy
 ∂Φ∂

=  
∂ ∂  

Φ
y� �

 (3.15) 

may be singular. A measure of the singularity is the index (Brenan, Campbell et al. 

(1996)). This, in simple terms, is equal to the minimum number of times equation (3.14) 

must be differentiated with respect to t to determine y�  explicitly as functions of y and t. 

The explicit ODE system, 

 ( ),t=y g y�  (3.16) 
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therefore has index 0. The system composed of (3.2)-(3.4), for example, can be converted 

to the standard form without additional differentiation.  

 1 2y y=�  (3.17) 

 2 3
2

P cy yy
m

− −
=�  (3.18) 

 ( ) ( ) ( )( )3 1
3 2 1 3 1 2 2 21 1 sgn

1

n

y

y kyy ky k y ky y y
F

αα α η α η
α

 −  = + − − − +  −  
�  (3.19) 

Equations (3.12) and (3.13) modeling the quasi-static response of SDOF system, 

however, is index 1, because the algebraic equation (3.12) must be differentiated once 

before substitution in (3.13). 

 2y P= ��  (3.20) 

 

( ) ( ) ( )( )
1

3 1
1 3 1 1 21 1 sgn

1

n

y

Py
y kyk k y ky y

F
αα α η α η

α

=
 −  + − − − +  −  

�
�

�

 (3.21) 

Strictly speaking, this is not an explicit ODE because 1y�  appears on the right-hand side 

of (3.21). But since it appears only in the signum function, which is a constant function 

except for the singularity at 1y� = 0, the index may be taken to be 1.  

The numerical solution of DAE is more involved than the solution of ODE. A 

brief summary of the integration method in DASSL is provided for the sake of 

completeness. The derivative y�  is approximated by a backward differentiation formula: 

 1
10

1 k

n n i n
inh

α
β −

=

 = − 
 

∑y y y�  (3.22) 
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where, yn, ny� and yn-1 are the approximations of the solution of (3.14) and its derivative at 

times tn and tn-1, respectively; hn = tn - tn-1 is the time interval; k is the order of the 

backward differentiation formula relative to yn; αi and β0 are the coefficients of the 

method. Substituting (3.22) in (3.14) results in a system of nonlinear algebraic equations: 

 1
10

1, ,
k

n n n i n
in

t
h

α
β −

=

  
− =  

  
∑Φ y y y 0  (3.23) 

These are solved by the Newton-Raphson method using an iteration matrix of the form: 

 ( ) ( ) ( )
0

, , , ,1, , n n n n n n
n n n

n

t t
t

h β
∂ ∂

= +
∂ ∂

Φ y y Φ y y
N y y

y y
� �

�
�

 (3.24) 

The process of advancing from time tn-1 to the current time tn is summarized by the 

equation: 

 ( ) ( )1 1 , , , ,m m m m m m
n n n n n n n nt t+ −= −y y N y y Φ y y� �  (3.25) 

where the superscript m is the iteration counter. A detailed description of the numerical 

algorithm can be found in Brenan, Campbell et al. (1996). 

3.6. State Variables and Equations of a Multi-Degree-of-Freedom System 

The equation of motion of a multi-degree-of-freedom (MDOF) system is shown 

in equation (AI.15) of Appendix I. 

3.6.1. Global State Variables 

In the general case, the set of global state variables of the system consists of three 

parts:  



 37

1. Generalized displacements along all free nodal degrees of freedom: Displacements 

along constrained generalized coordinates are excluded by virtue of imposing 

boundary conditions.  

2. Generalized displacements along degrees of freedom with imposed displacement 

histories: This occurs, for example, when support displacements due to settlement or 

earthquake motion are prescribed and in displacement-controlled laboratory testing. 

3. Velocities along mass degrees of freedom: The number of velocity state variables 

may be less than the number of displacement variables because often, rotational and 

even some translational mass components, are ignored if their effect is presumed 

negligible. 

3.6.2. Local State Variables 

The local state variables describe the evolution of individual elements. These 

consist of, 

1. Independent element internal end forces. 

2. Constitutive variables, such as stresses or strains at the integration points, according 

to Table 3.1, which may be required to characterize inelasticity. 

3. Any other internal variable that may govern the behavior of the element (e.g. yield 

stresses, back-stress, etc.) 

3.6.3. State Equations 

The three sets of global state equations can be summarized as follows: 

 
1 1 1
2 11 12 2 1
2 2 2
2 12 22 1 2 3
3 3 3
2 2 3
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N
N N

N

       →    
           → + + − =          
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� �
�

 (3.26) 



 38

 4
1specN  − =y d 0  (3.27) 

 1 1
1 2massN  =y - y 0�  (3.28) 

where, ( )1 t=y u , ( )2 t=y u� , ( ) ( ) ( ){ }1 2

3
elem

N= =
TT T T

Q Q Qy F " , d = prescribed 

displacement history vector and superscripts denote partitions described in Appendix I. 

The state of each nonlinear element i is defined by evolution equations involving 

the end forces, displacements and the internal variables used in the formulation of the 

element model. These equations are of the form: 

 ( ) ( ), , ,,et e i i i e i e i i iA u z Q = G Q,u ,u , z , z� � �           ( ), ,i i i i e i e iz = H z ,Q ,Q ,u ,u�� �  (3.29) 

where Aet(ue,i,zi) is the element tangent flexibility matrix; G and H are nonlinear 

functions; Qi and iQ�  are the independent element end forces and their rates; ue,i and ,e iu�  

are the displacements of the element nodes and their rates; zi and iz�  are the internal 

variables and their rates. It must be noted that the first part of equation (3.29) would not 

be necessary in a displacement-based formulation. The formulation of these equations for 

a small deformation beam element is presented in the next subsection and that for a large 

deformation beam-column element in Section 4. The state vector of the structure is 

( ){ }1

1 2 3 4=
TTT T Ty y y yy , where ( ) ( ) ( ){ }1 2

4
elemN=

TTT T
z z zy " . The state equations 

(3.26)-(3.29) consist of explicit ordinary differential equations (the first two partitions of 

(3.26) and (3.28)), implicit ordinary differential equations (3.29), as well as algebraic 

equations (the third partition of (3.26) and (3.27)). They therefore constitute a system of 

DAE of the form (3.14). 
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3.7. Formulation of a Flexibility-Based Planar Beam Element 

The beam element is internally statically determinate. Therefore, a flexibility 

formulation using force interpolation functions is utilized here. The displacement 

interpolation functions used in the usual stiffness-based formulations are exact only for 

elastic prismatic members. In contrast, the force interpolation functions, which are 

statements of equilibrium, are always exact. The state variables of the beam element are 

the independent end forces and the strains and curvatures of sections located at the NG 

quadrature points. Compatibility of deformation within the element may be expressed in 

weak form using the principle of virtual forces as: 

 
1

T T
5

0 0
6

L Lq
q dx dx
q

ε
φ

 
  = = =   
  

 
∫ ∫q b b ε

�
�

� � ��
�

 (3.30) 

where { }ε φ= Tε , the vector of centroidal strain and curvature and b is the force 

interpolation matrix: 

 
1 0 0

0 1x x
L L

 
 =
 −
 

b  (3.31) 

where L is the length of the beam and x is the coordinate along the length of the beam. 

From the equilibrium of a segment, the stress resultant vector at any section can be 

obtained as: 

 
1

5

6

x

z

Q
N

Q
M

Q

 
   = = =   
   

 

b bQF  (3.32) 



 40

where Nx = axial force at any section, Mz = bending moment at any section, Q1 = force 

component parallel to the element chord, Q5 = bending moment at the left end and Q6 = 

bending moment at the right end. From Appendix I, we have the following 

transformations: 

 e e= =T T
RP R T Q B Q  (3.33) 

 ( )e e e=
T

Rq = T Ru B u� � �  (3.34) 

where R = 6×6 rotation matrix (Weaver and Gere (1990)) and  

 

1 0 0 1 0 0
1 10 1 0 0

1 10 0 0 1

L L

L L

 
 −
 
 = −
 
 
 −
  

RT  (3.35) 

The rate form of plasticity, (2.28), is used to represent this constitutive macro-

model. In this section, the beam element is assumed to be axially elastic without any 

interaction between the axial force and the bending moment. Axial force-biaxial bending 

moment interaction and large deformations are treated in Section 4. Then the section 

constitutive equations can be written as: 

 t=ε a �� F     or    t=ε a bQ��  (3.36) 

where a is the cross-section tangent flexibility matrix: 

 ( ) ( )

1

1 2

0
0 1 1

t EA
EI EI H Hα α

−
 

=  + − −   
a  (3.37) 
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where EA and EI are the cross-section elastic axial and flexural rigidities and H1 and H2 

are then given by: 

 
( )1 1

N

y

M EIH
M

α φ
α

−
=

−
   and   ( )2 1 2sgnH M EIη α φ φ η = − + 

��  (3.38) 

and My is the yield moment of the cross-section. Substituting (3.36) in (3.30), we have: 

 
0

L
t

edx
 

= 
 
∫ T

Rb a b Q T Ru� �  (3.39) 

The state equations of the beam element can be summarized as: 

 
0

L
t

edx
 

= 
 
∫ T

Rb a b Q T Ru� �  (3.39) 

 t
i i iε = a b Q��         i = 1,2,…,NG (3.40) 

The section tangent flexibility matrix, at, which is 2x2 in the planar case and 3x3 in the 

three-dimensional case, can be inverted in closed form. It should be noted however, that 

the formulation does not require the explicit inversion of the element flexibility matrix, 

which is of sizes 3x3 and 6x6 respectively in the two and three-dimensional cases. In this 

work, the Gauss-Lobatto rule (Stroud and Secrest (1966)) is used for element quadrature. 

Though this rule has lower order of accuracy than the customary Gauss-Legendre rule, it 

has integration points at the ends of the element and hence performs better in detecting 

yielding. Comparing equations (3.39) and (3.40) with the generic equations (3.29), we 

have: 

 
0

L
et t dx= ∫ TA b a b      { }1 2, ,...,e NG=

TT T Tz ε ε ε      e= RG T Ru�  (3.41) 
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 { }1 21 2, ,...,
NG

t t t
NG         

TTT T
H = a b Q a b Q a b Q� � �  (3.42) 

3.8. Numerical Solution 

Equations (3.26)-(3.28) and equations (3.39)-(3.40) written for every element in 

the structure constitute the state equations. They are solved by the numerical algorithm 

outlined in subsection 3.5 using the routine DASSL. 

3.9. Numerical Example 

To illustrate the method, the system of state equations of an example structure is 

assembled and solved for two different types of excitation: quasi-static and dynamic. The 

response of the state space model is then compared with finite-element solutions of 

ANSYS (1992) which uses a conventional incremental displacement method and 

stiffness-based beam elements. 

The example structure is shown in Fig. 3.2. It is a portal frame consisting of three 

element. The connections are assumed rigid. The stress-strain curve of the material is 

assumed bilinear with the following properties: E = 199955 kN/mm2, σy = 248.2 

kN/mm2, ET  = 0.03E. The section constitutive model of equation (3.36), requires 

definition of five parameters: (i) the elastic axial rigidity EA, (ii) the initial bending 

rigidity (iii) the post-yield bending rigidity aK0, (iv) the parameter n controlling the 
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Fig. 3.2. Example Frame 
 

smoothness of transition and (v) a discrete yield point My. These are obtained by analysis 

of the cross-section and are listed in Table 3.2. For dynamic analysis, lumped masses of 

24.96 kN.s/m2 each are assumed at the top two nodes in the horizontal direction, giving a 

structural period of 0.75s. A damping ratio 5% of critical damping is assumed. 

The finite-element model in ANSYS was created using the thin-walled plastic 

beam element BEAM 24 (ANSYS (1992)). It belongs to the class of stiffness-based fiber 

element models. The cross sections of the frame members were divided into 10 layers. 

The number of elements was obtained by a convergence study. The macro-element model 

for the proposed state-space solution is shown in Fig. 3.3 and consists of three elements 

with 5 Gauss points each. 
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Fig. 3.3. Node and Element Numbering and Active Displacement DOF 
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The state variables for quasi-static analysis of this frame are summarized in Table 

3.3. The result of a quasi-static analysis with cyclic displacement input of increasing 

amplitude is shown in Fig. 3.4. The state variables for a dynamic analysis are 

summarized in Table 3.4 and the results of a dynamic analysis using a ground 

acceleration record from the 1994 Northridge earthquake in Fig. 3.5. Also shown in the 

figures are results obtained using ANSYS, indicating good agreement. 

3.10. Summary 

A general formulation for state-space analysis of frame structures has been 

presented. The method has been applied to both quasi-static and dynamic problems. The 

global state equations of equilibrium and the local constitutive state equations are solved 

simultaneously as a system of differential-algebraic equations. The algorithms used for 

time-step selection in nonlinear dynamic analysis are to date largely heuristic based on 

such ideas as the number of iterations taken in a step for convergence. The state space 

approach provides a consistent algorithm based on the truncation error estimate for 

automatic time-stepping. A flexibility-based nonlinear bending element has also been 

developed in this framework. The accuracy of this macro-element can be refined by 

increasing the number of quadrature points, at which the constitutive equations are 

monitored, in contrast to increasing the number of elements in conventional finite 

element analysis. The feasibility of the state-space approach has been demonstrated by 

good correlation with results from a finite element program, which uses a conventional 

incremental solution algorithm with densely meshed displacement-based beam elements. 
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Fig. 3.4. Quasi-Static Analysis: Shear Force vs Relative Horizontal Displacement of 
Left Beam Element 
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Fig. 3.5. Dynamic Analysis: Shear Force vs Relative Horizontal Displacement of Left 
Beam Element 
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Table 3.1. Local state variables for different types of element formulation 
 

Type of Element Type of Constitutive 

Model Stiffness-based Flexibility-based 

Strain-decomposition Total stresses Plastic strains 

Stress-decomposition Hysteretic stresses Total strains 

 

Table 3.2. Numerical Example - Model Properties 
 

Section A (cm2) I (cm4) α (%) N My (kN-m) 

Column 57.99 4504.98 3 8 117.05 

Beam 73.96 12535.21 3 8 215.67 

 

Table 3.3. Quasi-Static Analysis - Global and Local State Variables (y11 to y20, y26 to 
y35 and y41 to y50 represent curvatures of quadrature sections) 

 

Global u4 u5 u6 u7 u8 u9 

State Variable y1 y2 y3 y4 y5 y6 

Element 1 FI Mi Mj φ1 … φ12 

State Variable y7 y8 y9 y10 … y21 

Element 2 FI Mi Mj φ1 … φ12 

State Variable y22 y23 y24 y25 … y36 

Element 3 FI Mi Mj φ1 … φ12 

State Variable y37 y38 y39 y40 … y51 
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Table 3.4. Dynamic Analysis - Global and Local State Variables 
 

Global u4 u5 u6 u7 u8 u9 4u�  7u�  

State variable y1 y2 y3 y4 y5 y6 y7 y8 

Element state variables same as Table 3.3, but translated by the rule: s
n

d
n yy =+2 , for n ≥ 7.
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4. LARGE DEFORMATION BEAM-COLUMN ELEMENT 

4.1. Background 

Besides inelastic behavior, due to large lateral forces and P∆ effects, structures 

undergo large displacements. In such cases, in order to capture the behavior accurately, 

the equilibrium of forces and the compatibility of deformations of the structure need to be 

considered in the displaced configuration as opposed to the original configuration. While 

the influence of large elastic deformations has been well studied, this section considered 

large inelastic deformations. An attempt is made herein to formulate a flexibility-based 

planar beam-column element, which can undergo large inelastic deformations. This 

element, in connection with the State Space Approach of Section 3, can be used to 

analyze structures until stability is lost and gravity loads cannot be sustained. The new 

element formulation has no restrictions on the size of rotations. It uses one co-rotational 

frame for the element to represent rigid-body motion, and a set of co-rotational frames 

attached to the integration points, used to represent the constitutive equations. The 

development in this section parallels that of subsection 3.7. 

