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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center
of excellence in advanced technology applications that is dedicated to the reduction of earthquake
losses nationwide. Headquartered at the University at Buffalo, State University of New York, the
Center was originally established by the National Science Foundation in 1986, as the National Center
for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout
the United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and
post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide
program of multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the
State of New York. Significant support is also derived from the Federal Emergency Management
Agency (FEMA), other state governments, academic institutions, foreign governments and
private industry.

The Center’s FHW A-sponsored Highway Project develops retrofit and evaluation methodologies for

existing bridges and other highway structures (including tunnels, retaining structures, slopes,

culverts, and pavements), and improved seismic design criteria and procedures for bridges
and other highway structures. Specifically, tasks are being conducted to:

» assess the vulnerability of highway systems, structures and components;

» develop concepts for retrofitting vulnerable highway structures and components;

» develop improved design and analysis methodologies for bridges, tunnels, and retaining
structures, which include consideration of soil-structure interaction mechanisms and their
influence on structural response;

» review and recommend improved seismic design and performance criteria for new highway
structures.

Highway Project research focuses on two distinct areas: the development of improved
design criteria and philosophies for new or future highway construction, and the development of
improved analysis and retrofitting methodologies for existing highway systems and structures.
The research discussed in this report is a result of work conducted under the new
highway structures project, and was performed within Task 112-D-3.7, “Development of Analysis
and Design Procedures for Spread Footings” of that project as shown in the flowchart on the
following page.

This report describes a series of numerical analyses that address spreadfootings under dynamic and

seismic loading. These analyses were conducted for a typical idealized pier with a single-column
bent founded on a footing on the surface of, or embedded in, alayeredsoil profile. The report includes
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charts and tables for computing footing impedances for a variety of soil conditions and vibration
modes. The decomposition of seismic response into kinematic and inertial parts is discussed, as are
the effects of soil material nonlinearity on the response. A parameter study of the response of bridge
piers (without uplift) showed the effect of increased period due to soil-structure interaction on
seismic response and the influence of radiation damping. Finally, footing bearing capacity failure,
development of pore water pressure, and uplift under seismic conditions are discussed.
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ABSTRACT

An extensive set of graphs and tables is provided for computing the stiffness and damping of
spread footings under dynamic and seismic loading. All modes of vibration (swaying, rocking,
torsion) as well as various soil conditions and foundation geometries are addressed. Simplified
expressions for computing the kinematic response of footings (both in translation and rotation)
are provided. Special issues such as footings on a soil layer over elastic or rigid rock, and inelastic

effects are discussed.

In the second part of the report, results from two parameter studies are presented for the seismic
response of bridge bents on embedded footings in layered soil. The seismic excitation, in the form
of vertically propagating S waves, is described through real and artificial accelerograms applied at
the base of the deposit. Both kinematic and inertial interaction are taken into account. Results are
presented (in both frequency and time domains) for accelerations and displacements of the bridge
and the footing. Potential errors from the frequently employed simplifications of ignoring: (i) the
radiation damping produced by the oscillating foundation and by the elastic bedrock and (ii) the

stiffness and damping produced by the footing sidewalls, are discussed.

Additional issues such as (1) footing bearing capacity, (2) development of soil pore water
pressure beneath footings, (3) footing uplift, under strong seismic excitation are addressed in the

final part of the report.

KEYWORDS: Foundation; Spread footings; Dynamic analysis; Bridges; Bents; Radiation

damping; Rocking motion; Soil-structure interaction; Impedance Functions

vii






ACKNOWLEDGMENTS

Financial support for this project has been provided by the National Center for Earthquake
Engineering Research, FHWA Contract DTFH61-92-C-00112, Task 112-D-3.7. The authors are
thankful for this support. Thanks are also due to Mr. Peter Edinger, Partner of Mueser Rutledge
Consulting Engineers, for his review of the manuscript and for his constructive criticism during
the revision of the report. The help of Ms. Voyagaki, graduate student at the City University of
New York, in preparing some of the graphs is also acknowledged. The staff of Mueser Rutledge
Consulting Engineers performed calculations and prepared drawings. The authors would like to

especially thank Mr. Hunter, Ms. Vigneri, and Ms. Vassios for their contributions.

ix






SECTION

1

2

2.1

2.2

22.1

222

223

2.3

2.3.1

24

24.1

24.2

243

244

2.5

2.6

2.6.1

3.1

TABLE OF CONTENTS

TITLE
SUMMARY AND TASK OBJECTIVES

ANALYSIS OF SOIL-FOOTING-BRIDGE RESPONSE:
METHODS AND RESULTS

Statement of the problem: kinematic and inertial response
Assessing the effects of “Kinematic Interaction” (K.I.)
Simplified site response analysis

Simplified K.I. analysis --- “Foundation Input Motion”

Use of K.I. transfer functions

Inertial interaction: Assessment of foundation “springs” and “dashpots”

Use of impedances: Lateral seismic response of block foundation
supporting a 1-DOF structure

Computing dynamic impedances: Tables and Charts for dynamic
“springs” and “dashpots”

Surface foundation on homogeneous halfspace
Partially and fully-embedded foundations

The presence of bedrock at shallow depth
Foundations on soil stratum over halfspace
Effect of soil nonlinearity

[Nlustrative example

Example

PARAMETRIC STUDY OF THE SEISMIC RESPONSE OF
PIER ON FOOTING WITHOUT UPLIFT

Fundamental study

Xi

PAGE

10

15

20

23

23

28

32

36

40

41

42

47

47



SECTION
3.2

321

4.1

42

43

4.4

TABLE OF CONTENTS (continued)
TITLE
Additional parameter studies

Discussion

PORE PRESSURE GENERAITON AND SOIL FAILURE;
FOUNDATION UPLIFT

Bearing capacity
The method of Pecker et al., (1996)

Pore-water pressure and permanent displacement of foundations
under seismic excitation

Partial footing uplift

CONCLUSIONS

REFERENCES AND RELATED BIBLIOGRAPHY
APPENDIX A: Additional Parameter Studies

APPENDIX B: List of Symbols

xii

PAGE

60

63

71

71

76

77

80

87

91

97

219



FIGURE

1-1

2-1

2-2

2-3

2-5

2-6

2-7

2-8

3-1

3-2

LIST OF ILLUSTRATIONS
TITLE
The pier on footing studied in this report
Typical column-deck support conditions

(a) The geometry of soil-structure interaction problem;
(b) decomposition into kinematic and inertial response;
(c) two-step analysis of inertial interaction

Selection of the “control” point where the seismic excitation is specified

Definition of U,, U, and ®, for a massless foundation (kinematic

interaction problem) and the associated points in the free field
(from Elsabee et al., 1977)

Inclined SH wave, apparent wave length (7»& =, /sin ‘P) , free-field

surface motion (U, ), and foundation effective input motion (U, @)

Physical interpretation of the dynamic “spring” and “dashpot” in the
vertical mode of vibration

Seismic displacements and rotation of a foundation block supporting a
1-DOF super-structure. The seismic excitation is described through the

free-field ground-surface displacement U, , assumed to be produced by
a certain type of body or surface waves

The four foundation-soil systems whose impedances are given in
tabular/graphical form in this section. Numbers I to IV refer to the
corresponding tables and the associated graphs

Horizontal radiation dashpot C, of a foundation on a soil layer underlain

by “flexible” rock, as a fraction of the homogeneous halfspace value C,

(1, %), for various ratios V,/V,

The artificial 0.4g motion and its corresponding response spectra for 5%
and 10% damping

The Pacoima, Northridge (1994) motion and its corresponding response
spectra for 5% and 10% damping

Xiii

PAGE

11

13

17

21

24

39

50

51



LIST OF ILLUSTRATIONS (continued)

FIGURE TITLE PAGE
3-3 Complete Solution: harmonic steady-state transfer functions 52
3-4 Complete Solution: acceleration time histories for Pacoima, Northridge 53

(1994) rock motion
3-5 Solution ignoring SSI: harmonic steady-state transfer functions 54
3-6 Solution ignoring SSI: acceleration time histories for Pacoima, 55

Northridge (1994) rock motion

3-7 Solution for improved embedment: Harmonic steady-state transfer 56
functions

3-8 Solution neglecting radiation damping: Harmonic steady-state transfer 57
functions

3-9 Solution neglecting radiation damping: Harmonic steady-state transfer 58
functions

3-10 Solution neglecting radiation damping: Acceleration histories for 59

Northridge (1994) rock motion
3-11 The bridge system studied in this section 61

4-1 Ratio of seismic to static bearing capacity factors. Kinematic loading 73
of the foundation (inertia only in the soil under the footing)

4-2 Combined kinematic loading (inertia in the soil) and inertial loading 74

(inertia forces from the superstructure making the load “inclined”)
on the total reduction of bearing capacity factors N, and N )

4-3 Effect of strain amplitude on residual pore water pressure (after Dobry 79
and Ladd, 1980)

4-4 Model utilized in this report to incorporate footing uplift using 83
non-linear (tensionless) springs and dashpots

4-5 Increase of the effective period T with uplift, as a function of the 84
normalized impulse, B

4-6 The ratio of & over the € of the system without uplift as a function of B 85

Xiv



FIGURE

A-1

A-3

A-4

A-5

A-6

A-8

A-9

A-10

A-11

A-12

A-13

A-14

A-15

A-16

A-17

A-18

A-19

A-20

A-21

TITLE

Case A441:

Case A442:

Case A443:

Case A421:

Case A422:

Case A423:

Case A241:

Case A242:

Case A243:

Case A221:

Case A222:

Case A223:

Case B441:

Case B442:

Case B443:

Case B421:

Case B422:

Case B423:

Case B241:

Case B242:

Case B243:

LIST OF ILLUSTRATIONS (continued)

Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function

Harmonic steady-state transfer function

XV

PAGE

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119



FIGURE

A-22

A-23

A-24

A-25

A-26

A-27

A-28

A-29

A-30

A-31

A-32

A-33

A-34

A-35

A-36

A-37

A-38

A-39

A-40

A-41

A-42

TITLE

Case B221:

Case B222:

Case B223:

Case A441:

Case A442:

Case A443:

Case A421:

Case A422:

Case A423:

Case A241:

Case A242:

Case A243:

Case A221:

Case A222:

Case A223:

Case B441:

Case B442:

Case B443:

Case B421:

Case B422:

Case B423:

LIST OF ILLUSTRATIONS (continued)

Harmonic steady-state transfer function

Harmonic steady-state transfer function

Harmonic steady-state transfer function

Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation

Acceleration histories for 0.4g artificial excitation

Xvi

PAGE

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140



FIGURE

A-43

A-44

A-45

A-46

A-47

A-48

A-49

A-50

A-51

A-52

A-53

A-54

A-55

A-56

A-57

A-58

A-59

A-60

TITLE

Case B241:

Case B242:

Case B243:

Case B221:

Case B222:

Case B223:

Case A441:

Case A442:

Case A443:

Case B441:

Case B442:

Case B443:

Case A441:

Case A442:

Case A443:

Case A421:

Case A422:

Case A423:

LIST OF ILLUSTRATIONS (continued)

Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function

Harmonic steady-state transfer function

Xvii

PAGE

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158



FIGURE

A-61

A-62

A-63

A-64

A-65

A-66

A-67

A-68

A-69

A-70

A-T1

A-72

A-73

A-74

A-75

A-76

A-T7

A-78

A-79

A-80

A-81

TITLE

Case A241:

Case A242:

Case A243:

Case A221:

Case A222:

Case A223:

Case B441:

Case B442:

Case B443:

Case B421:

Case B422:

Case B423:

Case B241:

Case B242:

Case B243:

Case B221:

Case B222:

Case B223:

Case A441:

Case A442:

Case A443:

LIST OF ILLUSTRATIONS (continued)

Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function

Harmonic steady-state transfer function

Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation

Acceleration histories for 0.4g artificial excitation

xviii

PAGE

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179



FIGURE

A-82

A-83

A-84

A-85

A-86

A-87

A-88

A-89

A-90

A-91

A-92

A-93

A-94

A-95

A-96

A-97

A-98

A-99

A-100

A-101

A-102

TITLE

Case A421:

Case A422:

Case A423:

Case A241:

Case A242:

Case A243:

Case A221:

Case A222:

Case A223:

Case B441:

Case B442:

Case B443:

Case B421:

Case B422:

Case B423:

Case B241:

Case B242:

Case B243:

Case B221:

Case B222:

Case B223:

LIST OF ILLUSTRATIONS (continued)

Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation

Acceleration histories for 0.4g artificial excitation

Xix

PAGE

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200



FIGURE

A-103

A-104

A-105

A-106

A-107

A-108

A-109

A-110

A-111

A-112

A-113

A-114

A-115

A-116

A-117

A-118

A-119

A-120

LIST OF ILLUSTRATIONS (continued)

TITLE

Case A441:

Case A442:

Case A443:

Case A441:

Case B442:

Case B443:

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Acceleration histories for Pacoima, Northridge (1994)
rock motion

Case A441F: Harmonic steady-state transfer function

Case A442F:

Case A443F:

Case B441F:

Case B442F:

Case B443F:

Case A441F:

Case A442F:

Case A443F:

Case B441F:

Case B442F:

Case B443F:

Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Harmonic steady-state transfer function
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation
Acceleration histories for 0.4g artificial excitation

Acceleration histories for 0.4g artificial excitation

XX

PAGE

201

202

203

204

205

206

207
208
209
210
211
212
213
214
215
216
217

218



LIST OF TABLES
TABLE TITLE PAGE

2-1 Dynamic stiffnesses and dashpot coefficients for arbitrary shaped 25
foundations on the surface of a homogeneous halfspace

2-11 Dynamic stiffnesses and dashpot coefficients for arbitrary shaped 29
foundations partially or fully embedded in a homogeneous halfspace

2-11 Dynamic stiffnesses and dashpot coefficients for surface foundations on 33
homogeneous stratum over bedrock

2-IV Static stiffnesses of circular and strip foundations on soil 37
stratum-over-halfspace

2-V Values of G/Gpax and V/Vpay for soil beneath foundations NEHRP-97) 41
3-1 The parametric cases studied in Section 3-2 62
3-11 Cases A441-B223: Summary of results for 0.4g artificial motion and 67
0.4g harmonic steady-state motion. Absolute values are used for all
entries
3-1I Cases A441 — B441: Summary of results for Pacoima, Northridge 68

(1994) and 0.4g harmonic steady-state motion. Absolute values are
used for all entires

3-1V Cases A441 — B223: Summary of results for 0.4g artificial motion and 69
0.4g harmonic steady-state motion. Absolute values are used for all
entries

3-V Cases A441 — B441: Summary of results for Pacoima, Northridge 70

(1994) and 0.4g harmonic steady-state motion. Absolute values are
used for all entires

3-VI Cases A441 — B443: Summary of results for 0.4g artificial motion and 70
0.4g harmonic steady-state motion. Absolute values are used for all
entires

4-1 Values of parameters C,, C,, C, d,,d, and d, for pore pressure 80
computation

XXi






SECTION 1
SUMMARY AND TASK OBJECTIVES

The overall objectives of this task are to provide information relating to some of the major issues
facing bridge designers, such as: (1) when should foundation stiffness be incorporated in the
dynamic analyses; (2) how significant is the proper modeling of the effect of embedment on the
dynamic stiffnesses (“‘springs” and “dashpots”) of the foundation; (3) how important is the role of
radiation damping and of kinematic interaction in structural response; (4) under what conditions
will uplifting become significant and what is the best way to model it in design/analysis; (5) are
localized soil nonlinearities under a foundation significant and how could they be taken into

account in the analysis?

To this end, analytical studies are conducted for the seismic response of a typical idealized bridge
pier. Sketched in Fig. 1-1, the pier is a single-column bent founded on a footing on the surface of,

or embedded in, a layered soil profile.