4.2. Overview of Previous Work 

Reissner (1972) developed the governing equations of a plane geometric 

nonlinear Timoshenko beam starting from the equilibrium equations, and derived the 

nonlinear strain-deformation relationships that are compatible with the equilibrium 

equations in the sense of virtual work. Subsequently Reissner (1973) extended this 

formulation to three-dimensional beams. Huddleston (1979) independently developed 

nonlinear strain-deformation relationships for a geometric nonlinear Euler-Bernoulli 
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beam. These equations reduce to those of Reissner (1972), when shear deformations are 

neglected. Huddleston’s approach forms the basis of the formulation presented herein. 

Researchers have studied the computational solution of the nonlinear beam 

problem using the co-rotational, the total Lagrangian and the updated Lagrangian 

formulations. The treatment of large rotations using the co-rotational formulation was 

introduced by Belytschko and Hsieh (1973). In the co-rotational formulation, one or more 

coordinate systems called co-rotational frames are attached to material points and rotate 

along with them during deformation. Either a single co-rotational frame can be attached 

to the element chord or multiple co-rotational frames can be attached to one or more 

integration points along the length of the beam (Crisfield (1991)), Simo and Vu-quoc 

(1986) developed a general three-dimensional beam element with large rotations and 

shear deformation using the latter approach and using quaternion interpolation. Lo (1992) 

developed an element using a similar approach. Schulz and Filippou (2001) developed a 

total Lagrangian formulation using curvature-based rotation interpolation functions. They 

also describe the second order moments resulting from the use of the Green-Lagrange 

strain and the second Piola-Kirchoff stress. Yang and Kuo (1994), present an exhaustive 

discussion of frame elements using the updated Lagrangian formulation. 

All of the above developments deal only with nonlinear elastic constitutive 

equations, although they can be extended in the incremental form to inelastic behavior. 

The formulations indicated above are based on the principle of virtual displacements.  A 

flexibility-based approach (principle of virtual forces) for frame elements provides 

additional well-known benefits (Park, Reinhorn et al. (1987), Neuenhofer and Filippou 

(1997)). Backlund (1976) developed a flexibility-based element. However, large rotations 
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were restricted to only the co-rotational frame attached to the undeformed centerline, and 

moments and curvatures were assumed linearly distributed within the element. Carol and 

Murcia (1989) and Neuenhofer and Filippou (1998) approached the solution of geometric 

nonlinear flexibility formulations. The large rotations were restricted again to the element 

co-rotational frame. However, second order effects within the element were considered. 

Since the force-interpolation matrix is displacement-dependent, Carol and Murcia (1989) 

used conventional displacement interpolation functions, while Neuenhofer and Filippou 

(1998) used a curvature-based displacement interpolation procedure to approximate the 

displacement field within the element. Barsan and Chiorean (1999) used the geometric 

linear flexibility formulation and corrected the resulting stiffness matrix using stability 

functions. This formulation is also limited to small deformations within the element’s co-

rotational frame and to monotonic loading. 

The development in this paper enhances existing modeling by including inelastic 

behavior, by introducing large rotations within the element co-rotational frame and by 

using the flexibility approach. The solution procedure associated with the proposed 

model allows the study of response up to complete flexural collapse. 

4.3. Element Formulation 

The formulation of the state equations of the flexibility-based large deformation 

beam-column element is developed herein. Fig. 4.1(a) shows the deformed shape of a 

beam, in co-rotational coordinates attached to the initially straight centerline of the beam, 

with the rigid body modes removed. The following assumptions are made: (1) The Euler-

Bernoulli hypothesis holds, that is, plane sections perpendicular to the beam axis before
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Fig. 4.1. Euler-Bernoulli Beam subjected to Large Deformation 
 

deformation, remain so after deformation and shear deformations are ignored in this 

formulation. (2) The cross-section has an axis of symmetry and in the planar case, 

bending is about this axis. (3) The only sources of inelasticity are axial and flexural. 
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There is no inelasticity in shear. The nonlinear strain displacement relationships are 

(Huddleston (1979)): 

 ( )1d
dx
θ ε φ= +             ( )1 cosd

dx
ξ ε θ= +             ( )1 sind

dx
η ε θ= +  (4.1) 

where (ξ,η) is the coordinate of a point which was at (x,0) before deformation, θ is the 

angle made by the tangent to the center-line with the horizontal, ε is the axial strain of the 

centerline and φ is the curvature. Considering a small perturbation about this deformed 

position, the incremental compatibility conditions are given by:  

 ( )1d
dx
θ εφ ε φ= + +
� ��  (4.2) 

 ( )cos 1 sind
dx
ξ ε θ ε θ θ= − +  
� ��  (4.3) 

 ( )sin 1 cosd
dx
η ε θ ε θ θ= + +  
� ��  (4.4) 

Integrating these equations over the length of the element and performing a series of 

integrations by parts (see a detailed derivation in Appendix II), the following variational 

equation is obtained: 
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∫ ∫q b b ε
� �
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 (4.5) 

where q1 = the component along the element chord of the displacement of the right end of 

the element relative to the left end, q2, q3 = rotations at left and right ends relative to the 

chord as shown in Fig. 4.1(a). ( )1φ ε φ= +� , rather than φ, is found to be the work 
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conjugate of the co-rotational moment. This is in agreement with the formulation by 

Reissner (1972). { }ε φ=
T

ε � b is the force interpolation matrix given by: 

 

sin sincos
( ) ( )

1
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L L

L L

θ θθ
ξ ξ

ξ ξη
ξ ξ

 − − 
 =
 − 
 

b  (4.6) 

It is observed that under small deformations, equation (4.6) reduces the result of 

Neuenhofer and Filippou (1998). From the equilibrium of a segment, as shown in Fig. 

4.1(a), the stress resultant vector at any section is obtained as: 
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b bQF  (4.7) 

where P = axial force at any section, M = bending moment at any section, Q1 = force 

component parallel to the element chord, Q2 = bending moment at the left end and Q3 = 

bending moment at the right end. Note than the forces in the vector Q are in element 

coordinates. 

4.4. Transformations of Displacements and Forces 

The global displacements and the rates of displacement have to be converted to 

local element coordinates and subsequently to deformations in the element co-rotational 

system by eliminating the rigid body modes. Fig. 4.1(b) shows the element in the 

undeformed and the deformed configurations. θe is the undeformed chord angle made 

with the horizontal in the undeformed configuration. θe
’ is the chord angle after rigid 
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body rotation in the deformed configuration. The reference chord rotation is (see Fig. 

4.1(b)): 

 '
c e eθ θ θ= −  (4.8) 

Assuming that (x1,y1) and (x2,y2) are the coordinates of the element end nodes in the 

undeformed configuration and (x1
’,y1

’) and (x2
’,y2

’), those in the deformed configuration, 

then, 

 '
1 1 1xx x u= +      '

1 1 1yy y u= +      '
2 2 2xx x u= +      '

2 2 2yy y u= +  (4.9) 

where (ux1, uy1, uθ1) and (ux2, uy2, uθ2) are the beam generalized displacements at the 

respective nodes. The length of the chord in the deformed configuration is then: 

 ( ) ( ) ( )2 2' ' ' '
2 1 2 1L x x y yξ = − + −  (4.10) 

where L is the original chord length. The generalized deformations, qi, in the co-

rotational system (see Fig. 4.1), devoid of rigid body components, are: 

 ( )1q L Lξ= −           2 1 cq uθ θ= −           3 2 cq uθ θ= −  (4.11) 

The independent end forces in the co-rotational system have to be transformed into the 

global coordinate system so that they can participate in the global equations. Considering 

equilibrium in the deformed configuration leads to the following transformation for the 

forces: 

 eF = B Q  or T T
RF = R T Q  (4.12) 
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where F is the vector of end forces in the global coordinate system. R is the rotation 

matrix from global to local coordinates, TR is the transformation from local to co-

rotational coordinates and e T T
RB = R T  is the element equilibrium matrix. 

 

' '

' '

' '

' '

cos sin 0
sin cos 0 0

0 0 1
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( ) ( )

( ) ( )

1 0 0 1 0 0
1 10 1 0 0

1 10 0 0 1

L L

L L

ξ ξ

ξ ξ

 
 

− 
 

= − 
 
 
 −
  

RT  (4.14) 

Since the displacement rates are work conjugate to the forces, they are transformed by: 

 e= Rq T Ru� �  (4.15) 

where { }1 1 1 2 2 2e x y x yu u u u u uθ θ=
T

u . 

4.5. Approximation of the Element Displacement Field 

As seen in Eq. (4.6), the instantaneous force-interpolation matrix, b, depends on 

the displacement field in the element, relative to the element co-rotational frame. This 

field therefore needs to be approximated. The determination of the displacement field 

using the compatibility equations (4.1), is an over-specified two-point boundary value 

problem, since all the end displacements and the strains at the integration points are 
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known at a given instant. For small deformations, Neuenhofer and Filippou (1998) 

successfully used a Curvature Based Displacement Interpolation procedure to obtain the 

displacement field. However, when used with the large deformation compatibility 

equations, and with more integration points, this procedure is found to result in 

oscillatory displacement fields. Hence, the following procedure is used for this purpose: 

(i) An implicit first order method is used to integrate Eqs. (4.1) as an initial value 

problem (IVP) starting from one end of the element as shown below: 

 ( )1 1
1 1 1i i i i ix xθ θ φ+ + += + − �    ( ) ( )1 1 1

1 1 1cosi i i i ix xξ ξ θ+ + += + −   

 ( ) ( )1 1 1
1 1 1sini i i i ix xη η θ+ + += + −      i = 1,2,…,NG-1 (4.16) 

where NG = number of integration points and subscript i denotes the ith integration point. 

(ii) The equations are solved a second time as an IVP starting from the other end of the 

element. 

 ( )2 2
1 1 1i i i i ix xθ θ φ− − −= + − �    ( ) ( )2 2 2

1 1 1cosi i i i ix xξ ξ θ− − −= + −   

 ( ) ( )2 2 2
1 1 1sini i i i ix xη η θ− − −= + −      i = NG,NG-1,…,2 (4.17) 

(iii) The displacements at the integration points are approximated as the weighted average 

of the two solutions: ( )1 21i i iχ λ χ λ χ= + − where χ denotes any of the components of the 

element displacement field, θ, ξ or η, and λ is a weighting factor. λ = 0.5 is used in this 

work. This approach is found to produce sufficiently accurate results, as shown in the 

numerical examples. 
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4.6. Constitutive Relations 

The inelastic behavior of members is modeled in a macroscopic sense. The 

relationships between stress resultants (axial force, bending moment etc.) and generalized 

strains (centerline strain, curvature etc.) are used directly, instead of the material stress-

strain relationships. The rate form of multi-axial plasticity (2.48) is used along with the 

cross-section yield function (2.49). The section constitutive equation is given by: 

 tε = a� F     or    ( )tε = a bQ + bQ� ��  (4.18) 

where at is the section tangent flexibility matrix, ( ) [ ]{ } 1
1 2H H

−
= + −f αk I α k I - B , k is 

the cross-section elastic rigidity matrix, α is the diagonal matrix of post-yield rigidity 

ratios and I is the identity matrix. B is the matrix of the interaction between the stress 

resultants given by equation (2.42). Substituting equation (4.18) in equation (4.5), we 

have: 

 
0 0

L L
t t

edx dx
   

= −   
   
∫ ∫T T

Rb a b Q T Ru b a b Q� ��  (4.19) 

The second term on the right hand side is the initial stress term. The Gauss-Lobatto rule 

is again used for element quadrature. 

4.7. Summary of State Equations 

The element state equations of (3.29), for the large deformation element, take the 

form: 

 
0 0

L L
t t

edx dx
   

= −   
   
∫ ∫T T

Rb a b Q T Ru b a b Q� ��  (4.19) 
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 ( )i i i iε = a b Q + b Q� ��         i = 1,2,…,NG (4.20) 

Comparing equations (4.19) and (4.20) with the generic equations (3.29), we have: 

 
0

L
et t dx= ∫ TA b a b , the element tangent flexibility matrix (4.21) 

 { }1 2, ,...,e NG=
TT T Tz ε ε ε , the element states (4.22) 

 
0

L

e dx
 

= −  
 
∫ T

RG T Ru b ab Q��  (4.23) 

 ( ) ( ) ( ){ }1 1 1 2 2 2, ,..., NG NG NG
     
     

TT T T
H = a b Q + b Q a b Q + b Q a b Q + b Q� � �� � �  (4.24) 

Equations (3.26)-(3.28) and equations (4.19)-(4.20) written for every element in the 

structure constitute the state equations. They are solved using DASSL.  

4.8. Numerical Example 1: Snap-through of a deep bent 

The elastic snap-through analysis of the bent structure (see for example, Crisfield 

(1991)) shown in Fig. 4.2 is carried out using two flexibility-based elements, one for each 

member and having seven integration points (NG = 7). The non-dimensional properties of 

the structure are shown in Table 4.1. Fig. 4.2(a) and (b) show the force-displacement 

behavior for two height/span ratios (0.05 – shallow bent and 0.25 – deep bent). The 

figures also show standard displacement-based solutions obtained using ABAQUS using 

10 B23 type elements (ABAQUS, 2000). The results indicate discrepancies smaller than 

5% at maximum and less than 1% on average. 
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(a) Case (1): Shallow Bent (h/L = 0.05) 

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0

Vertical Displacement / Height

New Formulation (1 element per member, 7 int points)

ABAQUS (10 B23 elements per member)

 
 
 F

L

h
u

 

(b) Case (2): Deep Bent (h/L = 0.25) 
 

Fig. 4.2. Numerical Example 1: Force-Displacement Response 
 

Table 4.1. Numerical Example 1: Non-dimensional Structural Properties 

 

Compressibility (Huddleston (1979))

( )2 2

I
A L h+  

Height / Span Ratio

h
L  

Case (1) 2x10-4 0.05 

Case (2) 1.88x10-4 0.25 
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4.9. Numerical Example 2: Collapse of a single-story structure 

Fig. 4.5 shows a single story frame. Each of the columns can be modeled as being 

fixed at the bottom and free to translate but fixed against rotation at the top. The columns 

have a standard AISC S3x5.7 cross-section. This choice is made because a series of 

experimental studies that have been planned using this configuration. The modulus of 

elasticity of the material is assumed as E = 2x105 MPa (29000 ksi), the yield stress as σy 

= 248.8 MPa (36 ksi) and the hardening ratio as a = 0.03. The cross-section has axial 

rigidity, EA = 2.11x105 kN (47362.8 kip), flexural rigidity, EI = 2.08x108 kN-mm2 

(72210 kip-in2), axial force capacity, Py, under no bending moment = 262.2 kN (58.8 

kip), strong axis bending moment capacity, My, under no axial load = 7248.7 kN-mm (64 

kip-in) and the ratio of post-yield to elastic rigidities, a = 0.03. One flexibility-based 

element with 10 integration points is used to represent each column. 

4.9.1. Constitutive Equation for S3x5.7 cross section 

The axial force-moment interaction diagram for the S3x5.7 cross-section, 

obtained by a fiber model analysis of the section is shown in Fig. 4.4. The parameters of 

the yield surface given by equation (2.49) are obtained as b1 = 1.5 and b2 = -0.3 to best fit 

the results from sectional analysis. The yield function the of the cross-section is therefore 

given by: 

 1.5 0.3 1 0pΦ p m−= + − =  (4.25) 

The constitutive equation of the section is then given by equation (2.48). 
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4.9.2. Nonlinear Static Analysis 

The frame is subjected to a constant vertical load representing the weight and a 

lateral load applied in displacement control. Each column carries an axial force of 21% of 

the elastic critical buckling load, when vertical. The force deformation response of one of 

the columns is shown in Fig. 4.5. The figure also shows the standard displacement-based 

solution obtained using ABAQUS, with the material properties listed above and a 

kinematic hardening model. The slight difference in the two solutions stems from the fact 

that the flexibility formulation suggested in this paper uses the section-constitutive 

behavior, while the displacement-based solution in ABAQUS uses the material stress-

strain relations directly. This results in the transition from elastic to inelastic behavior 

being represented differently in the two cases. Fig. 4.6 shows the convergence of the 

flexibility-based element with increasing number of integration points. 