A variety of realistic pier-bridge-deck support connections, some of which are sketched in Fig.
1-2, are studied. They range from a top free to rotate (when, for example, bridge column and
beams are connected through a hinge) to a top fixed against rotation (appropriate for
relatively-stiff beams fixed to the column top). Supports through elastomeric bearings can also be
studied with the method. The results presented in this report are for the “fixed” and the “free”

support only.

The soil-foundation-pier system is subjected to seismic excitation consisting of vertical S-waves.
The excitation is described through a horizontal “rock” outcrop motion. In addition to harmonic
steady-state analyses, two different motions are used in this project, both characterized by a peak
ground acceleration (pga) of 0.40g: (a) artificial (“synthetic”) accelerograms fitted to the
AASHTO pga = 0.40g Sl-soil spectrum, and (b) the Pacoima-downstream accelerogram
recorded in the 1994 Northridge earthquake. Since its pga value is 0.42 g , no scaling was
considered necessary for this motion. The two time histories and the corresponding response

spectra are presented in Section 3.



In Section 2, charts and tables are provided for computing footing impedances for a variety of soil
conditions and vibration modes. The decomposition of seismic response into a kinematic and an

inertial part is discussed. Effects of soil material nonlinearity on the response are presented.

In Section 3, results from an extensive parameter study of the response of bridge piers (without
uplift) are presented. The effect of increased period due to soil-structure interaction on seismic

response and the influence of radiation damping are highlighted.

Footing bearing capacity failure, development of pore water pressure, and uplift under seismic

conditions are briefly discussed in Section 4.
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FIGURE 1-2 Typical column-deck support conditions

FIGURE 1-1 The pier on footing studied in this report






SECTION 2

ANALYSIS OF SOIL--FOOTING--BRIDGE RESPONSE:
METHODS AND RESULTS

2.1 Statement of the problem: kinematic and inertial response

During earthquake shaking, the soil deforms under the influence of the incident seismic wave and
“carries” dynamically with it the foundation and the supported structure. In turn, the induced
motion of the superstructure generates inertial forces which result in dynamic stresses in the base
that are transmitted into the supporting soil. Thus, superstructure-induced deformations develop
in the soil while additional waves emanate from the soil-foundation interface. In response,
foundation and superstructure undergo further dynamic displacements, which generate further

inertia forces, and so on.

The above phenomena occur simultaneously. However, it is convenient (both conceptually and
computationally) to separate them into two successive phenomena, referred to as “kinematic
interaction” and “inertial interaction”, and obtain the response of the soil-foundation-structure

system shown in Fig 2-1 as a superposition of these two interaction effects:

(a) “Kinematic Interaction” (K.I.) refers to the effects of the incident seismic waves to the system
shown in Fig. 2-1b, which consists essentially of the foundation and the supporting soil, differing
from the complete system of Fig. 2-1a in that the mass of the superstructure is set equal to zero.
The main consequence of kinematic interaction is that it leads to a “Foundation Input Motion”
(F.I.M.) which is different (usually smaller) than the motion of the free-field soil and, in addition,
contains a rotational component. As will be show later on, this difference is potentially significant

for embedded foundations.

(b) “Inertial Interaction” (L.I.) refers to the response of the complete structure-foundation-soil
system to the excitation by D’Alembert forces associated with the acceleration of the

superstructure due to the kinematic interaction (Fig. 2-1b).
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FIGURE 2-1. (a) The geometry of soil-structure interaction problem; (b) decomposition
into kinematic and inertial response; (c) two-step analysis of inertial interaction.



Furthermore, for a surface or embedded foundation, “inertial interaction” (I.I.) analysis is also
conveniently performed in two steps, as shown in Fig. 2-1c (after Kausel & Roesset 1974):
Compute first the foundation dynamic “impedances” (“springs” and ‘“dashpots”) associated with
each mode of vibration, and then determine the seismic response of the structure and foundation
supported on these “springs” and “dashpots”, and subjected to the “kinematic” accelerations ax(t)

of the base. This Section presents methods and results for each of these three analysis steps for

the seismic response.
2.2 Assessing the effects of “Kinematic Interaction” (K.I.)

The first step of the K.I. analysis is to determine the “free-field” response of the site, that is, the

spatial and temporal variation of the motion before building the structure. This task requires that:

(a) The design motion be known at a specific (“control”) point, which is usually taken to be at the
ground surface or at the rock-outcrop surface, as sketched in Fig. 2-2. Most frequently the design
motion is given in the form of a design response spectrum in the horizontal direction and

sometimes also a second one in the vertical direction.

(b) The type of seismic waves that produce the above motion at the “control” point may be either
estimated from a pertinent seismological study or simply assumed in a reasonable manner. In most
cases the assumption is that the horizontal component of motion is due solely to
vertically-propagating shear (S) waves and vertical dilatational (P) waves. In critical projects

extreme cases of wave patterns (oblique body waves, surface waves) have to be considered.

Having established (a) and (b), wave-propagation analyses are performed to estimate the free-field
motion on the line of the soil-foundation interface. The computer code SHAKE (Schnabel et al
1973) is one a well established tool for performing such analyses, and can be used with any
possible location of the control point (at the ground surface, at the rock outcrop surface, or the
base of the soil deposit). Other codes, performing truly non-linear response analyses (DESRA,
DYNAFLOW, CHARSOIL, STEALTH, ANDRES, etc.) require that the base motion be first
estimated and used as input. In these techniques, the “control” point should not be selected within

the soil at a specific depth.
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2.2.1 Simplified site response analysis

For the case of SH or SV harmonic waves propagating vertically through the soil with frequency
o, the variation of motion with depth in the free-field of a horizontally stratified deposit will be
given by one-dimensional amplification theory. For a homogeneous soil layer, the amplitude of the
motion at any depth z relates to the motion at the ground surface as follows:

Up

AEU_A: cos (4 z) 2-1)

where £ = a complex “wavenumber” in view of the presence of material damping in the soil

=0 2-2
Ve (142017 (2-2)

where ® = excitation frequency, Vs = propagation velocity of shear waves in the soil, i= -1 ,

B = linear hysteretic damping factor of the soil material.

If material damping is ignored, function A simplifies to:
A= cos(wvsz) (2-3)

for any specific depth z = D (where the structure will be founded), this “transfer” function
becomes zero whenever ® = (2n +1) (w/2) (Vs/ D), which are the natural frequencies in shear
vibrations of a stratum of thickness D. This implies that these frequencies would be entirely

filtered out from the seismic motion at the foundation depth D.

Since the transfer function of Eqn (2-1) is equal to or less than 1 over the whole frequency range,
the amplitudes of the motion will always be de-amplified with depth. This is no longer true when
there is some amount of internal damping in the soil, but for moderate values of damping the
transfer function will still show some important variations with frequency and the motion at the

depth D will still be less than at the surface.

It is also possible in the free field to define a pseudo-rotation (Fig. 2-3):



o=4ts (2-4)

For the case of the homogeneous stratum and no internal damping, the pseudo-rotation becomes

0= 1-cos(%2)] =25 sin2(%2) @-5)

2.2.2 Simplified Kinematic Interaction analysis --- “Foundation Input Motion”

The displacement and pseudo-rotation of Eqns (2-1) and (2-5) are for depth D in the free field
and constitute the “driving” motion for the kinematic response of the embedded foundations. The
presence of a more-or-less rigid embedded foundation diffracts the 1-D seismic waves, since its
rigid body motion is generally incompatible with the free-field motion. The wave field now
becomes much more complicated and the resulting motion of the foundation differs from the
free-field motion, and includes translational and rotational components. Since, according to Fig.
2-1, this foundation motion is used as the excitation in the Inertial Interaction (I.I.) step of the

whole seismic response analysis, it is termed Foundation Input Motion (FIM).

The following simple expressions [based on results by Luco (1969), Elsabee et al (1977),
Tassoulas et al (1984), Harada et (1981), and O’Rourke et al (1984)] can be used for estimating

the translational and rotational components of the FIM in some characteristic cases. Specifically:

(a) For a surface foundation subjected to vertical S waves:

Up~U, (2-6)

Dp~0 2-7)

which implies that there is no kinematic effect, and the FIM includes only a translation equal to

the free-field ground surface motion.