4.9.3. Dynamic Analysis 

The above one-story structure is subjected to an earthquake excitation 

corresponding to the El Centro NS-1940 acceleration record with a peak ground 

acceleration of 2.55% of the acceleration due to gravity (g). The total mass on the 

structure = 4x0.2156Fcritial/g. The period of small amplitude elastic vibration of the 

structure is given by: 

 

tan
2

2 1

2

axial

critical

axial

critical

F
FLT

g F
F

π

π
π

 
  
 = −  (4.26) 
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and equals 1.29 sec for Faxial/Fcritial = 0.2156. The damping constant is taken to be c = 

1.304x10-3 kN-sec/mm, which corresponds to a 5% damping ratio for small amplitude 

elastic vibration. The results of the dynamic analysis are shown in Fig. 4.7(a) to Fig. 

4.7(c). The structure collapses after 2.5 sec as indicated by the large lateral and vertical 

displacements in Fig. 4.7(a) and (c) and by the loss of lateral strength capacity in Fig. 

4.7(b). Additionally, the response of a similar structure tested to collapse was 

successfully simulated using the above procedure (see Vian et al. (2001)). 
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Fig. 4.3. Numerical Example 2: Single Story Frame 
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Fig. 4.4. Force-Strong Axis Bending Moment Interaction diagram for S3x5.7 section 
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Fig. 4.5. Numerical Example 2: Response of one column  (Faxial/Fcritical = 0.2156) 
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Fig. 4.6. Convergence of Flexibility-based Element 
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Fig. 4.7. Numerical Example 2: Dynamic Analysis to Collapse 
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5. THE LAGRANGIAN APPROACH – FORMULATION 

5.1. Background 

In this section, a second alternative method is proposed for the analysis of 

structures considering both material and geometric nonlinearities. The formulation 

attempts to solve problems using a force-based approach in which momentum appears 

explicitly and can be potentially used to deal with structures where deterioration and 

fracture occur before collapse. In Sections 3 and 4, the response of the structure was 

considered as the solution of a set of differential equations in time (DAE when there are 

constraints). Since the differential equations hold at a particular instant of time, they 

provide a temporally local description of the response and are often referred to as the 

strong form. In contrast, in this section, a time integral of functions of the response over 

the duration of the response is considered. Such an approach presents a temporally global 

picture of the response and is referred to as the weak form.  

The kernel of the integral mentioned above consists of two functions – the 

Lagrangian and the dissipation functions – of the response variables that describe the 

configuration of the structure and their rates. The integral is called the action integral. A 

precise formulation of these functions is the subject of this section. In elastic systems, the 

configuration variables are typically displacements. It is shown here, however, that in 

considering elastic-plastic systems it is natural to also include the time integrals of 

internal forces in the structure as configuration variables. The Lagrangian function is 

energy-like and describes the conservative characteristics of the system, while the 

dissipation function is similar to a flow potential and describes the dissipative 

characteristics. In a conservative system, the action integral is rendered stationary 
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(maximum, minimum or saddle point) by the response. In analytical mechanics, this is 

called Hamilton’s principle or more generally the principle of least action. For non-

conservative systems such as elastic-plastic systems, such a variational statement is not 

possible, and only a weak form which is not a total integral is possible.  

Such a weak formulation enables the construction of numerical integration 

schemes that have energy and momentum conservation characteristics. This construction 

and the numerical solution are presented in Section 6. 

5.2. Outline 

An overview of variational methods that have been developed for plasticity is first 

presented in order to place the present work in context. The concept of reciprocal 

structures and their Lagrangian formulation is then explained using simple systems with 

springs, masses, dashpots and sliders. The Lagrangian formulation for skeletal structures 

is subsequently developed and treatment of geometric nonlinearity is shown. Some 

remarks are then made about the uniqueness of the solution and the extension of the 

approach to continua. The numerical integration of the Lagrangian equations by discrete 

variational integrators is discussed in the next section. 

5.3. Variational Principles for Plasticity 

Variational formulations of plasticity are based on the principle of maximum 

dissipation and the consequent normality rule. The equivalence of maximum dissipation 

and normality is demonstrated for example by Simo, Kennedy et al. (1989). The local 

Gauss point level constitutive update has been ascribed a variational structure based on 

the concept of closest point projection (Simo and Hughes (1998) and Armero and Perez-

Foguet (2002)). Various approaches have however been used for deriving global 
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variational formulations for plasticity, each of which when discretized in time, leads to a 

constrained minimization problem in every step. These are listed below: 

1. Complementarity and Mathematical Programming Approach: Maier (1970) starting 

from the equivalence of the Kuhn-Tucker conditions and the linear complementarity 

problem for piecewise linear yield functions derived minimum theorems for 

holonomic elastic-plastic structures. Capurso and Maier (1970) extended this 

formulation to nonholonomic structures. They derived a primal minimum theorem 

for a function of displacement and plastic multiplier rates and a dual minimum 

theorem for a function of stress and back stress rates. When discretized in time using 

the Backward Euler method, these minimum principles lead to quadratic 

programming problems in displacement and stress increments respectively. For an 

extensive survey of this approach and its application by other authors, see Cohn et al. 

(1979). More recently, Tin-Loi (1997) has presented plasticity with nonlinear 

hardening as a nonlinear complementarity problem. For a discussion of the 

complementarity problem, the reader is referred to Isac (1992). 

2. Variational Inequality Approach: Duvaut and Lions (1976) formulated static as well 

as dynamic plasticity problems as variational inequalities. Johnson (1977) and Han 

and Reddy (1999) formulated the static plasticity problem as a Variational inequality 

similar to that of Duvaut and Lions (1976). They used this formulation to show 

existence and uniqueness and to develop a finite element spatial discretization. For 

the solution of the minimization problem resulting in each increment, Johnson 

(1977) used Uzawa’s iterative method (see for example, Ekeland et al. (1976)), while 
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Han and Reddy (1999) used a predictor corrector method. For a treatment of 

variational inequalities, see Kinderlehrer and Stampacchia (1980). 

3. Convex Analysis and Monotone Operator Approach: Romano et al. (1993) used the 

variational theory of monotone multivalued operators to derive rate variational 

principles for plasticity. De Sciarra (1996) extended this approach to derive several 

variational principles involving stress rates, displacement rates, back stress rates, 

plastic multiplier rates etc. which are generalizations of the Hu-Washizu mixed 

variational principle (Washizu (1982)). These principles impose the yield conditions 

and flow rule in a variational sense, leading to the concept of a global yield function 

(Romano and Alfano (1995)). Cuomo and Contrafatto (2000) used an augmented 

Lagrangian approach to solve the nonlinear programming problem arising in each 

increment. 

Panagiotopoulos (1985) and Stavroulakis (2001) discuss the relationship between these 

different approaches listed above. The most common procedure is to use the Backward 

Euler method to approximated the rate quantities in the variational statement leading, to a 

constrained minimization problem in each time increment (see Simo, Kennedy et al. 

(1989) for a detailed presentation). Beyond the variational inequality formulation of 

Duvaut and Lions (1976), not much work has been done in the variational formulation of 

dynamic plasticity.  

In this work, a weak formulation for dynamic plasticity is attempted using 

Hamilton’s principle. It can be shown that the Backward Euler method used in the 

literature discussed above for quasi-static plasticity is unsuitable for dynamic analysis 

because of its excessive numerical damping. In the next section, a numerical integrator 
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well-suited for dynamic analysis is developed by discretizing the variational principle 

instead of the differential equations. 

5.4. Simple Phenomenological Models of Reciprocal Structures 

Reciprocal structures are those structures characterized by convex potential and 

dissipation functions. A more precise definition is provided in subsection 1.5. In this 

subsection, the concept of reciprocal structures is explained using simple spring-mass-

damper-slider models. The mixed Lagrangian and Dissipation functions of such systems 

are derived and various structural components that such a formulation encompasses are 

listed. 

5.4.1. Mass with Kelvin type Resisting System 

 

m
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Fig. 5.1. Mass with Kelvin type Resisting System and Force Input 
 

Consider a spring-mass-damper system where the spring and the damper are in 

parallel (Kelvin Model) as shown in Fig. 5.1 and subject to a time-varying force input 

P(t). The well known equation of motion of this system is given by: 
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 mu cu ku P+ + =�� �  (5.1) 

where m is the mass, k is the modulus of the spring, c is the damping constant, u is the 

displacement of the mass and a superscripted “.” denotes derivative with respect to time. 

The well known approach in Analytical Mechanics is to multiply equation (5.1) by a 

virtual displacement function δu, integrate over the time interval [0,T] by parts to obtain 

the action integral, I, in terms of the Lagrangian function, L, and the dissipation 

function, ϕ , as shown below (see for example, José and Saletan (1998)): 

 ( ) ( )
0 0 0

, 0
T T Tu

u u dt udt P udt
u

ϕ
δ δ δ δ

∂
= − + − =

∂∫ ∫ ∫
�

�
�

I L  (5.2) 

where δ denotes the variational operator, and the Lagrangian function, L, and the 

dissipation function, ϕ , of this system are given by: 

 ( ) 2 21 1,
2 2

u u mu ku= −� �L  (5.3) 

 ( ) 21
2

u cuϕ =� �  (5.4) 

Notice that due to the presence of the dissipation function and because the force P(t) can 

in general be non-conservative, equation (5.2) defines δI and not I itself. Conversely, 

starting from (5.2), equation (5.1) can be obtained as the Euler-Lagrange equations: 

 d P mu cu ku P
dt u u u

∂ ∂ ∂   − + = ⇒ + + =   ∂ ∂ ∂   
�� �

� �
ψL L  (5.5) 

Thus, the Lagrangian function, the dissipation function and the action integral determine 

the equation of motion. 
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5.4.2. Mass with Maxwell type Resisting System 
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Fig. 5.2. Mass with Maxwell type Resisting System and Displacement Input 
 

Consider on the other hand, a spring-mass-damper system where the spring and 

the damper are in series (Maxwell Model) as shown in Fig. 5.2 and subject to a time 

varying base-velocity input, vin(t). We wish to obtain a Lagrangian function and a 

dissipation function for this system that determine the equations of motion as above. 

Expressing the compatibility of deformations results in: 

 in
F Fv u
k c

+ + =
�

�  (5.6) 

where F is the force in the spring and damper. Writing the equation of equilibrium of the 

mass, we have: 

 0mu F+ =��  (5.7) 

Integrating equation (5.7) for u�  and substituting in equation (5.6) gives: 

 0
0

1 1 1 t

inF F Fd v v
k c m

τ+ + = − −∫�  (5.8) 
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where v0 is the initial velocity of the mass. Letting 
0

t

J Fdτ= ∫  (this idea has been used by 

El-Sayed et al. (1991)), the impulse of the force in the spring and damper,  equation (5.8) 

can be written as: 

 0
1 1 1

inJ J J v v
k c m

+ + = − −�� �  (5.9) 

From the correspondence between equations (5.9) and (5.1), we conclude that the 

Lagrangian function, L, the dissipation function, ϕ and the action integral, Ι of this 

system are given by: 

 ( ) 2 21 1 1 1,
2 2

J J J J
k m

= −� �L  (5.10) 

 ( ) 21 1
2

J J
c

ϕ =� �  (5.11) 

 ( ) ( ) ( ) 0
0 0 0

,
T T T

in

J
J J dt Jdt v t v Jdt

J

ϕ
δ δ δ δ

∂
 = − + + + ∂∫ ∫ ∫

�
�

�I L  (5.12) 

Equation (5.9) can also be thought of as the equation of motion of the dual system shown 

in Fig. 5.3. 
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Fig. 5.3. Dual of System in Fig. 5.2 
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We observe that while the Lagrangian and Dissipation functions involve the 

displacement and the velocity for a parallel (Kelvin type) system, they involve the 

impulse and the force for a series (Maxwell type) system. 

5.4.3. Mass with Combined Kelvin and Maxwell Resisting Systems 

m
c2k2

k1 

c1

u 
F1

P 

F2
 

Fig. 5.4. Mass with Combined Kelvin and Maxwell Resisting Systems 
 

Consider now the combined Kelvin-Maxwell system shown in Fig. 5.4 subject to 

a Force Input. (Note that the velocity input has been excluded for the sake of simplicity). 

The forces in the springs are denoted by F1 and F2 respectively and their impulses by J1  

and J2. If we define the flexibilities of the springs as a1 = 1/k1 and a2 = 1/k2, then the 

equations of equilibrium and compatibility become respectively: 

 1 2mu cu k u J P+ + + =��� �  (5.13) 

 2 2 2
2

1 0a J J u
c

+ − =�� � �  (5.14) 
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It is found that elimination of either u or J2 results in a differential equation that does not 

have a weak formulation (see introduction in subsection 5.1) that separates in to a 

Lagrangian part and a dissipation part. Such a formulation would therefore not lend itself 

to the derivation of the discrete variational integrators of the next section. Moreover, 

when considering plasticity, the dissipative term in equation (5.14) is not single valued 

and hence, elimination of J2 would not be possible. It is therefore necessary to devise 

mixed Lagrangian and dissipation functions that contain u, J2 and their time derivatives. 

Consider the following Lagrangian and dissipation functions and action integral: 

 ( ) 2 2 2
2 2 1 2 2 2

1 1 1, , ,
2 2 2

u J u J mu k u a J J u= − + +�� � �L  (5.15) 

 ( ) 2 2
2 1 2

2

1 1 1,
2 2

u J c u J
c

ϕ = +� �� �  (5.16) 

 ( ) ( ) ( )2
2 2 2

20 0 0 0

, , ,
T T T TJu

u u J J dt udt J dt P udt
u J

ϕϕ
δ δ δ δ δ

∂∂
= − + + −

∂ ∂∫ ∫ ∫ ∫
���� ��

I L  (5.17) 

It can be easily verified that the corresponding Euler-Lagrange equations are: 

 1 2
d P mu cu k u J P
dt u u u

ϕ∂ ∂ ∂   − + = ⇒ + + + =   ∂ ∂ ∂   
��� �

� �
L L  (5.18) 

 2 2 2
2 2 2 2

10 0d a J J u
dt J J J c

ϕ   ∂ ∂ ∂
− + = ⇒ + − =   ∂ ∂ ∂   

�� � �� �
L L  (5.19) 

which are respectively the equilibrium equation of the parallel subsystem and the 

compatibility equation of the series subsystem. Bryant (Bryant (1959)) and Stern (Stern 

(1965)) describe a method to determine a Lagrangian with a minimal set of variables for 

electrical networks. Fig. 5.5 shows the electrical circuit that is analogous to the 
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mechanical system of Fig. 5.4 (see Table 5.1). Equation (5.15) is indeed a minimal set 

Lagrangian. 

 

Current Source, I = P 

Inductance, L = 1/m 

Capacitance, C1 = 1/k1

Resistance, R1 = 1/c1 

R2 = 1/c2 C2 = 1/k2 
Voltage v = Velocity v 

Current, i1 = F1

i2 = F2 

 

Fig. 5.5. Electrical Circuit Analogous to Fig. 5.4 
 

 

Table 5.1. Electrical Analogy 

Mechanical System Electrical System 

Force (F) Current (i) 

Velocity (v) Voltage (v) 

Impulse (J) Charge (q) 

Displacement (u) Flux Linkage 
0

t

vdτ∫

Spring Stiffness (1/k) Capacitance (C) 

Damping (1/c) Resistance (R) 

Mass (1/m) Inductance (L) 
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5.4.4. Alternate formulation for Combined Kelvin and Maxwell System 

It is found however, that it is more convenient for MDOF structural systems to 

use a Lagrangian function of all the spring forces as shown below, even though it is not 

minimal. 