10



Massless Foundation:
Kinematic Interaction Free Field

FIGURE 2-3. Definition of U,, Ug and ®g for a massless foundation (kinematic
interaction problem) and the associated points in the free field (from Elsabee et al,
1977).
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(b) For a surface foundation subjected to oblique S or surface (Rayleigh or Love) waves, one
must first determine the apparent propagation velocity V, along the horizontal x axis (Fig. 2-4).

Calling y the angle of incidence of an S wave:

(2-8)

Different choices for the value of the angle y can be made and the one leading to the largest
structural response be selected. For surface waves V, will be determined from the dispersion
relation of the soil deposit for each particular frequency ®. For Rayleigh waves in a practically
homogeneous and deep soil deposit, V, turns out to be only slightly less than V. For a deposit
consisting of a multi-layer soil stratum of thickness H, having an average S-wave velocity V;, V,

varies between V; (lower limit) and V; (upper limit) as follows:

0.90 V,  f <fu (2-9q)
Vo =1 Vi L f>2fn (2-9b)
090V, =00V, =Vi)(fifg = 1) . fu <f=<2fu (2-9c¢)

where fy = V/4H is the fundamental natural frequency of the soil deposit.

Finally, for a deposit with stiffnesses increasing more-or-less continuously with depth, V¢ 1is only

slightly less than the S-wave velocity V;(z.) at a depth
Ze ® 3R (2-10)
where Ar is the wave length of the Rayleigh wave = Vo /f

Once the apparent velocity V along the horizontal x axis has been estimated, the components

of the FIM can be determined from the following relations:

12
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+ horizontal translation:

Up = Uy Iy(w) 2-11la)
i B/V
Smafaé/va J ax)/f <3 (2-11b)
Iy(w) =
2 , @‘/73 > Z (2-11c¢)
¢ rotation:
Ua
Dp = 5 Ip (o) (2-12a)
where:
030[1 - cos ($2)] . 42 <% (2-126)
Ip =
wB T —
0.30 T > 5 (2-12c¢)

in which R = the foundation halfwidth or “equivalent” radius in the direction examined; ® = the
cyclic frequency of the harmonic seismic waves; ®p denotes rotation about the “out of plane”

horizontal axis, through the center of the foundation base.

(c) For a foundation embedded at depth D, with or without sidewalls, and subjected to vertical

and oblique SH waves, the horizontal and rotational component of FIM are:

Ug = Uy Iy(o) (2-13a)
cos(2E) L r<3mp (2-13b)

Iy(w) =
0.50 .2 %fp (2-13¢)
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Op = In(w) (2 - 14q)

020 [1-cos(2£)] . r<so (2 14b)

0.20 . f>fo (2 - 14c)

in which f=wm/2n = the frequency in Hz of the harmonic seismic wave; fp = Vs/4 D = the

frequency in shearing oscillations of a (hypothetical) soil stratum of thickness D.

Notice that the rotation is an integral and important part of the base motion for the massless

foundation. Ignoring it, while de-amplifying the translational component, through the transfer
function Iy (w), may lead to errors on the unsafe side. These errors are perhaps negligible for

determining the response of short squatty structures --- especially very heavy ones, but they may

be substantial (i.e., of the order of 50%) for the top of tall slender structures. On the other hand,
ignoring both the de-amplification of the horizontal component (Iy = 1) and the existence of the

rotational component usually leads to slightly conservative results; this is a simplification

frequently followed in practice for non-critical structures (Gazetas 1983).
2.2.3 Use of K.I. transfer functions

Equations (2-6) to (2-14) are transfer functions, relating to the free-field horizontal ground
surface motion the effective foundation input motion (FIM) in the frequency domain. The

mathematically correct (but still approximate) way of using the functions is as follows:

+ obtain the Fourier Amplitude Spectrum F(U,) of the Design Motion at the free-field ground

surface

« multiply F(U,) by Iy (®) and by I () / B to obtain the Fourier Amplitude Spectra functions
(Ug and ®sg) of the components of the FIM.

« use these functions directly as excitation in the inertial interaction analysis, if the latter is done

15



in the frequency domain, or obtain, through an inverse Fourier Transformation, the
corresponding time histories to be used as excitation in a time domain inertial response

analysis.

In practice, the most frequently used method involves a further simplification. It makes use of
Response Spectra rather than Fourier Spectra, and is therefore particularly attractive whenever
the design motion is specified in the form of a Design Response Spectrum SA(w) at the ground

surface, which is the most usual case in design codes. The response spectrum of the effective

horizontal FIM is approximated as the product of SA(w) X Iy (w) for the acceleration to be

applied at the foundation mass, and as the product SA(w) X [ly (®) + lo (@) Hc /B] for the

acceleration to be applied at a structural mass located a distance Hc from the base.

2.3 Inertial interaction: Assessment of foundation ‘“springs” and ‘“‘dashpots”

As explained in paragraph 2-1, the first step in Inertial Interaction (I.I.) analysis is to determine
the foundation impedances (i.e., the “springs” and “dashpots”) corresponding to each mode of
vibration. For the usual case of a practically-rigid foundation, there are six modes of vibration,
one for each degree of freedom: three translational (dynamic displacements along the axes X, y

and z) and three rotational (dynamic rotations around the same axes)

For each mode, the soil can be replaced for the dynamic analysis by a dynamic “spring” of

stiffness K and by a “dashpot” of modulus C. Their values will be discussed later on. Figure 2-5

illustrates the vertical spring and dashpot (K, and C,) of an embedded foundation. Subjected to
harmonic vertical force P,(t) = P, cos (0wt + a) with amplitude P, and frequency ® , this
foundation experiences a harmonic steady-state displacement u,(t) which has the same frequency

® but is out-of-phase with P,(t) . Thus, u,(t) can be expressed in the following two equivalent

ways:

u,(t) = u; cos(wt + a+ @) = uy cos(wt + a) +u, sin(wt + a) (2-15)

16
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where the amplitude u, and phase angle ¢ are related to the in-phase, u; and the 90°-out-of-phase,

u, , components according to:
u, = (u? +u) (2-16a)

uz

tang = 2 (2-16b)

We can rewrite the foregoing expressions in an equivalent and computationally beneficial way

using complex number notation:

P.(f)=P,exp(iot) (2-17a)

u(t)y=uexp(iwt) (2-17b)
where now P, and 1, are complex quantities (i = /=1 )

P.,=P,+iP, (2-18a)

Uy =Uz +iup (2-18b)

Eqns (2-17) and (2-18) are equivalent to Eqns (2-15) , (2-16) with the following relations being
valid for the amplitudes:

P.=|P.| = J(P% +P%) (2-192)

uy =lu | = Wl +u) (2-19b)

while the two phase angles, o and ¢, are included in the complex forms.

With P, and u, being out of phase or, alternatively, with T’Z and u, being complex numbers,

the dynamic vertical impedance (force-displacement ratio) becomes:.

18



F=L % +ioc. (2-20)

in which both K, and C, are, in general, functions of the frequency ®. The spring constantk,

termed dynamic stiffness, reflects the stiffness and inertia of the supporting soil; its dependence on
frequency is attributed solely to the influence which frequency exerts on inertia, since soil material
properties are to a good approximation frequency-independent. The dashpot coefficient C,

reflects the two types of damping (radiation and material) generated in the system; the former due
to energy carried by the waves spreading away from the foundation, and the latter due to energy

dissipated in the soil through hysteretic action. As evident from Eqn (2-15), damping is

responsible for the phase difference between the excitation P, and the response u,.

The above definition (Eqn 2-20) is also applicable to each of the other five modes of vibration.