 ( ) ( )2 2 2
2 2 1 1 2 2 1 2

1 1 1, ,
2 2 2

J u J mu a J a J J J u= + + + +� � �� � �L  (5.20) 

or in matrix notation: 

 ( ) 21 1, ,
2 2

u mu u= + +T T TJ J J AJ J B� � �� � �L  (5.21) 

where J = [J1 J2]T, 1

2

0
0
a

a
 

=  
 

A , the flexibility matrix and B = [1 1], the equilibrium 

matrix. The equilibrium matrix operates on the vector of internal forces to produce the 

vector of nodal forces. The compatibility matrix operates on the velocity vector to 

produce the rate of change of deformation. As a consequence of the Principle of Virtual 

Work, the transpose of the compatibility matrix is the equilibrium matrix. The dissipation 

function and the action integral are still given by equations (5.16) and (5.17). The Euler-

Lagrange equations are: 

 d P mu cu P
dt u u u

ϕ∂ ∂ ∂   − + = ⇒ + + =   ∂ ∂ ∂   
BJ��� �

� �
L L  (5.22) 

 0 0d u
dt

ϕ ϕ∂ ∂ ∂ ∂   − + = ⇒ + − =   ∂ ∂ ∂ ∂   
TAJ B

J J J J
�� �� � �

L L  (5.23) 
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The mixed Lagrangian of equation (5.21) and the Dissipation function of equation (5.16) 

form the basis of further developments in this paper. Observe that the Lagrangian is not 

unique. For example, the Lagrangian: 

 ( ) 21 1, , ,
2 2

u u mu u= + −T T TJ J J AJ J B� � � �� �L  (5.24)  

would result in the same governing differential equations (5.22) and (5.23). In fact, any 

Lagrangian differing from that in (5.21) by only a gauge transformation of the form: 

 ( ) ( ) ( ), , , , , ,du u u u
dt

χ= +J J J J J� �� �L L  (5.25) 

where χ( u,J) is any scalar function would result in identical Euler-Lagrange equations 

(see for example, Scheck (1994)). The form (5.24) is obtained from a Legendre 

transformation of the potential energy in spring 2. However, we prefer the form (5.21) 

due to its following features: 

1. It does not contain the displacement, u explicitly. Therefore the momentum, 
u

∂
∂
L  is 

conserved (see for example, Scheck (1994)). This leads to the idea of the generalized 

momentum: 

 1 2up mu J J
u

∂
= = + +

∂
�L  (5.26) 

2. It extends to geometric nonlinear problems where the equilibrium matrix B is not 

constant, as shown in a later section. 
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Thus far, weak formulations have been derived for dynamic systems with viscous 

dissipative functions as illustrations. We now proceed towards the original goal of 

developing weak formulations for dynamic systems with plasticity. 

5.4.5. Elastic-viscoplastic Dynamic System 

 

m k

Fy 

η 

u u1

 

Fig. 5.6. Elastic-visco-plastic Dynamic System 
 

Consider the elastic-visco-plastic dynamic system of Fig. 5.6. As shown in 

Section 2, this is in fact a visco-plastic regularization of the elastic-ideal-plastic system of 

Fig. 5.7. Let the yield force of the slider be Fy, so that that force Fslider in the slider is such 

that |Fslider| ≤ Fy. If the force in the spring is F, then as in equation (2.20) of Section 2, the 

rate of deformation of the slider-dashpot combination is: 

 ( ) ( )1
1 1sgn sgny yu F F F J F J
η η

= − = −� ��  (5.27) 

where again, 
0

t

J Fdτ= ∫ , <x> is the Mackaulay Bracket and sgn(x), the signum function. 

Again, from equation (2.22) of Section 2, the above constitutive equation can be obtained 

as follows from a convex dissipation function: 
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 ( ) ( ) ( )2

1
1 1 sgn

2 y y

J
J J F u J F J

J
ϕ

ϕ
η η

∂
= − ⇒ = = −

∂

�
� � � �� �  (5.28) 

The equations of equilibrium and compatibility are therefore, 

 ( )
      

0

mu J P

J
aJ u

J

ϕ

+ =

∂
+ − =

∂

���
�

�� ��
 (5.29) 

where a = 1/k, and it is verified without difficulty that the Lagrangian function, the 

dissipation function and the action integral are respectively: 

 ( ) 2 21 1, ,
2 2

J u J mu aJ= +� �� �L  (5.30) 

 ( ) 21
2 yJ J Fϕ
η

= −� �  (5.31) 

 ( ) ( )
0 0 0

, ,
T T TJ

J u J dt Jdt P udt
J

ϕ
δ δ δ δ

∂
= − + −

∂∫ ∫ ∫
�

�� �I L  (5.32) 

5.4.6. Elastic-Ideal plastic Dynamic System 

 

m k

Fy 
u u1

 

Fig. 5.7. Elastic-ideal-plastic Dynamic System 
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Fig. 5.7 shows an elastic-ideal plastic dynamic system. As noted above, this 

system is obtained from the viscoplastic one in the limit of the regularizing viscous 

coefficient, η, going to zero. The dissipation function ϕ of equation (5.28) then becomes: 

 ( )
0  if  

 if  

y

y

J F
J

J F
ϕ

 ≤= 
∞ >

�
�

�
 (5.33) 

i.e., ( ) ( )CJ Jϕ =� �U  where C is the elastic domain, { }: yC x x F= < . The Lagrangian 

formulation of the elastic-ideal plastic system is then the same as that of the elastic 

viscoplastic system, i.e. equations (5.30)-(5.32), with the dissipation function of equation 

(5.31) suitably interpreted. 

5.4.7. Summary of Phenomenological Models 

It is observed from the preceding discussion that many types of phenomenological 

behavior can be modeled using a formulation consisting Lagrangian function, a 

dissipation function and an action integral. A new form of the Lagrangian function has 

been introduced which contains the impulse of the internal force. The specific forms of 

the dissipation function have been presented for viscous, visco-plastic and ideal plastic 

behaviors. The concepts are provided a formal terminology in subsection 5.5 and are 

extended to frame structures in the following subsections. 

5.5. Reciprocal Structures 

Materials whose constitutive behavior can be characterized by a potential function 

and a dissipation function are called Generalized Standard Materials (Nguyen (2000)). 

Components whose potential as well as dissipation functions are convex functions 

(Hiriart-Urruty and Lemaréchal (1993)) are called reciprocal. A structure composed 



 83

entirely of reciprocal components is called a reciprocal structure (analogous to the term 

reciprocal network of Stern (1965)). Such structures have a Lagrangian Formulation. The 

systems discussed in the previous sub-sections are of this type. This class also includes a 

wider variety of other behavior such as hyperelasticity, rate-independent plasticity, 

viscoelasticity, viscoplasticity and tension- or compression-only resistance. Appendix III 

shows the contributions of various one-dimensional reciprocal components to the 

Lagrangian and Dissipation functions. These can be expressed in their more general 

vector or tensor forms and used in the structural analysis methodology discussed below. 

However, for the sake of simplicity and concreteness, the derivations here are limited to 

linear-elastic ideal-plastic (non-hardening) components. 

5.6. Compatibility Equations of a Frame Element 

In order to obtain a Lagrangian formulation for a frame structure, the 

compatibility equations need to be expressed in a form similar to equation (5.23). The 

compatibility and constitutive equations of a frame element are now derived, which are 

then assembled to form the compatibility equation of the structure. Consider the beam 

element with rigid plastic hinges at the two ends. From Fig. 5.8(b), the compatibility of 

deformations in the element gives: 

 

1 1
21

2 2

3 3
1

4 4
1

5 5
2

6 6
2

00
0
0

0
0

hingehinge beam

beam
y

hinge beam
z
hinge beam

y
hingebeam

z
hingebeam

q q
q q
q q
q q
q q
q q

εε

θ
θ

θ
θ

     
     
     
     −      + + −      

      
      
      

−        

�� � �
� �

� � �
� � �

�� �
�� �




 =





0  (5.34) 

Let Ae be the elastic flexibility matrix of the element. Then: 
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 e
beam =q A Q��  (5.35) 

where { }1 2 3 4 5 6
beam beam beam beam beam beam beamq q q q q q=

T
q  and Q is the element independent 

end force vector. Let ϕhinge1 and ϕhinge2 be the dissipation functions of hinges 1 and 2 

respectively. Then from equation (5.34) we have: 

 
1

1
1

1
1

hinge
hingey

hinge
hingez

hinge

ε
ϕ

θ
θ

 
∂  = 

 
 

�
�
� F

 and 
2

2
2

2
2

hinge
hingey

hinge
hingez

hinge

ε
ϕ

θ
θ

 
∂  = 

 
 

�
�
� F

 (5.36) 

where Fhinge1 and Fhinge1 are the stress-resultants in hinges 1 and 2 respectively. But due 

to the sign conventions of the end forces and internal stress-resultants, 

{ }1 1 3 4hinge Q Q Q= − TF  and { }1 1 5 6hinge Q Q Q= − TF . Define 1 2
e

hinge hingeϕ ϕ ϕ= + , the 

dissipation function of the element. Then we have: 

 

21

1

1

2

2

00
0
0

0
0

hingehinge

y e
hinge

z
hinge

y
hinge

z
hinge

εε

θ ϕ
θ

θ
θ

  
  
  
  − ∂   + =    ∂   

   
   

−      

Q

��

�
�

�
�

 (5.37) 

Substituting equations (5.35) and (5.37) in equation (5.34) gives the element equation: 

 
e

e eϕ∂
+ − =

∂
TA Q B u 0

Q
� �  (5.38) 

In the next subsection, the element compatibility equations are assembled to form the 

compatibility equation of the structure. 
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(b) Deformations 
 

Fig. 5.8. Beam Element with Rigid-Plastic Hinges 
 

5.7. Governing Equations of Skeletal Structures 

The governing equations of the structure consist of the equilibrium equations, the 

compatibility equations and the constitutive equations. From Appendix I, the equilibrium 

equations are: 

 −Mu + Cu + BJ P = 0��� �  (5.39) 

Define the elastic flexibility of the structure by: 
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,1

,2

, elem

e

e

e N

 
 
 =
 
 
  

A
A

A

A
%

 (5.40) 

As in Appendix I, let ( ) ( ) ( ){ }1 2 elemN=
TTT T

F Q Q Q"  and define 
0

t

dτ= ∫J F , the 

impulse vector. Then the compatibility equation of the structure is given by: 

 
( )ϕ∂

∂
T

J
AJ + - B u = 0

J

�
�� ��  (5.41) 

Internal imposed displacements within elements, such as resulting from pre-stressing or 

thermal loads have been neglected here for the sake of simplicity, resulting in there being 

no forcing term in equation (5.41). Pre-multiplying equation (5.39) by a kinematically 

admissible virtual displacement δu (satisfying compatibility), and equation (5.41) by a 

statically admissible virtual impulse δJ (satisfying equilibrium), we have: 

 ( )
δ δ δ δ

ϕ
δ δ δ

−

∂

∂

T T T T

T T T T

u Mu + u Cu + u BJ u P = 0

J
J AJ + J - J B u = 0

J

��� �
�

�� ��
 (5.42) 

Adding equations (5.42) and integrating over the time interval [0,T], we obtain: 

 
( )

0 0 0

0 0 0

                             

T T T

T T T

dt dt dt

dt dt

δ δ δ δ

ϕ
δ δ δ

 + − 

∂
+ −

∂

∫ ∫ ∫

∫ ∫ ∫

T T T T T T

T T T

u Mu + J AJ J B u J B u

J
u Cu + J u P = 0

J

�� ��� �

�
� �

 (5.43) 

Consider the first integral, 
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0

0 0 0

1
2

T T T
T

dt dt dtδ δ δ δ= − = −∫ ∫ ∫T T T Tu Mu u Mu u Mu u Mu�� � � � � �  (5.44) 

Similarly the second integral, 

 
0 0

1
2

T T

dt dtδ δ= −∫ ∫T TJ AJ J AJ�� � �  (5.45) 

Equilibrium is considered in the undeformed configuration, so that the equilibrium matrix 

B is a constant. Geometric nonlinearity, where B is a function of u, is considered in the 

next subsection. The third integral of equation (5.43) is then, 

 
0

0 0 0 0 0

T T T T T
T

dt dt dt dt dtδ δ δ δ δ δ− = − − = −∫ ∫ ∫ ∫ ∫T T T T T T T T T T TJ B u J B u J B u J B u J B u J Bu� �� � � � (5.46) 

Substituting equations (5.44), (5.45) and (5.46) in equation (5.43), we have: 

 
( )

0

0 0 0

1 1
2 2

                                

T

T T T

dt

dt dt

δ δ

ϕ
δ δ δ

 = − + +  

∂
−

∂

∫

∫ ∫ ∫

T T T T

T T T

u Mu J AJ J B u

J
+ u Cu + J u P = 0

J

� �� � �

�
� �

I

 (5.47) 

The Lagrangian and the dissipation function are then given by: 

 ( ) 1 1, ,
2 2

= + +T T T TJ u J u Mu J AJ J B u� � �� � � �L  (5.48) 

 ( ) ( )1,
2

ϕ ϕ= +Tu J u Cu J� �� � �  (5.49) 

Conversely equations (5.39) and (5.41) can be obtained from the relation (5.47) as Euler-

Lagrange equations. 
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5.8. Effect of Geometric Nonlinearity on the Lagrangian Function 

Having examined the structural dynamic problem under small deformations, it is 

now desired to consider equilibrium in the deformed configuration. The effect of large 

structural displacements is considered, while that of large deformations within the 

corotational frames of elements is ignored. This seems to be justified for elastic-plastic 

frame elements where significant displacements occur after yielding when hinges form, 

thus not accompanied by large deformations within the element corotational frame. The 

effect of the change of length on the flexibility coefficients of beam-column members is 

also neglected since this is a higher order effect. Large deformations may be included by 

proceeding from the Lagrangian density and performing spatial discretization such as by 

the Finite Element Method. Some remarks on this are made in a later section. 

The added ingredient is only the fact that the equilibrium matrix, B, is a function 

of displacement, B(u), as seen for example from equation (4.12) of Section 4. However, 

the equilibrium equations (5.39) being in global coordinates and the compatibility 

equations (5.41) being incremental (compatibility of deformation and displacement rates) 

must both remain unchanged by this additional consideration. It is now demonstrated that 

the spatially pre-discretized Lagrangian of equation (5.48) holds in the deformed 

configuration as well. The Lagrangian is now: 

 ( ) ( )1 1, , ,
2 2

 = + +  
TT T Tu J u J u Mu J AJ J B u u� � �� � � �L  (5.50) 
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The dissipation terms and the external forcing function remain the same. Moreover, since 

only an additional function of u is introduced, the term d
dt

∂ ∂   −   ∂ ∂   J J�
L L  also remains 

unchanged. Therefore, it is sufficient to examine the term d
dt

∂ ∂   −   ∂ ∂   u u�
L L . 

 
( ) ( )

( )                             

d d
dt dt

d
dt

∂ ∂ ∂   − = + −   ∂ ∂ ∂   
   ∂

= + + −   ∂  

T T T

T
T T T

Mu B J u B J
u u u

BMu B J u B J
u

�� �
�

��� �

L L

 (5.51) 

Let the structure have a total of Nε deformations (and hence Nε internal forces). 

The matrix B therefore has Nε  columns. Let Bi represent the ith column of B (Notice that 

the meaning of Bi here is different from that in the last section, where it denoted the ith 

column-wise partition of B). Consider the ith column of the term ( )d
dt

∂  −  ∂ 
TB u B

u
� . 