Thus, we define as lateral (swaying) impedance 9%y the ratio of the horizontal harmonic force

over the resulting harmonic displacement uy(t) in the same direction:

%y':zv—:l_{y +iwCy (2-21)
Similarly,
+ 9y = the longitudinal (swaying) impedance (force-displacement ratio), for horizontal motion

in the long direction

» Jix = the rocking impedance (moment-rotation ratio), for rotational motion about the long

axis of the foundation basemat

« Sy = the rocking impedance (moment-rotation ratio), for rotational motion about the short

axis of the foundation

+ 9% = the torsional impedance (moment-rotation ratio), for rotational oscillation about the

vertical axis

Moreover, in embedded foundations and piles, horizontal forces along principal axes induce

rotational in addition to translational oscillations; hence, a cross-coupling horizontal-rocking
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impedance also exists: Hx.ry and FHyrx . The coupling impedances are usually negligibly small

in shallow foundations, but their effects may become appreciable for greater depths of
embedment, owing to the moments about the base axes produced by horizontal soil reactions

against the sidewalls.

2.3.1 Use of impedances: Lateral seismic response of block foundation supporting a
1-DOF structure

We refer to Figure (2-6) for an example on how to use the foundation “springs” and “dashpots”
to determine the response of a complete structure to harmonic earthquake-type excitation. The
foundation and structure possess two orthogonal axes of symmetry, x and y, and coupled

horizontal (swaying) and rotational (rocking) oscillations take place. Of interest are the

foundation horizontal displacement U, exp (i ®t) along the x axis, foundation rotation @, exp
(i o t) about the y axis, and the structure relative displacement U; exp (i ® t). The seismic
excitation is given by the free-field surface displacement Ua exp (i ®t) of amplitude U, and

frequency .

As a first step, we determine the Foundation Input Motion (FIM), from the kinematic interaction

analysis. Using the information of Section 2.2,

UB:UAIU(CO) and (I)BZUA Iq:.(CO)/B
where Iy and Ie are the appropriate kinematic interaction factors for each frequency .

The governing D’ Alembert equations for dynamic equilibrium of the foundation block and the

structure are (Richart et al 1970):

Fx (Uy - Up) + %)'(—ry (Do - PB) = o [mo Uy + my (U + H D, + Up)] (2-22a)
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Foundation Input Motion

FIGURE 2-6. Seismic displacements and rotation of a foundation block supporting

a 1-DOF super-structure. The seismic excitation is described through the free-field

ground-surface displacement U,, assumed to be produced by a certain type of body
or surface waves.
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-m; & (Up+H D+ U)) + Ky Uy =0 (2-22c)

in which mgy and I, are the mass and mass moment of inertia of the foundation, m; and I; are

the mass and mass moment of inertia of the superstructure and Ky = K +1 @ Cgr the structural

impedance (stiffness and damping) of the superstructure.

The above equations are a simple algebraic system of 3 equations in 3 unknowns, despite the fact
that the quantities involved are complex numbers. The solution, in matrix form, for the foundation

motion is:

Uo _ K UB
{cpo } T K- (Mo - My) { Dp } (223

where:

Ky Kx-
K:[ X x-ry

Kery Kry (2-23b)
[Mo]:[ "(’)o I(Z ] (2-23¢)
(M,] = [M] +m1A[ Yo ] (2-23d)
[M]:[ n’ZlH ml”;llzli i (2-23¢)

for the superstructure:
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m1w2

Ko + 2 Cyr —m w2

Uy (Up+h®y) (2-24)

Equations (2-23) and (2-24) provide the solution in closed form. The computations, however,
may be somewhat tedious if performed by hand, since K matrix involves complex numbers. On
the other hand, it is noted that if a real-number notation (with amplitudes and phase angles) had
been adopted (as in Eqn 2-15), Eqns (2-23) would become 6 equations with 6 unknowns — a less

desirable procedure. A simple computer code could readily perform the operations of Eqns (2-23)

and (2-24).

2.4 Computing dynamic impedances: Tables and Charts for dynamic ‘“springs” and
“dashpots”

The most important material and geometric factors which affect the dynamic impedances of

foundations are:
(1) the shape of the foundation (circular, strip, rectangular, arbitrary)

(2) the type of soil profile (deep uniform deposit, deep multi-layer deposit, shallow stratum on

rock)
(3) the amount of embedment (surface foundation, embedded foundation, piled foundation)

For a major project of critical significance a case-specific analysis must be performed, using the
most suitable numerical computer program. In most practical cases, however, foundation
impedances can be estimated from approximate expressions and charts. For the usual case of a
practically rigid foundation, a number of analytical formulae and charts for such stiffnesses have
been published (e.g., Luco 1974, Kausel & Roesset 1975, Gazetas 1983, Wong & Luco 1985,
Dobry & Gazetas 1986, Guzina & Pak 1998, Vrettos 1999) and are presented in this section.

2.4.1 Surface foundation on homogeneous halfspace

For an arbitrarily-shaped foundation mat, the engineer must first determine an ‘“equivalent”

circumscribed rectangle 2B by 2L (L>B) using common sense, as sketched in Fig 2-7. Then,
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FIGURE 2-7. The four foundation-soil systems whose impedances are given in
tabular/graphical form in this section. Numbers I to IV refer the corresponding tables and

the associated graphs.
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to compute the impedances in the 6 modes of vibration, from Table 2-1, (from Gazetas 1991a) all

the engineer needs is the values of:

e Ap, Ipx, Iy, Iy =area, moments of inertia about x, y, and polar moment of inertia about

z, of the actual soil foundation contact surface; if loss of contact under part of the foundation
(e.g. along the edges of a rocking foundation) is likely, engineering judgment may be used to

discount the contribution of this part

« B and L = semi-width and semi length of the circumscribed rectangle

« G, v, Vgand Vj,, the shear modulus, Poisson's ratio, shear wave velocity, and “Lysmer's

analog” wave velocity; the latter is the apparent propagation velocity of compression-extension

waves under a foundation and is related to Vg according to

Vi = =22V, (2-25)

=7 (i—v)

« o= cyclic frequency (in radians / second) of interest

This Table as well as all other Tables in this chapter gives:

« the dynamic stiffness (“springs”), K= K(w) as a product of the static stiffness, K, times the

dynamic stiffness coefficient k = k(w) :

K(w)=K x kKw) (2-26)

» the radiation damping (“dashpot”) coefficient C = C(w) . These coefficients do not include the
soil hysteretic damping, [3; to incorporate such damping, simply add to the foregoing C value

the corresponding material dashpot coefficient 2 K/ :

total C = radiation C + %ﬁ 2-27)
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2.4.2 Partially and fully-embedded foundations

For a foundation embedded in a deep and relatively homogeneous soil deposit that can be
modeled as a homogeneous halfspace, “springs” and “dashpots” are obtained from the formulae
and charts of Table 2-II (from Gazetas 1991a). The foundation basemat can again be of arbitrary
(solid) shape (Fig. 2-7). The engineer must determine the following additional parameters using

the Table:

« D = the depth below the ground surface of the foundation basemat

« A, or d = the total area of the actual sidewall-soil contact surface, or the (average) height of

the sidewall that is in good contact with the surrounding soil. Ay, should, in general, be smaller

that the nominal area of contact to account for such phenomena as slippage and separation that
may occur near the ground surface. The engineer should refer to published results of large and

small scale experiments for a guidance in selecting a suitable value for Ay or d (e.g., Stokoe

& Richart 1974; Novak 1985, Dobry et al 1986, Gazetas & Stokoe 1991). Note that Ay, or d

will not necessarily attain a single value for all modes of vibration.

+ Ays and Aywce Wwhich refer to horizontal oscillations and represent the sum of the projections
of all the sidewall area in directions parallel (Ays) and perpendicular (Awce) to loading.

Again Ays and Ayce should be smaller than the nominal areas in shearing and compression,

to account for slippage and/or separation. h = the distance of the (effective) sidewall centroid

from the ground surface

« Note that most of the formulae of Table 2-II are valid for symmetric and non-symmetric

contact along the perimeter of the vertical sidewalls and the surrounding soil. Note also that
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« Table 2-II compares the dynamic stiffnesses and dashpot coefficients of an embedded

foundation  Kemp = Kemp X kemp and  Cemp with those of the corresponding surface

foundation, K, =Ky X kg and Csyr.