 

1 1 1

1 2

2 2 2

1 2

1 2

1

2

i i i

Nu

i i i

Nu

N i N i N iu u uu
Nu

B B B
u u u

i
B B B
u u uii

B B BN i
u u u

B
Bd d

dt dt
B

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂

 
   
   
   = =
   
        

B u

"

"
�

# # # #

"

 (5.52) 

 
1 2

1 2         ,  a row vector
u

u

i N

i N

 =  
 =  

T T T T T T Tu B u B B B B

B u B u B u B u

� � " "

� � � �" "
 (5.53) 

Therefore, 
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 ( ) ( )

1 2

1 1 1

1 2

2 2 2

th

1 2

 column

N ii i u

N ii i u

N ii i u

N N Nu u u

BB B
u u u

BB B
u u u

i
i

BB B
u u u

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

 
 
 ∂ ∂   = = ∂ ∂   
 
  

T Tu B B u u
u u

"

"
� � �

# # #

"

 (5.54) 

It is postulated that the ith deformation component, εi(u), is a twice continuously 

differentiable function of the deformed configuration. Then i
i

ε∂ =  ∂ 

T

B
u

 is the Jacobian 

of the deformation function, and 
2

2
i i iε∂ ∂ ∂ = = ∂ ∂ ∂ 

TB B
u u u

, the Hessian is symmetric. Hence 

the right hand sides of equations (5.52) and (5.54) are equal, implying that 

( )d
dt

∂  − =  ∂ 
TB u B 0

u
� . Having recognized the symmetry in B, the above result may also 

be proved using index notation as follows: 

 ( ) , , , , ,ij ij p p ij p p ij p i pj i p ij p i
d B B u B u B u B u B u
dt

∂  − = − = − = − =  ∂ 
TB u B 0

u
�� � � � � �  (5.55) 

Thus the formulation remains unchanged when geometric nonlinearity is included. 

5.9. Extension to Continua 

It is shown in Appendix IV that weak formulations analogous to equations (5.47) 

through (5.49) can be obtained for continua. The final results are presented here. For a 

three dimensional continuum, the Lagrangian formulation is given by: 

 *

0

1 1 1
2 2k k ijkl ij kl ij ijk ku u A J J J B u

ρ
= + +� �� � �L  (5.56) 

 ( ) ( ) 1,
2C ij i jc u uϕ = +J u J� �� � �U  (5.57) 
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0
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0 0
0 0

0
0 0

         

         

T

T T

k ij
k ij

T T

k k k k

d dt

u d dt J d dt
u J

f u d dt u d dt

δ δ ρ

ϕ ϕρ δ ρ δ

ρ δ τ δ

Ω

Ω Ω

Ω Γ

= − Ω

∂ ∂
+ Ω + Ω

∂ ∂

− Ω − Γ

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

��

I L

 (5.58) 

and for a beam-column with finite deformation, by: 

 *
0

1 1
2 2

ρ= + +T T Tu u J aJ J B u� �� � �L  (5.59) 

 ( ) ( ) 1,
2Cϕ = + TJ u J u cu� �� � �U  (5.60) 

 0 0 0

0 0

         

T L T L T L

T L T

dxdt dxdt dxdt

dxdt dt

ϕ ϕδ δ δ δ

δ δ

∂ ∂
= − + +

∂ ∂

− −

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫T T

u J
u J

f u Q q

��0 0 0

0

I L
 (5.61) 

The analogy with equations (5.47) through (5.49) is seen easily. The integral over time 

can be discretized to obtain action sums from which discrete variational integrators can 

be obtained as shown in the next section. These can then be discretized in space using, for 

example, the finite element method. This is a subject of further work. 

5.10. Summary of Lagrangian Formulation 

Reciprocal structures and their Lagrangian formulation have been illustrated using 

simple systems with springs, masses, dashpots and sliders. The concept of generalized 

momentum has been demonstrated. The Lagrangian formulation for skeletal structures 

has been developed. It has been shown that the Lagrangian remains unchanged when 

geometric nonlinearity is included. The extension of the approach to continua has been 
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briefly discussed. The numerical integration of the Lagrangian equations by discrete 

variational integrators is discussed in the next section. 
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6. THE LAGRANGIAN APPROACH – NUMERICAL SOLUTION 

6.1. Background 

In this section, a numerical method is developed for the time integration of the 

governing equations (5.39) and (5.41) of the structure. This development consists of two 

stages: 

1. Following Kane et al. (2000), the action integral of equation (5.47) is discretized in 

time to obtain an action sum. Using discrete calculus of variations, finite difference 

equations are obtained, which are the discrete counterpart s of the Euler-Lagrange 

equations. It is seen that the numerical method obtained in this fashion conserves 

energy and momentum for a Lagrangian system and inherits the contractivity 

(stability in the energy norm) of dissipative systems. 

2. The task in each time step is shown to be the solution of a constrained minimization 

problem for which an Augmented Lagrangian algorithm is developed.  

A numerical example is presented to illustrate the feasibility of the method. 

6.2. Time Discretization - Discrete Calculus of Variations 

The action integral of equation (5.47) is discretized using the midpoint rule and a 

time step h, approximating derivatives using central differences. It is assumed in this 

process, that the J and u are twice continuously differentiable functions and P is a once 

continuously differentiable function of time, and that the dissipation function is 

continuously differentiable with respect to J� . It is shown by Simo and Govindjee (1991) 

using geometric arguments that the O(h2) accuracy holds in the limiting case of rate-
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independent plasticity when the viscous coefficient η → 0 as well. The resulting action 

sum is given by: 

 

1 1 1 1
1

0 1 1
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δ
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n
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δ ϕ
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=

 + ∂  
   ∂   
 +  + +  
   

∑

∑

T

T

J J
J

u u P

�

 (6.1) 

where nh = T and subscript k denotes the approximation at time t = kh. The time 

integration problem may now be stated as: Given {u0, un} and {J0, Jn}, find the 

sequences {u1, u2, … un-1} and {J1, J2, … Jn-1} that make the action sum of equation (6.1) 

stationary. This is the discrete variational problem (Shaflucas (1969), Cadzow (1970), 

Cybenko (1997), Kane, Marsden et al. (2000), and Marsden and West (2001)). Consider 

the first sum: 

 
1 1

1 1 1 1

0 0

1
2

n n
k k k k k k k k

k k
h h

h h h h
δ δδ

− −
+ + + +

= =

   − − − −          =          
             

∑ ∑
T Tu u u u u u u uM M  

For a justification of using the δ operator as done here, see Cadzow (1970). Collecting 

the terms in δuk+1 and δuk, we have: 

 
1 1

1 1
1

0 0

n n
k k k k

k k
k kh h

δ δ
− −

+ +
+

= =

− −   −   
   

∑ ∑T Tu u u uu M u M  
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Pulling terms involving the boundaries of the time interval out of the sum gives: 

 
2 1

1 1 1 0 1
1 0

0 1

n n
n n k k k k

n k k
k kh h h h

δ δ δ δ
− −

− + +
+

= =

− − − −       + − −       
       

∑ ∑T T T Tu u u u u u u uu M u M u M u M  

Changing the indexing in the first sum replacing the index k with k+1 and collecting 

terms results in: 

 
1

1 1 0 1 1
0 2

1

2n
n n k k k

n k
k

h
h h h

δ δ δ
−

− + −

=

− − − +     − −     
     

∑T T Tu u u u u u uu M u M u M  

This procedure is called discrete integration by parts or summation by parts. The 

similarity with integration by parts in the continuous case can be clearly seen. Since δu0 = 

δun = 0 in Hamilton’s principle, we have: 

 
1 1

1 1 1 1
2
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21
2
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k k k k k k k

k
k k

h h
h h h

δ δ
− −

+ + + −

= =

 − − − +      = −      
       

∑ ∑
T

Tu u u u u u uM u M  (6.2) 

Proceeding in a similar fashion using Discrete Integration by Parts, the following 

equations are obtained: 
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 (6.4) 
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h h
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δ δ δ
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∑ ∑
T

Tu u u u u uC u C  (6.5) 
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 ( )1 1 1
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1 1
1
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n n
k k

kk k k
k k

hh δ δ δ
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+ + −
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 +   = +  
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∑ ∑
T

Tu u P u P P  (6.7) 

Substituting equations (6.2) through (6.7) in equation (6.1) results in: 
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Since δuk and δJk are arbitrary variations, the discrete equations of motion are: 
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T

P Pu u u u u J JM C B
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J J� �

 (6.9) 

Notice that these equations could have been obtained directly from equations (5.39) and 

(5.41) by using the Central Difference approximation. But deriving them using Discrete 

Variational Calculus ensures that the resulting time-integration scheme possesses energy 

and momentum conserving properties. This is demonstrated below. This also provides a 

framework for consistently developing higher order methods and error estimation 

methods that preserve conservation. 
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6.2.1. Features of the Discrete Equation 

It can be shown that the finite difference equations (6.9) inherit the energy and 

momentum characteristics of the differential equations (5.47). Consider first the 

momentum in the absence of dissipation and external forces. The equations (6.9) then 

become: 

 1 1 1
2

2
2

k k k k k

h h
+ − +− + −   + =   

   

u u u J JM B 0  (6.10) 
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h h
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   
TJ J J u uA B 0  (6.11) 

The difference in the generalized momentum between times k+1/2 and k-1/2 is given by: 
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from equation (6.10). Hence the generalized momentum is conserved. Consider now the 

difference in the energy between times k+1/2 and k-1/2: 
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from equations (6.10) and (6.11). Hence energy is conserved. Notice that the energy in 

equation (6.13) is 1 1
2 2

+T Tu Mu J AJ� �� �  because the strain energy function is assumed to be 

quadratic and so is equal to the complementary strain energy. Equations (6.12) and (6.13) 

are heuristic proofs of conservation. Kane, Marsden et al. (2000) present a discrete 

version of Noether’s theorem (see for example, José and Saletan (1998)) by which it can 

be shown that any numerical integrator derived using the discrete calculus of variations 

approach inherits these conservation characteristics. Moreover, it is shown by Simo and 

Govindjee (1991) that the midpoint rule inherits the contractivity or B-stability of  the 

dissipative system, i.e., systems with neighboring initial conditions converge in the 

energy norm. 

6.3. Time-step Solution 

The notation n = k – ½,
1 1
2 2n n

n h
+ −− 

=   
 

u u
v  and 

1 1
2 2n n

n h
+ −− 

=   
 

J J
F is introduced. 

vn and Fn are the Central Difference approximations of the velocity and the internal force 

respectively. Equation (6.9) then becomes: 

 1 1 1 1

2 2 2
n n n n n n n n

h
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n n n n

n nh
ϕ ϕ+ +

+

 − +∂ ∂   + + − =    ∂ ∂    
TF F v vA B

F F
 (6.15) 

It is common in modeling frame structures for dynamic analyses to use a lumped mass 

matrix and to ignore rotational inertia. Hence the mass matrix could in general be 

singular. Similarly, the damping matrix could also be singular, for example when using 
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mass proportional damping. Thus, consistent with the convexity assumptions and without 

loss of generality, equation (6.14) can be rearranged and partitioned as follows: 

 

1 1 1 1
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(6.16) 

where the partitions 1 through 4 represent respectively (i) degrees of freedom with mass, 

(ii) those with damping  but no mass, (iii) those with prescribed forces and (iv) those with 

prescribed displacements (or velocities). The symbols* F, vi and Pi denote respectively 

1

2
n n+ + 

 
 

F F , 1

2

i i
n n+ +

 
 

v v  and 1

2

i i
n n+ +

 
 

P P . The first two parts of equation (6.16) are: 

 
1 1 2 1 1

11 12 1

1 2 2
12 22 2

2 2

              

nh h
+ + + = +

+ + =T

Mv C v C v B F P Mv

C v C v B F P
 (6.17) 

Eliminating v2, we obtain: 

 1 1 1 1 1 1
12 2 n

h h− − −= − + +v M B F M P M Mv  (6.18) 

Then 

 ( )2 1 2 1
22 2 12
−= − − Tv C P B F C v  (6.19) 

and 

                                                 

* The superscripts on v and P are to be interpreted as the index of the vector partition rather than as 
exponents. The other superscripts -1 and T have their usual meanings of matrix inverse and transpose 
respectively. 
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 1 2 1 1 1 2
1 2 1 2 22 2 2 22

− −+ = − +T T T T TB v B v B v B C B F B C P  (6.20) 

where 112
h

= +M M C , 1
11 11 12 22 12

−= − TC C C C C , the Schur’s complement of C11 (Golub and 

Van Loan (1996)), 1
1 1 12 22 2

−= −B B C C B  and 1 1 1 2
12 22

−= −P P C C P . Equation (6.15) can 

similarly be partitioned as follows: 

 1 2 3 41
1 2 3 4
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n n

n nh
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F F
 (6.21) 

Substituting equations (6.18) and (6.20) in equation (6.21) and rearranging terms, we 

obtain: 

 3
1 3

1

0
2n

n

h hϕ
+

+

 ∂
+ − − = ∂ 

TAF b B v
F

 (6.22) 

where 

 
2

1 1
2 22 2 1 12 4

h h− −= + +T TA A B C B B M B  (6.23) 

 

2
1 1

2 22 2 1 1

2
1 1 1 2 1 1

1 2 22 1

2 4

                   
2 2

n

n
n

h h

h hh h ϕ

− −

− − −

  
− −  

  =  ∂ + + + +
∂  

T T

T T T

A B C B B M B F
b

B M P B C P B M Mv
F

 (6.24) 

Observe that the structure of A , the equivalent dynamic flexibility matrix, is dual to that 

of the equivalent dynamic stiffness matrix of Newmark’s method with γ = ½. The roles of 
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the flexibility and mass matrices are interchanged. Pre-multiplying equation (6.22) by 

δFn+1 and integrating gives*: 

 ( )1 1 1 1
1 0
2 2n n n n

hδ ϕ+ + + +
 − + =  

T TF AF F b F  (6.25) 

In obtaining equation (6.25), it has been noted that 3
3 1nδ δ+ = =B F P 0 , since P3 is 

prescribed. Since A, C22 and M are positive definite, from equation (6.23) we have A  is 

positive definite. Hence the quantity in brackets in equation (6.25) is minimized. If 

dissipation in limited to plasticity, then the function ϕ is the regularized indicator 

function of the elastic domain. Hence, in the limit of rate-independent plasticity, the 

problem of obtaining Fn+1 at each step may be stated as follows: 

 

( )

( )

1 1 1 1

3
3 1

1

1Minimize 
2

Subject to (i) 
h         and (ii) 0 1,2, ,
2

n n n n

n

i n yi Nφ

+ + + +

+

+

Π = −

=

≤ =

T TF F AF F b

B F P

F …

 (6.26) 

This then is the Principle of Minimum Incremental Complementary Potential Energy 

which can be stated as: Of all the Fn+1 satisfying equilibrium with prescribed external 

forces at the un-damped quasi-static degrees of freedom and satisfying the yield 

conditions, the one that minimizes the incremental complementary potential energy Π is 

the one that satisfies equilibrium in the other degrees of freedom and compatibility. 

                                                 

* Notice that δ here denotes spatial variation as opposed to temporal variation as in Section 5. In Appendix 
IV on continua, the same δ represents both spatial and temporal variations. 
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It is to be noted that due to the nature of the velocity-dependent Lagrangian and 

dissipation functions, it was possible to eliminate the velocities, leading to a minimum 

principle in forces only. In general, however, the incremental potential would be a 

function of Fn+1 and vn+1 and would result in a saddle-point problem at each time step. 

Equation (6.26) is similar to the rate variational principles of plasticity in the references 

of Section 5. 

6.3.1. Constrained Minimization by the Augmented Lagrangian Method 

In this section, an Augmented Lagrangian algorithm for the solution of the 

minimization problem (6.26) and a dense matrix implementation of the algorithm are 

presented. For a detailed treatment of the Augmented Lagrangian formulation, the reader 

is referred to Bertsekas (1982), Glowinski and Le Tallec (1989) and Nocedal and Wright 

(1999). The problem (6.26) is reduced to a sequence of linearly constrained sub-problems 

using the Augmented Lagrangian regularization: 

 ( ) ( ) ( ) 2
1 1 1 1 1 1

1

1,
2 2 2

yN

AL n n n n i i n i n
i

h νλφ φ+ + + + + +
=

 Π = − + +  
∑T TF λ F AF F b F F  (6.27) 

where λ={λ1, λ2,…, λNy}T is the vector of plastic multipliers, ν is a penalty parameter 

and <> denotes the Mackaulay Brackets. The Augmented Lagrangian regularization is a 

combination of the usual Lagrangian term, λiφi(Fn+1) and the penalty function 

ν/2<φi(Fn+1)>2. The latter helps accelerate convergence while the former eliminates the 

need for the penalty parameter to be large, which leads to numerical ill-conditioning. 

Both terms vanish at a feasible point. 
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The solution is obtained in two nested stages. In the inner stage, the dual 

variables, i.e. the plastic multipliers λ are held fixed and the primal variables, i.e. the 

forces Fn+1 are obtained by solving the equality constrained sub-problem: 

 
( ) ( ) ( )

1

2
1 1 1 1 1 1

1

3
3 1

1 ,Minimize 2 2 2
Subject to 

y

n

N

AL n n n n i i n i n
i

n

h νλφ φ
+

+ + + + + +
=

+

 Π = − + +  
=

∑T T

F
F λ F AF F b F F

B F P
(6.28) 

This is called the inner or primal stage. In the outer or dual stage, the forces are held 

fixed and the plastic multipliers are updated using the formula: 

 ( )1
new new
i i nλ λ νφ += + F  (6.29) 

The superscripts new and old have been used, rather that iteration indices, to denote 

values at the beginning and at the end of an iteration, to avoid the proliferation of 

subscripts and superscripts. Due to the Central Difference approximation, ( )1

12
i n

i
n

h φ
λ +

+

∂
∂

F
F

 

is the plastic strain increment. In physically terms, therefore, the Augmented Lagrangian 

process is equivalent to relaxing the regularizing dashpot and allowing the frictional 

slider to incrementally develop plastic strain in each iteration.  

A dense matrix algorithm for the solution of (6.28) is now presented. Consider the 

Lagrangian function: 

 ( ) ( ) ( ) ( )2 3
1 1 1 1 1 1 3 1

1

1 ,
2 2 2

yN

n n n n i i n i n n
i

hL νλφ φ+ + + + + + +
=

 = − + + − −  
∑T T TF µ F AF F b F F µ B F P (6.30) 

where µ is the vector of Lagrange multipliers corresponding to the equality constraints of 

equilibrium. The optimality conditions are: 
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 ( )1 1 3
11 12

yN
i

n i i n
in n

L h φλ ν φ+ +
=+ +

∂∂  = ⇒ + + − − = ∂ ∂∑ T0 AF F B µ b 0
F F

 (6.31) 

 3
3 1n

L
+

∂
= ⇒ − + =

∂
0 B F P 0

µ
 (6.32) 

Equations (6.31) and (6.32) are solved using the Newton-Raphson method: 

 1 1 1
new old

n n+ + −     
= −     

     

F F p
H

µ µ q
 (6.33) 

where H, the Hessian of the Lagrangian L, is the iteration matrix. 

 
 −=  
−  

TA BH
B 0

     
( )1

1 ,old old
n

n

L

+
+

∂
=

∂
F µ

p
F

     
( )1 ,old old

n

L

+

∂
=

∂ F µ

q
µ

 (6.34) 

 ( ) ( )( )
2

1 12
1 1 1 12

yN
i i i

i i n i n
i n n n

h Hφ φ φλ ν φ ν φ+ +
= + + +

   ∂ ∂ ∂  = + + +     ∂ ∂ ∂    
∑

T

A A F F
F F F

 (6.35) 

The Newton-Raphson iteration, (6.33), involves solving the linear system: 

 
     − = −     
−      

T x pA B
y qB 0

 (6.36) 

The Range Space Method of Fletcher (2000) is used for this purpose and is summarized 

below: 
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[ ]

( )

1
3 1 2 1

1
1 1

1

1

   the Cholesky decomposition of 
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− −

− −

− −

= →

 
= = → 
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=

= −
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T

A L L A

R
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S L I Q Q L
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x = -Sp + Tq

y = T p - Uq

 (6.37) 

Steps are taken in the implementation to minimize computation and storage, for 

instance by using rank k updates to form A , replacing B1 with 1
1

−
ML B , B2 with 

22

1
2

−
CL B  

etc. (where LX denotes the Cholesky factor of the matrix X) and storing factored matrices 

wherever possible.  

Having solved for Fn+1, 1
1n+v  and 2

1n+v  are obtained using equations (6.18) and 

(6.19) respectively and un+1 by: 

 
1 1

1 1 1
1 2

n n
n n h+

+

 +
= +  

 

v vu u  (6.38) 

 
2 2

2 2 1
1 2

n n
n n h+

+

 +
= +  

 

v vu u  (6.39) 

 3 3
1n n+ = +u u µ  (6.40) 

Observe that the Lagrange multipliers corresponding to the equilibrium constraints are 

the displacement increments in those degrees of freedom. This can be seen from virtual 

work considerations. When performing a geometric nonlinear analysis the equilibrium 

matrix B must be updated at every step. Strictly this requires an iterative procedure 



 106

because the matrix B has to be evaluated at time k+1/2. But in order to save 

computational effort, this step is skipped and the equilibrium matrix at time k is used 

instead. 

6.4. Numerical Example 

The portal frame structure and the Northridge earthquake record of Section 3 (Fig 

3.3) are used here as a numerical example. The dimensions and properties are as shown 

in Table 3.2, but it is assumed here, that there is no hardening in the stress-resultant strain 

behavior. In order to verify the results obtained the program DRAIN-2DX (Allahabadi 

and Powell (1988)) is used here. This choice is made here in contrast to the general 

purpose finite element programs used for verification in Sections 3 and 4 because the 

lumped plasticity and large-displacements-small deformations assumptions used by 

DRAIN-2DX are closer to the assumptions made in this section. For the sake of 

objectivity, it was also the intention not to use programs such as IDARC2D (Park, 

Reinhorn et al. (1987)), in the development of which the author has been involved. Two 

analyses, one with and one without P∆ effect, are performed and are discussed below. 

6.4.1. Analysis without P∆ effect 

First, a dynamic analysis is performed with no external axial load on the columns 

and hence no significant geometric nonlinearity and P∆ effects. Fig. 6.1 shows the 

horizontal displacement history of node 2 (Fig. 3.4). The permanent displacement 

resulting from plastic deformation can be observed as well as close agreement between 

the results from the Lagrangian Approach and from DRAIN-2DX. Fig. 6.2 shows that 

there is significant difference between the Lagrangian approach and DRAIN-2DX in 
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predicting the vertical displacements. This is because, while the plastic material model in 

DRAIN-2DX accounts for the reduction of bending moment capacity resulting from the 

axial force interaction, it does not consider the fact that centroidal axial plastic strain 

develops from plastification caused by bending because of the normality rule. It is 

important to consider this effect when relying on tension stiffening in beams for collapse 

prevention. Fig. 6.3 shows the time history of the rotation of node 2. The regions where 

the curve is flat correspond to the development of plastic rotations in the columns at 

constant joint rotation. The differences between results from the Lagrangian approach 

and from DRAIN-2DX stem from the fact that additional joint rotations are caused by 

differential settlements of the columns resulting from permanent axial deformation in the 

Lagrangian approach. Fig. 6.4 shows a plot of the horizontal reaction at node 1 versus the 

horizontal displacement at node 2, also showing good agreement between the two 

approaches. 

6.4.2. Analysis with P∆ effect 

Next, a dynamic analysis is performed with an axial force of 731.05 kN on each 

column, corresponding 50% of the yield force. In this case there is significant geometric 

nonlinearity. Fig. 6.5 and Fig. 6.6 show that the horizontal and vertical displacements 

continue to grow. The point marked “collapse” in Fig. 6.8 is the point beyond which an 

external horizontal force is required to pull the structure back to keep displacements from 

growing autonomously under the vertical loads acting on it. During a dynamic analysis, 

when this point is crossed, displacements continue to grow without reversal even when 

the input reverses; the analysis is terminated at this point. It is also noticed that under 
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load reversal, the yield force in the opposite direction is higher than the original yield 

force since the moments resulting from P∆ effects need to be overcome in addition. 

6.5. Summary 

A numerical method has been developed for the time integration of the governing 

equations (5.39) and (5.41) of the structure. Using discrete calculus of variations the 

action integral is discretized in time to obtain finite difference equations which are the 

discrete counterparts of the Euler-Lagrange equations. These equations have been shown 

to preserve the energy and momentum characteristics of the continuous time structure. It 

has been shown that at each time step the problem becomes one of constrained 

minimization in forces. This is the principle of minimum incremental complementary 

potential energy. An augmented Lagrangian method and a dense matrix solution 

algorithm have been developed for the solution of this minimization problem. Since the 

matrix A  of the minimization problem (6.26) is positive definite, the solution is globally 

convergent, allowing for larger time steps for computation. This is however not the case 

in the conventional incremental iterative approach where the tangent matrix may not be 

positive definite and the Newton iterations may not be globally convergent, limiting the 

time step. In the continuum case discussed in Section 1.10, the minimization problem 

(6.26) would be over the function space of stresses rather than over the vector space of 

internal forces as shown here. This minimization problem can then be discretized for 

example using a mixed finite element method (see for example, Pian and Sumihara 

(1984) and Cuomo and Contrafatto (2000)). A numerical example has been presented to 

demonstrate the feasibility of the method. The example has been chosen to be simple to 

enable comparing the results with other computational tools that have different modeling 
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assumptions. The formulation presented here can be used in three-dimensional problems 

with no changes. 
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Fig. 6.1. No Axial Force: Horizontal Displacement Time History of Node 2 
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Fig. 6.2. No Axial Force: Horizontal Displacement Time History of Node 2 
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Fig. 6.3. No Axial Force: Rotation History of Node 2 
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Fig. 6.4. No Axial Force: Relative Displacement vs. Horizontal Reaction Column 1 
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Fig. 6.5. Under Axial Force: Horizontal Displacement History of Node 2 
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Fig. 6.6. Under Axial Force: Vertical Displacement History of Node 2 
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Fig. 6.7. Under Axial Force: Rotation History of Node 2 
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Fig. 6.8. No Axial Force: Relative Displacement vs. Horizontal Reaction Column 1 
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7. SUMMARY AND CONCLUSIONS 

Motivated by the need of performance and fragility based seismic design 

methodologies for the analysis of structures near collapse with significant material and 

geometric nonlinearities, it was sought to develop structural models and numerical 

methods for such analyses.  

Rather than extending the widely used displacement-based incremental iterative 

algorithms, it was desired to explore alternative methods that could offer potential 

benefits. In considering skeletal structures, the following facts were noted: (i) The 

advantage of the flexibility formulation for beam-column elements, resulting from force-

interpolation functions being always exact even when the element is non-prismatic and 

undergoes inelastic behavior is well known. (ii) The yield-function in plasticity theory 

that defines the elastic domain and the damage domain in damage mechanics are most 

naturally expressed in terms of stresses and stress-like quantities (or stress-resultants). 

Thus stress-resultants play an important role in nonlinear analysis. Hence it was desired 

that internal forces are principal unknowns as well in the solution. Also, it has been 

shown in the literature that mixed methods alleviate locking in plasticity models. 

Moreover, various state variables besides forces and displacements play important roles 

in modern structural protective devices such as semi-active components. 

The dynamical systems approach, wherein the structural model is perceived as a 

collection of states along with a means of specifying how these states evolve in time, 

provides a framework where displacements, internal forces and other state variables can 

be treated uniformly. The modeling of components is clearly separated from the 

numerical solution. Dynamical systems theory can be applied to the models and 
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numerical solutions to define broader notions of stability that are important in collapse 

analysis. A study with these factors in consideration showed potential and led to the 

following results: 

7.1. Summary of Important Results 

1. By considering the structure as a dynamical system, two new approaches – (i) the 

state space approach and (ii) the Lagrangian approach have been developed. These 

are mixed methods, where besides displacements, the stress-resultants and other 

variables of state are primary unknowns. 

2. In Section 2, the constitutive relations of plasticity with hardening have been 

established in two equivalent forms – (i) the rate form and (ii) the dissipation form. 

The former is used as a nonholonomic constraint in the state space approach, while 

the latter is used in the Lagrangian approach. 

3. In the state space approach, the subject of Section 3, the governing equations of 

motion and constitutive behavior of a structure are considered as constituting a 

constrained dynamical system which is represented as a system of differential 

algebraic equations (DAE) and solved using appropriate numerical methods. In this 

work, the DASSL solver which uses backward difference formulas to approximate 

the DAE is used. 

4. Even very advanced displacement-based finite element packages do not have robust 

time-stepping algorithms. For instance, the elastic-plastic dynamic analysis of a 

simple three dimensional portal frame Simeonov (1999) was impossible to perform 

using ABAQUS ABAQUS (2000).  However, the same problem formulated and 

solved using the proposed state-space approach. The only way of verifying the result 



 117

obtained form such new analysis was the agreement with the response envelops 

obtained using static analyses. 

5. A flexibility-based inelastic large deformation planar beam-column element has been 

formulated in Section 4 for use with the state space approach, starting from the finite 

deformation compatibility equations and applying the principle of virtual forces in 

rate form. The element uses stress-resultant-strain constitutive equations and 

includes the effect of axial force-bending moment interaction. The element is utilized 

for structural analysis to collapse as shown in a numerical example.   

6. In Section 5, the evolution of the elastic-plastic structural state in time is provided a 

weak formulation using Hamilton’s principle. It is shown that a certain class of 

structures called reciprocal structures has a mixed weak formulation in time 

involving Lagrangian and dissipation functions. The new form of the Lagrangian 

developed in this work involves not only displacements and velocities but also 

internal forces and their impulses leading to the concept of the generalized 

momentum for framed structures. This Lagrangian has been shown to extend to 

continua. The derivative of the compatibility operator with respect to displacements 

possesses a symmetry that renders the Lagrangian invariant under finite 

displacements. The formulation can therefore be used in geometric nonlinear 

analysis. 

7. In Section 6, a discrete variational integrator has been derived starting from the weak 

formulation of Section 5. This integrator inherits the energy and momentum 

conservation characteristics for Lagrangian systems and the contractivity in the 

energy norm of dissipative systems. The integration of each step has been shown to 
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be a constrained minimization problem – the principle of incremental minimum 

complementary potential energy. An Augmented Lagrangian algorithm and a dense 

matrix implementation have been derived for the solution of this problem. 

The two methods proposed in this work can potentially be used as alternatives to 

the conventional displacement-based incremental iterative method for the analysis of 

structures to collapse as has been demonstrated by numerical examples. In contrast to the 

displacement method, however, both proposed methods clearly distinguish the modeling 

of components from the numerical solution. The state space approach requires just the 

specification of the state equations in the form of DAE, while the Lagrangian approach 

requires the specification of the Lagrangian and dissipation functions. Thus 

phenomenological models of components such as structural steel connections, reinforced 

concrete elements, semi-active devices etc. can be incorporated in the analysis without 

having to implement element-specific incremental state determination algorithms. The 

state determination is performed at the global level by the DAE solver and by the 

optimization solver in the respective methods. 

The proposed methods follow a generalized approach which addresses modeling and 

solution through rigorous formulations which make very few assumptions to obtain the 

solution of complex non-linear problems.  While traditional displacement methods 

address implicitly the model and the solution, the proposed methods distinguish the 

modeling of components from the numerical solution. The advantage of such 

formulations is indicated in this report. 