2.4.3 The presence of bedrock at shallow depth

Natural soil deposits are frequently underlain by very stiff material or bedrock at a shallow depth,
rather than extending to practically infinite depth as the homogenous halfspace implies. The
proximity of such stiff formation to the oscillating surface modifies the static stiffness, K, and

dashpot coefficients C(w). Specifically, with reference to Table 2-1II and its charts:

(a) The static stiffnesses in all modes decrease with the relative depth to bedrock H/B. This is
evident from all formulae of Table 2-III, which reduce to the corresponding halfspace stiffnesses

when H/R approaches infinity.

Particularly sensitive to variations in the depth to rock are the vertical stiffnesses --- the effect
being far more pronounced with strip footings (factor 3.5 versus 1.3). Horizontal stiffnesses are
also appreciably affected. On the other hand, for H/R > 1.5 the response to torsional loads is

essentially independent of the layer thickness.

As indication of the causes of this different behavior (between circular and strip footings and, in
any footing, between the different types of loading) can be obtained by comparing the depths of

the “zone of influence” in each case. Circular and square foundations on a homogeneous halfspace

induce vertical normal stresses G, along the centerline of the footing that become practically
negligible at depths exceeding 5 footing radii (zy = 5 R); with strip foundations vertical stresses
practically vanish only below 15 footing widths (zy = 15 B). The depth of influence, zy , for the

horizontal stresses 7T,x , due to lateral loading is about 2R and 6B for circle and strip,
respectively. On the other hand, for all foundation shapes (strip, rectangle, circle), moment
loading is “felt” down to a depth, z;, of about 2B or 2R. For torsion, finally z; =0.75 R or

0.75 B.
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Apparently when a rigid formation extends into the “zone of influence” of a particular loading

mode, it eliminates the corresponding deformations and thereby increases the stiffness.

(b) The variation of the dynamic stiffness coefficients with frequency reveals an equally strong
dependence on the depth to bedrock H/B. On a stratum, k() is not a smooth function but
exhibits undulations (peaks and valleys) associated with the natural frequencies (in shearing and
compression-extension) of the stratum. In other words, the observed fluctuations are the outcome
of resonance phenomena: waves emanating from the oscillating foundation reflect at the
soil-bedrock interface and return back to their source at the surface. As a result, the amplitude of
the foundation motion may significantly increase at frequencies near the natural frequencies of the
deposit. Thus, the dynamic stiffness (being the inverse of displacements) exhibits troughs, which
can be very steep when the hysteretic damping of the soil is small (in fact, in certain cases, k(w)

would be exactly zero if the soil were ideally elastic).

For the “shearing” modes of vibration (swaying and torsion) the natural fundamental frequency of

the stratum which controls the behavior of k() is:

fi=3% (2-28)

where H denotes the thickness of the layer, while for the “compressing” modes (vertical,

rocking) the corresponding frequency is:

_Via _ 34
fe=2m =707 (2-29)

(c) The variation of the dashpot coefficient, C , with frequency reveals a twofold effect on the
presence of a rigid base at relatively shallow depth. First, C(®w) also exhibit undulations (crests
and troughs) due to wave reflections at the rigid boundary. These fluctuations are more
pronounced with strip than with circular foundations, but are not as significant as for the
corresponding stiffnesses k(w). Second, and far more important from a practical viewpoint, is that
at low frequencies below the first resonant (“cut-off”’) frequency of each mode of vibration,
radiation damping is zero or negligible for all shapes of footings and all modes of vibration. This is

due to the fact that no surface waves can exist in a soil stratum over bedrock at such low
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frequencies; and, since the bedrock also prevents waves from propagating downward, the overall

radiation of wave energy from the footing is negligible or nonexistent.

Such an elimination of radiation damping may have severe consequences for heavy foundations
oscillating vertically or horizontally, which would have enjoyed substantial amounts of damping in
a very deep deposit (halfspace) --- recall illustrative examples for Tables 2-I and 2-II. On the
other hand, since the low-frequency values of C in rocking and torsion are small even in a
halfspace, operating below the cut-off frequencies may not change appreciably from the presence

of bedrock.

Note that at operating frequencies f beyond f; or f; , as appropriate for each mode, the “stratum”

damping fluctuates about the halfspace damping C (H/B = o). The “amplitude” of such
fluctuations tends to decrease with increasing H/B. Moreover, if some wave energy penetrates
into bedrock (as it does happen in real life thanks to some weathering of the upper masses of

rock) the fluctuations tend to wither away --- hence the recommendation of Table 2-III .
2.4.4 Foundations on soil stratum over halfspace

The homogeneous halfspace and the stratum-on-rigid-base are two idealizations of extreme soil

profiles. A more realistic soil model, the stratum over halfspace, is studied in this subsection.
Besides the H/R or H/B ratio, the ratio G;/ G; (or the wave velocity ration V/ V;) is needed
to describe such a soil model. When G;/ G; tends to zero the stratum-on-rigid base (“bedrock”)
is recovered; when it becomes equal to 1, the model reduces to a homogeneous halfspace. For
intermediate situations, i.e., with 0< G; / Gr < 1, “springs” and “dashpots” can be estimated

using the information of this subsection.

Table 2-IV presents formulas for the static stiffness of circular and strip foundations, in terms of

G,/ G; and H/R (for the circle) or H/B (for the strip). These formulas are valid for G, < G,
i.e., a halfspace stiffer than the layer. At the lower limit, G,/ G; — 0, the expressions reduce to

those of Table 2-1II for a layer on rigid base. At the upper limit, G/ G — 1, the halfspace

expressions (Table 2-I) are recovered. At intermediate values, as the rigidity of the supporting.
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TABLE 2-IV. Static stiffnesses of circular and strip foundations on soil stratum over

halfspace.
General Expression )
1+m(B/H)
K=K(Gs/G,,H/B) =K (1,~) X T+ m(B/H) (Gs-Gp
Vibration Mode
m
K(17 & )
Circle Strip
Vertical 1.3 3.5
K

Horizontal of homogeneous 05 20

halfspace
Torsional 0.17 0.2
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halfspace decreases, the static stiffnesses of the foundation decrease, apparently due to increasing
magnitude of strains in the halfspace. The results are intuitively obvious and need no further

explanation

The dynamic stiffness and damping coefficients as functions of frequency also exhibit intermediate
behavior between those for halfspace and for stratum over bedrock. Thus the observed

undulations are not as sharp as the undulations on a stratum over bedrock, depending, of course,

on the value of G/ G:..

In general, compared to a stratum over bedrock, the flexibility of the base layer (halfspace)
produces a decrease in stiffness but an increase in radiation damping. The latter stems from the
fact that waves emitted from the foundation-soil interface penetrate into the halfspace, rather than

being fully reflected.

For the earthquake problem, this increase in radiation damping is practically most significant for
the swaying dashpot at frequencies ®w=2 n f below the fundamental frequency of the top soil
stratum. Recall that at such frequencies, when the halfspace is a rigid bedrock, no radiation

damping can generate, and hence resonance amplifications in the seismic response may develop.

In this case this is no longer true. Figure 2-8 gives a chart for estimating the swaying dashpot C,
for several values of the ratio Vs / V.. This chart applies to circle or square foundations with

H/R = 3 to 4 and for strip foundations with H /B =2 . The chart can only be used as a guide in

other cases.

On the other hand, rotational modes of vibration generate little damping below their respective
cutoff frequencies, and the significance of rock flexibility is of minor practical significance. This
actually is also true for higher frequencies, since “destructive” interference of waves emitted from
a rotating (in rocking or torsion) foundation limits the depth these waves can reach. Hence the

flexibility or rigidity of the base layer is again of practically little significance .