The second formulation, the Lagrangian approach, implicitly addresses the 

equilibrium and the conservation of impulse, within a variational formulation. This 



 119

approach allows addressing problems involving sudden collapse, or sudden degradation 

before collapse, which involves instantaneous lack of equilibrium and impulses. 

Moreover, the suggested formulation opens the way to addressing impulse driven 

processes such as blasts and impacts in complex structures without or with modern 

protective systems. As such this method pioneers a generalized approach to solving 

complex nonlinear dynamics problems. 

7.2. Extensions and Implementations 

Parts of the work reported here have been extended and implemented in 

computational platforms and have been published in peer-reviewed journals. 

1. The rate form of the one-dimensional plasticity model of Section 2 has been 

extended by the author to include the effects of hysteretic degradation effects 

(Sivaselvan and Reinhorn (2000)). 

2. The above hysteretic degrading model has been implemented in the nonlinear 

analysis computer programs (i) IDARC2D at the University at Buffalo (Park, 

Reinhorn et al. (1987)), (ii) NONLIN available from the Federal Emergency 

Management Agency (http://training.fema.gov/EMIWeb/nonlin.htm) and (iii) 

LARSA (LARSA (2002)), a commercial software. 

3. The large deformation beam column element of Section 3, suitably modified to work 

in a displacement-based framework, has also been implemented in the programs 

IDARC3D and LARSA. 

4. An elaborate discussion of the State Space Approach of Section 3 was published by 

the author and others (Simeonov, Sivaselvan and Reinhorn (2002)).  
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5. An abridged discussion of the large deformation beam-column formulation in 

Sections 4 has also been published by the author (Sivaselvan and Reinhorn (2002)). 

7.3. Recommendations for Further Work 

1. The DAE solution of Section 3 uses general purpose dense matrix algorithms. 

Incorporation of efficient numerical methods that utilize the particular form of the 

structural analysis problem could result in significant performance improvement. For 

example, Hall, Rheinboldt et al. (1991) have shown in finite strain plasticity 

problems in metal forming that the DAE solution can be up to 26 times faster that the 

conventional displacement-based approach. Simeonov et al. (2000) 

2. The development of Section 3 can be extended to three dimensions. Such a 

formulation has recently been proposed by de Souza (2000). It will be fruitful to 

study its implementation. 

3. The continuum extensions of Section 5 need to be discretized using for example the 

finite element method and to be implemented. The characteristics of the resulting 

methods need to be investigated relative to displacement-based methods. 

4. Recently, libraries have become available to develop and implement algorithms for 

large scale optimization exploiting problem structure (see for example, Gertz and 

Wright (2001)). Exploration of such algorithms for the solution of the incremental 

constrained optimization problem of Section 6 would help evolve the method for 

general purpose. 

5. When using the variable step variable order backward difference formula algorithm 

of DASSL in the state space approach, it was observed that the method has to restart 

often with a one step first order method due to plastic yielding and unloading. Thus it 
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may be advantageous to use higher order one-step methods. The discrete calculus of 

variations approach can be used to systematically construct such methods. Even very 

advanced displacement-based finite element packages do not have robust time-

stepping algorithms. For instance, the elastic-plastic dynamic analysis of a simple 

three dimensional portal frame Simeonov (1999) was impossible to perform using 

ABAQUS ABAQUS (2000).  However, the same problem formulated and solved 

using the proposed state-space approach. The only way of verifying the result 

obtained form such new analysis was the agreement with the response envelops 

obtained using static analyses. 

6. Damage Mechanics: De Sciarra (1997), for example, has shown that the constitutive 

equations of damage mechanics, in a manner analogous to plasticity, can be 

characterized by a dissipation function involving a stress-like quantity that is 

conjugate to the damage variable. The weak formulation developed in this work can 

therefore be extended to damage mechanics, thus permitting the modeling of 

material degradation in collapse simulation. 

7.4. Recommendations for New Directions 

1. The formulations of this work could be used to develop a qualitative theory for 

structures which can be used to bound structural response. Such a bounding method 

could be used as an alternative to the “pushover analysis” currently used in seismic 

design. 

2. The stability theory of dynamic systems can be used to define collapse at the scale of 

the whole structure and study dynamic shakedown. 
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3. As mentioned above, the methods presented in this work allow a separation of 

modeling and numerical solution, especially time discretization. This may help at 

least a partial automation of the development of numerical code from an abstract 

model definition. 
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APPENDIX I.  REVIEW OF MATRIX STRUCTURAL ANALYSIS 

This appendix establishes the notation of matrix structural analysis that is used in 

the other sections. Fig. AI.1 shows a frame structure subject to external nodal loads along 

with the global coordinate system and a typical element isolated. The forces at the ends of 

the member are given by the vector Pe,i in the global coordinates and by the vector ,e iP  in 

element local coordinate system as shown in Fig. AI.2. These force vectors are related by 

the transformation: 

 , ,e i e i= TP R P  (AI.1) 

where R is the matrix that rotates global coordinates into local coordinates (Weaver and 

Gere (1990)). Define Qi as the vector of independent internal forces in the member. The 

end force vector is related to the independent internal forces by the equilibrium 

transformation: 

 ,e i i= T
RP T Q  (AI.2) 

where the transformation TR matrix is developed in other sections of this work according 

to the nature of the element under consideration (see for example section 4.4). Combining 

equations (AI.1) and (AI.2), we have: 

 , ,e i e i i=P B Q  (AI.3) 

where ,e i = T T
RB R T  is the equilibrium matrix of the element i. The cross-sectional stress-

resultants along the length of the element are given by: 

 ( ) ( ) ix x= b QF  (AI.4) 
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where F is the vector of cross-sectional stress-resultants, and b is the Force Interpolation 

Matrix function. These transformations are shown in Fig. AI.2.  

Let ,e iu�  be the vector of element end velocities in the global coordinate system, 

,e iu� , the vector of element end velocities in the element coordinate system, iq� , the vector 

of element deformation rates including rotations but without rigid body displacements, 

andε� , the vector of cross-sectional strains. Then, by the Principle of Virtual Work, 

corresponding to the equilibrium equations (AI.1), (AI.2), (AI.3) and (AI.4), we have the 

compatibility equations: 

 , ,e i e i=u Ru� �  (AI.5) 

 ,i e i= Rq T u��  (AI.6) 

 ( ), ,i e i e i=
T

q B u� �  (AI.7) 

 ( ) ( ) ix x= b QF  (AI.8) 

The transformations (AI.1)-(AI.8) are shown in the Tonti diagram, Fig. AI.3. 

Let the structure have a total of NDOF displacement degrees of freedom (DOF) that 

are either free or have specified non-zero displacements. The fixed DOF need not be 

considered. Let the number of elements be Nelem. The number of DOF of each element 

can be different, but are shown here as 12, corresponding to frame members, for 

simplicity. The incidence (or connectivity) matrix of the structure is defined as follows: 
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 1 2 … NDOF

1
Element 1 2

:
12
1

Element 2 2
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12
:
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Element Nelem 2
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12

N  =

1 if connected,  
0 otherwise 

 (AI.9) 

Then from the equilibrium of the joints, we have: 
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and from the Tonti Diagram, Fig. AI.3, we have the following result: 
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where B is the equilibrium matrix of the structure, since: 

 P = BF  (AI.12) 

where ( ) ( ) ( ){ }1 2 elemN=
TTT T

F Q Q Q" , the vector of internal forces. Again from the 

principle of virtual forces, we have the corresponding compatibility relation: 
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It should be noted that (AI.11) is not used in implementation, but is specified only for 

notational convenience in derivations. In actual implementation, an algorithm such that 

used for assembling the conventional Stiffness Matrix (Weaver and Gere (1990)) is used 

to assemble B. Also, in small displacement theory, the velocities and deformation rates in 

the above equations can be replaced by the corresponding displacements and 

deformations. But the rate forms are used here used here since they extend to large 

displacements. 

For a dynamic problem, the equations of motion of the structure are given by: 

 Mu + Cu + BF = P�� �  (AI.14) 

where M and C are respectively the mass and damping matrices of the structure. Of the 

total of NDOF DOF of the structure, let Nfree be unconstrained and Nspec have specified 

non-zero displacements. Of the Nfree unconstrained DOF, let Nmass have mass, Ndamp have 

damping (i.e., the partition of the damping matrix associated with these DOF is positive 

definite), but no mass and the remaining Nstatic, neither mass nor damping (quasi-static 

DOF). The equations of motion can then be partitioned as follows: 
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 (AI.15) 

Notice that the last Nstatic + Nspec equations are algebraic. The Nstatic equations are 

constraints on the stress-resultants F, arising from equilibrium of the quasi-static DOF. It 

will be seen that the last Nspec equations can be eliminated using the principle of virtual 

work. Further developments are presented in the respective sections as necessary. 
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Fig. AI.1. 3D Frame Structure 
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APPENDIX II. PRINCIPLE OF VIRTUAL FORCES IN RATE FORM  

Starting from the rate form of the nonlinear compatibility equations (4.2)-(4.4), 

we set out to obtain a variational equation of the form: 

 
1

T
2

0
3

Lq
q dx
q

ε
φ

 
   =   
  

 
∫b

�
�

� �
�

 (AII.1) 

The following are the boundary conditions: 

 20x
qθ

=
=� � , 3x L

qθ
=

=� �  (AII.2) 

 1x L
qξ

=
=� �

0 0
0

x x
ξ ξ

= =
= =� , Lx L

ξ ξ
=

=  (AII.3) 

 
0 0

0
x x x L x L

η η η η
= = = =

= = = =� �  (AII.4) 

Substituting equation (4.1) in (4.3) and integrating over the length of the element, we 

have: 

 
0 0 0

cos
L L Ld ddx dx dx

dx dx
ξ ηε θ θ= −∫ ∫ ∫
� ��  (AII.5) 

Integrating the second term on the right hand side of Eq. (AII.5) by parts and imposing 

the boundary conditions, the following relation is obtained: 

 1
0 0

cos
L L dq dx dx

dx
θε θ η= +∫ ∫
�

��  (AII.6) 

Substituting Eq. (4.2) in Eq. (AII.6) results in: 

 ( ) ( )1
0

cos 1
L

q dx
ε

θ ηφ η ε
φ

 
= + +    

 
∫

�
� �  (AII.7) 
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Similarly, starting from equations (4.4) and , integration by parts and substituting Eq. 

(4.2) results in: 

 ( )3
0

sin 1
L

L L

q dx
εξφ θ ξ ε
φξ ξ

    −
= +    

   
∫

�
� �  (AII.8) 

Also, integrating equation (4.2) over the length of the element results in: 

 ( )3 2
0

1
L

q q dx
ε

φ ε
φ

 
− = +    

 
∫

�
� � �  (AII.9) 

The following integral relationship follows by combining equations (AII.7), (AII.8) and 

(AII.9): 

 
1

*
2

0
3

Lq
q dx
q

ε
φ

 
   =   
  

 
∫

T

b
�

�
� �
�

 (AII.10) 

where, 

 
( )

( ) ( ) ( )

*

sin sincos 1

1 1 1 1

L L L L

L L

ξ θ ξ θθ ηφ φ φ
ξ ξ ξ ξ

ξ ξη ε ε ε
ξ ξ

    
+ − − −    

    =    + − + +    

b  (AII.11) 

Consideration of the section constitutive equations leads to a different strain 

measure conjugate to the bending moment, and results in the transformation of b* into the 

equilibrium matrix b. In the presence of centerline axial strain, the plane section 

hypothesis yields the following for the strain of a fiber at a distance y from the centerline: 

 ( ) ( )1y yε ε ε φ= − +  (AII.12) 
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In rate form, this gives: 

 ( ) ( )1y y yε ε εφ ε φ= − − + �� � �  (AII.13) 

Integrating the resulting stress rates over the cross section, it can be shown that the stress 

resultant rates are given by: 

 ( ) ( )2

1 0 1 0
1 1

t t

A A t

t t

A A

E dA E ydA
P
M E ydA E y dA

ε ε
φ ε φ εφ φ

 −
         

= =          + +−          
  

∫∫ ∫∫

∫∫ ∫∫
K

� � �
� ��  (AII.14) 

or 

 
( ) ( )

1 0
1

1 1

P
M

ε
φ

φ
ε ε

 
    =    −   + +  

f
��

� �  (AII.15) 

where Kt is the section tangent rigidity matrix and f is the section flexibility matrix, f = 

(Kt)-1. By introducing the strain measure ( )1φ ε φ= +�  we see that the constitutive 

equations can be written as: 

 
P
M

ε

φ

     =   
    

f
� �
� ��  (AII.16) 

and that: 

 
( ) ( )

*

1 0
1

1 1
φ

ε ε

 
  = −

+ +  

T Tb b  (AII.17) 

The variational Eq. (AII.10) now leads to equation (4.5). 
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APPENDIX III. ONE-DIMENSIONAL RECIPROCAL COMPONENTS 

Component Schematic Lagrangian Dissipation 

Linear-elastic spring 

(Stiffness = k) 

 

 
21

2
ku  or 21

2
J

k
�  - 

Nonlinear elastic 
spring 

 

 

Strain energy or 
Complementary 

strain energy 
- 

Linear viscous 
damper (Damping 
constant = c) 

 

 
- 

21
2

cu�  or 

21
2

J
c
�  

Nonlinear viscous 
damper 

 

 

- 

11
1

nc u
n

+

+
�  or 

1

11

n
n

n

Jn
n c

+

+

�
 

Maxwell element 
 

 
21

2
J

k
�  21

2
J

c
�  

Kelvin element 

 

 

21
2

ku  21
2

cu�  

Viscoplastic element 
(Yield force = Fy) 

21
2

J
k
�  

21
2 yJ F
c

−�  

Elastic-plastic 
element 

21
2

J
k
�  ( )C J�U  

Kinematic 
Hardening 

2

1

 

2 2
1 2

1 2

1 1
2 2

J J
k k

+� �  ( )1 2C J J−� �U  
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APPENDIX IV.  LAGRANGIAN FORMULATION OF CONTINUA 

AIV.1. Three Dimensional Continuum 

In this subsection, the Lagrangian formulation of Section 5 is extended to the 

three dimensional continuum. The reader is referred to Belytschko et al. (2000) for a 

concise review of the continuum mechanics concepts used here. The notation followed 

here is also from this reference. Vectors and tensors are written in bold face and their 

Cartesian components are written in italics with subscripts. 

AIV.1.1. Review of Continuum Kinematics 

Consider a body occupying a region Ω of space with boundary Γ at time t=0. This 

is called the reference configuration of the body. The position vector of a point in the 

body is X. In Cartesian coordinates, the vector is represented by its components Xi. The 

motion of the body is described by the map φ, so that at time t, the position vector of the 

point X is x = φ(X,t). The displacement of the point X is u and x=X + u. The deformation 

gradient tensor F is defined as: 

 ∂
=

∂
xF
X

   or   ,ij ij i jF uδ= +  (AIV.1) 

The Green-Lagrange strain tensor is defined as: 

 ( )1
2

= −TE F F I    or   ( )1
2ij ki kj ijE F F δ= −  (AIV.2) 

where I is the identity matrix and δij is the Kronecker delta (δij=1 if i=j, 0 otherwise). 

Using the definition of the deformation gradient, the Green-Lagrange strain tensor may 

be written in terms of the displacements as: 
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 ( ), , , ,
1
2ij i j j i k i k jE u u u u= + +  (AIV.3) 

Using equation (AIV.3), the material time derivative of the Green-Lagrange strain tensor 

can be obtained as: 

 

( )

( )

( ) ( )

( )( )

, , , , , ,

, , , , , ,

, , , ,

, ,

1
2
1    
2
1    
2
1    
2

ij i j j i k i k j k i k j

ik k j jk j i k i k j k i k j

ik k i k j jk k i j i

ip jq iq jp pk k p k q

E u u u u u u

u u u u u u

u u u u

u u

δ δ

δ δ

δ δ δ δ δ

= + + +

= + + +

 = + + + 

 = + + 

� � � � �

� � � �

� � �

�

 (AIV.4) 

Hence we obtain the strain rate-velocity relationship: 

 *
ij ijk kE B u=� �  (AIV.5) 

where ( )( )*
,

1
2ijk ip jq iq jp pk k p

q

B u
X

δ δ δ δ δ ∂
= + +

∂
 is the strain rate-velocity operator. 

The stress measure that is work conjugate to the Green-Lagrange strain tensor is 

the second Piola-Kirchhoff stress S defined by the relation: 

 i ik ij jF S nτ =  (AIV.6) 

where τ is the traction vector and n is the unit normal in the reference configuration. Γu 

and Γτ are the portions of the boundary with prescribed displacement and prescribed 

traction respectively. 
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AIV.1.2. Continuum Plasticity 

Finite deformation plasticity can be formulated in several ways. These are 

discussed in an excellent fashion by Simo and Ortiz (1985). Of these, the material 

formulation is adopted here. Other formulations are equally applicable using appropriate 

kinematic operators *
ijkB . The fundamental assumption of finite deformation plasticity is 

the multiplicative decomposition of the deformation gradient tensor into plastic and 

elastic parts: 

 e p=F F F  (AIV.7) 

where the elastic deformation Fe is obtained by unloading the body to an intermediate 

configuration (Simo and Ortiz (1985)). The material formulation then defines the 

following relationships: 

1. The plastic Green-Lagrange strain tensor: 

 ( )1
2

p p p= −
T

E F F I  (AIV.8) 

2. The elastic Green-Lagrange strain tensor: 

 e p= −E E E  (AIV.9) 

3. The elastic stress-strain relationship: 

 0
e ψρ ∂

=
∂

E
S

 (AIV.10) 

 where S is the second Piola-Kirchhoff stress tensor and ψ(S) is the complementary 

strain energy function per unit mass, assumed here to be quadratic so that 
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( ) 1
2 ijkl ij klA S Sψ =S  where Aijkl is the inverse of the elasticity tensor and ρ0 is the mass 

density in the reference configuration. 

4. The yield condition: 

 ( ), 0Φ =S F  (AIV.11) 

 so that the elastic domain is ( ){ }| , 0C = Φ <S S F . 

5. The flow rule: 

 p
C∈∂E� U  (AIV.12) 

 as in equation (2.25) of Section 2. 

The Lagrangian formulation of the continuum is now presented. 

AIV.1.3. Lagrangian Formulation 

It is proposed that the Lagrangian and dissipation density functions (i.e. per unit 

mass) and the action integral of the continuum are given respectively by: 

 *

0

1 1 1
2 2k k ijkl ij kl ij ijk ku u A J J J B u

ρ
= + +� �� � �L  (AIV.13) 

 ( ) ( ) 1,
2C ij i jc u uϕ = +J u J� �� � �U  (AIV.14) 

 

0
0

0 0
0 0

0
0 0

         

         

T

T T

k ij
k ij

T T

k k k k

d dt

u d dt J d dt
u J

f u d dt u d dt

δ δ ρ

ϕ ϕρ δ ρ δ

ρ δ τ δ

Ω

Ω Ω

Ω Γ

= − Ω

∂ ∂
+ Ω + Ω

∂ ∂

− Ω − Γ

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

��

I L

 (AIV.15) 
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where 
0

t

ij ijJ S dτ= ∫ , the impulse of the second Piola-Kirchhoff stress tensor, Sij and c is 

the damping per unit mass. It is shown next that the governing equations of the 

continuum can be derived from this Lagrangian formulation as Euler-Lagrange 

Equations. 

AIV.1.4. Derivation of Euler-Lagrange Equations 

Consider the first integral of equation (AIV.15): 

 *
0 0 0

0 0

1 1
2 2

T T

k k ijkl ij kl ij ijk kd dt u u A J J J B u d dtδ ρ δ ρ ρ
Ω Ω

 Ω = + + Ω 
 ∫ ∫ ∫ ∫ � �� � �L  (AIV.16) 

By integrating by parts in time, the first two terms of the integral on the right hand side 

can be written as follows: 

 0 0
0 0

1
2

T T

k k k ku u d dt u u d dtδ ρ ρ δ
Ω Ω

Ω = − Ω∫ ∫ ∫ ∫� � ��  (AIV.17) 

 0 0
0 0

1
2

T T

ijkl ij kl ijkl ij klA J J d dt A J J d dtδ ρ ρ δ
Ω Ω

Ω = − Ω∫ ∫ ∫ ∫� � ��  (AIV.18) 

Consider now the integrand of the third term: 

 ( )( )*
, ,

1
2ij ijk k ij ip jq iq jp pk k p k qJ B u J u uδ δ δ δ δ= + +� �   

Now ( ) ( )1 1
2 2ij ip jq iq jp pq qp pqJ J J Jδ δ δ δ+ = + =  due to the symmetry of the second Piola-

Kirchhoff stress tensor and hence of the impulse tensor J. Hence: 

 ( ) ( )*
, , , ,ij ijk k pq pk k p k q ij ik k i k jJ B u J u u J u uδ δ= + = +� � �  (AIV.19) 
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replacing the indices p and q by i and j respectively. Substituting, we have: 

 

( )

( )

*
, ,

0 0

, ,
0

, ,
0

                             

                             

T T

ij ijk k ij ik k i k j

T

ij k i k j

T

ij ik k i k j

J B u d dt J u u d dt

J u u d dt

J u u d dt

δ δ δ

δ

δ δ

Ω Ω

Ω

Ω

Ω = + Ω

+ Ω

+ + Ω

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

� �

�

�

 (AIV.20) 

Consider the following time integral: 

 
( ) ( )

( )

, , , , 0
0

, , , ,
0 0

                                  

T T

ij ik k i k j ij ik k i k j

T T

ij ik k i k j ij k i k j

J u u dt J u u

J u u dt J u u dt

δ δ δ δ

δ δ δ

+ = +

− + −

∫

∫ ∫

�

� �
  

The first term on the right hand side vanishes because δu is prescribed at the beginning 

and end of the time interval in Hamilton’s principle. Moreover, using the symmetry of J, 

the indices, i and j in the third term can be switched to obtain: 

 ( ) ( ), , , , , ,
0 0 0

T T T

ij ik k i k j ij ik k i k j ij k j k iJ u u dt J u u dt J u u dtδ δ δ δ δ+ = − + −∫ ∫ ∫�� �  (AIV.21) 

Since ,ik k i kiu Fδ + = , the deformation gradient: 

 ( ),ij ik k i ij ki ji ki jkJ u S F S F Pδ + = = =�  (AIV.22) 

where P is the unsymmetric first Piola-Kirchhoff stress tensor. The second equality above 

follows from the symmetry of the second Piola-Kirchhoff stress tensor, S. Notice also 

that similar to equation (AIV.19), the first integrand on the right hand side of equation 

(AIV.20) can be written as: 
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 ( ) *
, ,ij ik k i k j ij ijk kJ u u J B uδ δ δ+ =� �  (AIV.23) 

Substituting equations (AIV.21), (AIV.22) and (AIV.23) in equation (AIV.20), we have: 

 * *
,

0 0 0

T T T

ij ijk k ij ijk k jk k jJ B u d dt J B u d dt P u d dtδ δ δ
Ω Ω Ω

Ω = Ω − Ω∫ ∫ ∫ ∫ ∫ ∫� �  (AIV.24) 

Notice that the second integral of equation (AIV.21) cancels out the second integral of 

equation (AIV.20) in a fashion similar to the spatially discrete case of section 5.8. Now 

consider the spatial integral: 

 
( ), ,,

,                    

jk k j jk k jk j kj

jk j k jk j k

P u d P u d P u d

P n u d P u d

δ δ δ

δ δ
Ω Ω Ω

Γ Ω

Ω = Ω − Ω

= Γ − Ω

∫ ∫ ∫

∫ ∫
 (AIV.25) 

where Γ is the boundary of the domain, n is the unit vector normal to the boundary and 

the second equality follows from Gauss’ theorem. Substituting equation (AIV.25) in 

equation (AIV.24), we have: 

 

* *
,

0 0 0

0

                                                            

T T T

ij ijk k ij ijk k jk j k

T

jk j k

J B u d dt J B u d dt P u d dt

P n u d dt

δ δ δ

δ

Ω Ω Ω

Γ

Ω = Ω + Ω

− Γ

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

� �
 (AIV.26) 

Substituting equations (AIV.17), (AIV.18) and (AIV.26) in equation (AIV.15) and 

grouping terms containing δuk and δJij gives: 
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( )

0 0 , 0
0

*
0 0

0

0

  

0

T

k jk j k k
k

T

ijkl kl ijk k ij
ij

T

jk j k k

u P f u d dt
u

A J B u J d dt
J

P n u d dt

ϕρ ρ ρ δ

ϕρ ρ δ

τ δ

Ω

Ω

Γ

 ∂
+ − − Ω ∂ 

 ∂
+ + − Ω  ∂ 

+ − Γ

=

∫ ∫

∫ ∫

∫ ∫

��
�

�� ��  (AIV.27) 

Let Γu and Γτ be the portions of the boundary with prescribed displacement and 

prescribed traction respectively. Then due to the arbitrariness of δuk everywhere but on 

Γu, and due to the arbitrariness of δJij, we have: 

 0 0 , 0 0k jk j k
k

u P f
u
ϕρ ρ ρ∂

− − + + =
∂

��
�

 (AIV.28) 

 *
0 0 0ijkl kl ijk k

ij

A J B u
J
ϕρ ρ ∂

+ − =
∂

�� ��  (AIV.29) 

 
 on  

0      on  
jk j k

k u

P n

u
ττ

δ

= Γ

= Γ
 (AIV.30) 

Equation (AIV.28) is the equation of motion expressed in the reference configuration (see 

for example, Belytschko, Liu et al. (2000)), equation (AIV.29) is the equation of 

compatibility and equation (AIV.30) represents the boundary conditions. It has thus been 

demonstrated that the Lagrangian function, the dissipation function and the action 

integral of equations (AIV.13)-(AIV.15) determine the governing equations of the three 

dimensional continuum. 
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AIV.2. Large Deformation Beam Element 

A Lagrangian formulation is now presented for the large deformation beam 

element of Section 4 in the element corotational system. 

AIV.2.1. Kinematics 

Consider the rate-compatibility equations (4.2), (4.3) and (4.4) of Section 4. 

Multiplying equation (4.3) by cosθ and equation (4.4) by sinθ and adding, we have: 

 cos sind d
dx dx
ξ ηε θ θ= +
� ��  (AIV.31) 

Similary, multiplying equation (4.3) by sinθ and equation (4.4) by cosθ and subtracting, 

we have: 

 sin cos
1 1

d d
dx dx

θ ξ θ ηθ
ε ε

= − +
+ +

� ��  (AIV.32) 

Differentiating equation (AIV.32) further with respect to x gives: 

 sin cos
1 1

d d d d
dx dx dx dx

θ θφ ξ η
ε ε

   = − +   + +   
�� � �  (AIV.33) 

If the displacements in the x and y directions are denoted by u and v respectively, then 

u ξ= ��  and v η= �� . Combining this with equations (AIV.31) and (AIV.33), the following 

compatibility relations is obtained: 

 *=ε B u� �  (AIV.34) 

where { }ε φ=
T

ε � , u = {u, v}T and B* is the compatibility operator: 
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 *

cos sin

sin cos
1 1

d d
dx dx

d d d d
dx dx dx dx

θ θ

θ θ
ε ε

 
 
 =

    −     + +    

B  (AIV.35) 

AIV.2.2. Constitutive Relations 

The constitutive relations are those of multi-axial plasticity discussed in Section 

2.6. We have from equation (2.33): 

 e p= +ε ε ε� � �  (AIV.36) 

The stress-resultant vector, { }P M= TF . The plastic strain rate is: 

 p ϕ∂
=

∂
ε�

F
 (AIV.37) 

where ϕ, the dissipation function, is given by Cϕ = U , the indicator function of the elastic 

domain ( ){ }| 0C = Φ <F F , Φ being the yield function of the cross-section of the 

beam. The elastic strain is given by: 

 1
2

e ∂  =  ∂  
Tε aF F

F
 (AIV.38) 

where a is the elastic flexibility matrix of the cross-section. 

AIV.2.3. Lagrangian Formulation 

It is proposed that the Lagrangian and dissipation density functions (i.e. per unit 

undeformed length) and the action integral of the continuum are given respectively by: 

 *
0

1 1
2 2

ρ= + +T T Tu u J aJ J B u� �� � �L  (AIV.39) 
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2Cϕ = + TJ u J u cu� �� � �U  (AIV.40) 

 0 0 0

0 0

         

T L T L T L

T L T

dxdt dxdt dxdt

dxdt dt

ϕ ϕδ δ δ δ

δ δ

∂ ∂
= − + +

∂ ∂

− −

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

T T

T T

u J
u J

u f q Q

��0 0 0

0

I L
 (AIV.41) 

where 
0

t

dτ= ∫J F , the impulse of the stress-resultant, c is the damping per unit 

undeformed length and Q and q are the element end force and displacement vectors 

respectively. It is shown next that the governing equations of the beam-column can be 

derived from this Lagrangian formulation as Euler-Lagrange Equations. 

AIV.2.4. Equilibrium Matrix 

Before showing that the Euler-Lagrange equations of the Lagrangiam 

formulation, equations (AIV.39) through (AIV.41), are the equilibrium and compatibility 

equations of the beam-column, it is necessary to obtain the adjoint of the compatibility 

matrix, B*, the equilibrium matrix, B. Considering the internal power, integrating by parts 

and using equation (AIV.32) gives: 
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 (AIV.42) 

where B is the equilibrium matrix: 
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Using the boundary condition of equations (AII.2), (AII.3) and (AII.4) of Appendix II, 

we have: 

 ( ) ( )*
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The Euler-Lagrange equations can now be derived. 

AIV.2.5. Derivation of Euler-Lagrange Equations 

Consider the first integral of equation (AIV.41): 
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By integrating by parts in time, the first two terms of the integral on the right hand side 

can be written as follows: 
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Consider the third term: 
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Integrating the third term by parts in time: 
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The term *δB u�  is examined. We have the following terms: 
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Therefore from equations (AIV.50) and (AIV.51), 
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Thus it is seen that * * * *
11 12 11 12B u B v B u B vδ δ δ δ+ = +� � � � . Similarly from equations (AIV.52) and 

(AIV.53), it can be concluded that * * * *
21 22 21 22B u B v B u B vδ δ δ δ+ = +� � � � . Combining these two 

results, we have: 

 δ δ=B u Bu� �  (AIV.55) 
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Substituting equations (AIV.49) and (AIV.55) in equation (AIV.48) and using the fact 

that δu =0 at t = 0 and t = T, we get: 
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Using the adjoint relationship, equation (AIV.42): 
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Substituting equation (AIV.57) in (AIV.56) and then equations (AIV.46), (AIV.47) and 

(AIV.56) in (AIV.41) and collecting the terms in δu, δJ and δq, we have: 
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Due to the arbitrariness of the virtual displacement and impulse fields, we have the 

pointwise relations: 
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Equation (AIV.59) is the equation of equilibrium of an infinitesimal segment of the 

beam. This can be verified (see for example, Huddleston (1979)). Equation (AIV.60) is 

the equation of compatibility and equations (AIV.61) are the boundary conditions. 

It is recognized that the key to the proposed Lagrangian formulation being 

invariant under finite deformations in all three cases, the discrete case in Section 5 and 

the continuum and beam-column discussed in this Appendix is the symmetry of the 

derivative of the compatibility operator with respect to the displacement field. 
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