Additional information on this topic can be found in Hadjian & Luco (1977), Luco (1974),
Gazetas & Roesset (1976), and Gazetas (1983).
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TINS5 7007775075775,

Rock Ve
Foundation
Vv
Symbol Shape H/B V!V,
o Circle 3.55 0.3-0.6-0.8
Strip 2 0.24-0.5

L /\ Cy(17°°)=pVSA F
Vg /Vr=1 (approximately)

08~

pV_A

B VS / Vr = 075
04 % .
©
L V. /V,=05 £
o
o
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0.0 1 ' ! I
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f/fs

FIGURE 2-8. Horizontal radiation dashpot Cy of a foundation on a soil layer underlain by

""flexible" rock, as a fraction of the homogeneous halfspace value Cy (1, o), for various
ratios V,/V_.
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2.5 Effect of soil nonlinearity

In current soil-structure interaction practice, the nonlinear plastic soil behavior is usually
approximated through a series of iterative linear analyses, using soil properties (moduli and
damping ratios) that are consistent with the level of shearing strains resulting from the previous
analysis (Lysmer et al, 1974; Kausel et al, 1976). These analyses may utilize a wealth of available
experimental soil data relating the decrease in (secant) shear modulus and the increase in

(effective) damping ratio with increasing amplitude of shear strain.

Nonlinearities in the free-field soil are treated routinely with programs such as SHAKE. Much less
work has been reported on nonlinearities on the dynamic impedance functions of rigid strip
foundation. One interesting study has been conducted by Jakub & Roesset (1977). In this, the soil
is modeled as homogeneous or inhomogeneous stratum over rigid base with H/ B =1, 2, and 4.
A Ramber-Osgood model was used to simulate the nonlinear constitutive relations of soil and
iterative linear analyses were performed. One of the two parameters of the Ramber-Osgood
model, r, was kept constant equal to 2, while the second one, o , was varied so as to cover a
wide range of typical soil stress-strain relations. For such a model, the variation of secant modulus

and effective damping ratio with stress amplitude is given by:

L 1 (2-30a)

G _z (2-30b)

in which: G, = the initial shear modulus for low levels of strain; Y, = a characteristic shear strain,

typically ranging from 0.0001% to 0.01% ; and T = the amplitude of the induced shear stress.

It was concluded that a reasonable approximation to the swaying and rocking impedances of a
rigid strip may be obtained from the available linear viscoelastic solutions, provided that the

“effective” values of G and P are estimated from Eqns. (2-30) with

T="1Tc (2-31)
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where 7. is the statically induced shear stress at a depth equal to 0.50 B, immediately below
the foundation edge. Note that the above depth coincides with the depth of maximum shear strain
under a vertically-loaded strip footing (e.g., Tschebotarioff 1973).

For design purposes and as a first approximation, we mention here that the average shear modulus
for the soil beneath a footing can be determined according the NEHRP-97 recommendations, as a
function of the design seismic coefficient of the structure (Table 2-V). Alternatively, one may use

approximate “cone” models to derive strain-compatible moduli (Wolf, 1994).

TABLE 2-V. Values of G/G,..x and V/V., for soil beneath foundations (NEHRP-97).

Spectral Response Acceleration, Spi
< 0.10 < 0.15 0.20 > 0.30
G/Gmax 0.81 0.64 0.49 0.42
V/Vmax 0.90 0.80 0.70 0.65

2.6 Illustrative Example

An application of the methodology described in this report are given in this paragraph. The
dynamic stiffnesses (springs) and damping coefficients (dashpots) for the six modes of vibration
for a specific footing shape and embedment condition. Note that for non-rectangular footing
basemats an equivalent circumscribed rectangle should be drawn, as shown in Figure 2-7 and
Tables 2-1, 2-2, and 2-3. The impedance results are not sensitive to the exact shape and any

reasonable shape with good engineering judgment can be applied. The symbols used are:

A, = area of footing

Ly , I, I, = area moments of inertia about the x , y , and z axes of the actual
soil-foundation contact surface

B, L = half-width and half-length of the equivalent circumscribed rectangle (L > B) around a
or the dimensions of a rectangular footing

G, v = soil shear modulus and Poisson’s ratio
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V, = shear wave velocity
Vi« = Lysmer’s analog wave velocity = 7{(3T'iv—) Vs

o = 2 7 f= circular frequency (rad/sec) of the applied force that can be one of the dominant
frequencies of the seismic excitation or the frequency of operation of a vibrating machine

2.6.1 Example

The present example is taken from Gazetas (1991b)
2B=5m; 2L=16m; D=6m; L/B=32; y=4,/4L°~0.26
Vi=; v=0.40; p,=1.85Mg/m’; V,, ~ 459 m/sec

f=20Hz; ay=wB/V,~1.23

: E//“"%

FIGURE 2-9. Example Studied

Vertical Mode

Static Stiffness (Table 2-I)

Ko =395 (0.73 + 1.54 075) = 22000080 (0731 1.54%0.26075) ~

~ 4.13 x 10°kN/m
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Dynamic Stiffness Coefficient (Graphs accompanying Table 2-1)

ao=1.23; k,=0.92

K, = k, x K, =092 x4.13 x 10° = 3.80 x 10° kN/m
Radiation Damping (Table 2-I)

ar=123; ¢, =1.0

Coraa = (p Vi Ap) ¢, = (1.85 x 460 x 66.82) 1.0 = 5.66 x 10* kNs/m
Material Damping

w=125.7 rad/sec; B=5%

2K,

Coma = 5= f = ZAEIC 5 005 ~ 3.02 x 10°kNs/m

Total Damping
C: =Crrag + Comar = 5.66 x 10* + 3.02 x 10> ~ 5.96 x 10*kNs/m

Horizontal Modes

Static Stiffness (Table 2-I)

Ky=39L (2 + 2.5 4085) = X0 5 (512.5%0.26985) ~ 3.35 x 10 kN/m

K=K, - 555 GL(U - ) =
=3.35x 10 - 555"%575 120,000 x8.0x (1-%2) ~ 2.98 x 106 kN/m

Dynamic Stiffness Coefficient (Graphs accompanying Table 2-1)

ar=1.23; ky=1.14; k.= 1.14
Ky = ky x K, = 1.14 X 3.35 X 10® = 3.82 x 10% kN/m

K, = k: x Ky =1.14 X 2.98 x 10 = 3.39 x 10% kN/m

Radiation Damping (Table 2-1)

ar=~123; ¢,=1.0
Cyras = (p Vs Ap) T, = (1.85 X 255 x 66.82) x 1.0= 3.14 x 10* kNs/m
Crrad = (p Vs Ap) = (1.85 X 255 x 66.82) = 3.14 x 10* kNs/m

Material Damping
@=125.7 rad/sec; B=5%

Coomar = 5= = Z3EX 5005 ~ 3,04 x 10° kNs/m
Cromar = 222 fp = 2330 05 ~ 270 x 103 kNs/m
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Total Damping
Cy =Cyraq + Cymar =3.14 x 10* 4+ 3.04 % 103 ~ 3.44 x 10*kNs/m
Cx =Cyrag + Comar =3.14 X 10* + 2,70 x 10% =~ 3.41 x 10*kNs/m

Rocking Modes ry (Transverse Axis) and rx (Longitudinal Axis)

Static Stiffness (Table 2-I)
Ky=1% 1975 [3(5)"" ] = 5 x 1100075 % [3 (3.2)"] ~ 1.36 x 108 kN m
Kn=15 197 (5" 24405 7) = 12055 x 121.1°7x 3.20% x (2.4+95)°% »

~ 250 x 10" kN m

Dynamic Stiffness Coefficient (Graphs accompanying Table 2-I)

ao=1.23; ky=1-030a,=0.631; kn=~1-0.2a,=0.754
Ky = ky X K,y = 0.631 X 1.36 X 108 = 8.58 x 107 kN m

K = ke X Ky =0.754 X 250 x 107 = 1.89 x 10" kN m

Radiation Damping (Table 2-1)

ar=123; ¢, =075; ¢, =04
Cryraa = (p Vig Iny) €y = (1.85 X 460 x 1100) x0.75= 7.02 x 10° kNm s
Crirad = (pVia Iny) T = (1.85 X 460 X 121.1) X 0.4 = 4.12 X 10* kN m s

Material Damping
@=125.7 rad/s; B=5%
Coymar = 5> f = ZSB10 0.05 ~ 6.82 x 10*kNm s
Cromar = 2o g = 280 505 ~ 1.50 x 10*kNm s
Total Damping

Cr = Crraa + Crymar =7.02 X 10° + 6.82x 10* ~ 7.70 x 10° kNm s
Cx = Cxraa + Comar=4.12 x 10* + 1.50 x 10* ~ 5.62 x 10*kNm s

Torsional Mode

Static Stiffness (Table 2-1)
K= G5P[4+ 110 -£)°]1=120,000x1221.1°" x[4 +11 x (1 — 55)"°] =
~ 4.24 x 10°kN m

Dynamic Stiffness Coefficient (Graphs accompanying Table 2-I)
apr=123; kk=1-0.14a,=0.83



K =k XK, =083x424x10° =352 % 10°kN m

Radiation Damping (Table 2-I)

ap=123; ¢; =09

Ciraa = (pViJ)c, = (1.85x 255 x 1221.1) x0.9=5.18 X 10° kNm s
Material Damping

®=125.7 rad/s; B =5%
Comar = 25t = 2A2XI0 005 ~ 2.80 x 106 kNm s

Total Damping
Ci =Crra + Crmar=5.18 x 105 + 2.80x 10° =~ 3.32 x 10°kNm s
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SECTION 3

PARAMETRIC STUDY OF THE SEISMIC RESPONSE
OF PIER ON FOOTING WITHOUT UPLIFT

To answer some of the questions raised in the task objectives, a systematic parameter study was
conducted on an idealized bridge model, once the accuracy of the developed computer code had
been demonstrated. One of features of this code relates to the unavoidable soil nonlinearities
during strong seismic excitation. Such nonlinearities are of two types: “primary”, arising from the
shear-wave induced deformations in the free-field soil; and “secondary” arising from the stresses
induced by the oscillating foundation. Whereas established methods of analysis are available for
handling the former type of nonlinearities (through equivalent linear or truly nonlinear
algorithms), no simple realistic solution is known for the latter. The approach described in Section
2 is taken in our code and different soil moduli are used for the analysis of wave-propagation and
for the computation of the dynamic stiffnesses --- consistently with the overall level of strains at

characteristic points under the footing.

3.1 Fundamental study

The bridge pier sketched in Figs 1-1 and 3-11 is an lightly idealized version of an actual bridge. It
involves a single column bent of height Hc = 6 m and diameter d. = 1.3 m, founded with a

5-m-diameter (R = 2.5 m) footing placed at a depth D = 3 meters below the ground surface. The
axial load carried by the system, P = 3500 kN, is typical of a two-lane highway bridge with a span
of about 35 m. Considering a shear wave velocity and a mass density for the top layer of 80 m/s
and 2 Mg/m’, respectively, and using the approximate relation Es /S, = 1000, the undrained shear
strength of the top layer is calculated to be of the order of 40 kPa. Accordingly, the static factor

of safety of the footing is about :

1.3x5.14x40 + 3x20 ~ 2 (3-1)

3500/ (z x2.52)

qu
FS 7

I

which is a sufficient, although marginal, value for a bridge footing.
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The contact area between the sidewalls and the surrounding soil, d, was considered to be either

zero (no sidewall-soil contact) or d = 0.5 D (partial sidewall-soil contact).

Results were obtained for excitation by vertical S waves, described through a horizontal
“rock”outcrop motion. Both harmonic steady-state and time-history analyses were performed, in
the frequency and time domains, respectively. The former were applied to investigate the
fundamentals (e.g., SSI period, effective damping) of the dynamic behavior of the system; the
latter were performed to obtain predictions of the response to actual motions. In the time-domain
analyses, two different excitation time histories were used, both having a peak horizontal

acceleration (PGA) of about 0.40g:

(a) an artificial accelerogram approximately fitted to the NEHRP-94 pga=0.4 g,

(b) the Pacoima downstream motion, recorded (on “soft rock” outcrop) during the Northridge

1994 earthquake (since the pga is 0.42 g, scaling of this motion was not considered necessary).

The two motions and their five and ten percent damped spectra are shown in Figs 3-1 and 3-2.
These motions cover a range of possible “rock” outcrop excitations, necessary for checking the
limitations (or showing the generality) of our conclusions. The same set of motions has been used

by the authors in an earlier study of pile-supported bridge piers (Mylonakis et al 1995).

The results presented in this subsection refer to a bridge with a top (deck) free to rotate, subjected
to the Pacoima 1994 motion, and rigid rock conditions. A second set of parametric results, which

incorporate more general boundary conditions, are presented later on.

The harmonic steady-state and transient seismic response of this pier, obtained in a complete
analysis, is displayed in Figs 3-3 and 3-4. These results should be compared with those in Figs 3-5

to 3-10, each pair of which corresponds to a particular case as follows:

(a) no soil-structure interaction (SSI), i.e. the footing is considered as rigidly supported (Figures

3-5, 3-6
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(b) embedment having partial sidewall contact (d = 1.5 m) with the surrounding soil: Figs 3-7, 3-8

(c) no radiation damping, i.e. setting for all modes of vibration Cy,q = O: Figs 3-8, 3-9
The following conclusions can be drawn from these graphs:

1. Ignoring SSI reduces the fundamental natural period of the system (from 0.83 to 0.53s),
bringing it closer to resonance with the second-mode natural period of the soil deposit (0.48s) ---
see Figures 3-5 and 3-6. In addition, the effect of the soil radiation and hysteretic damping on the
bridge response disappear. Naturally, therefore, the resulting no-SSI bridge transfer functions

exhibit a (spurious) sharp and high peak at T = 0.53s (Fig. 3-5).

Moreover, the rock outcrop excitations are richer in the period region of 0.50s than of 0.80s,

which accentuates the peak at T = 0.53s.

As a result, the no-SSI time histories of bridge-deck and footing accelerations are, both, nearly
two times larger than those of the complete solution (with SSI). Also of interest is to notice the
change in the nature of the bridge-deck response time histories: the (largest) peak in the complete
solution, at ¢ = 4 sec, is in unison with the long-period ground (free-field) oscillations occurring
after about 3 sec --- apparently produced by resonance at the fundamental period of the soil
deposit. The early part of the free-field ground motion, with much shorter periods, is a product of
“secondary” resonance between the strong short-period early part of the Pacoima-Northridge
excitation and the second natural mode of the soil deposit. However, the effect of this part of the

ground motion on the bridge is obviously completely insignificant.

The no-SSI response shows exactly the opposite trends, with its (largest) peak occurring at ¢ =

2.5s, in phase with the strong ground motion observed at that time.

It should be pointed out that the foregoing trends should not be generalized to any bridge-footing
system. For example, had the frequency of the earthquake excitation been different (or,
alternatively the thickness of the soil profile been smaller or larger), the above trends could be

reversed.
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2. Increasing the effectiveness of the embedment (by ensuring a good contact between the footing
sidewall and the surrounding soil) generates additional radiation damping and reduces the
fundamental natural period of the pier system. These effects are seen clearly in the steady-state
transfer functions of Fig. 3-7. The behavior in the time domain (Fig. 3-8) shows characteristics
partly similar to each of the two cases discussed above (SSI and no-SSI). The peak deck

acceleration, however, is not significantly affected by the increase in embedment.

3. Neglecting radiation damping in this case has a minor effect both in the frequency and time
domains. Two are the reasons: (a) While the fundamental period of the pier considering SSI (T =
0.83 sec) is below the fundamental period of the whole deposit (T = 1.15 sec), the main cutoff
period (above which there is little or no radiation damping) is the second natural period
corresponding to the resonance of the first (crucial) soft soil layer. Thus, radiation damping in the
complete solution is small and neglecting it is of little significance at resonance. (b) In addition,
the excitation is not particularly rich in 0.80-sec-period components, so even the small decrease in

overall damping is of no further consequence.
3.2 Additional parameter studies

In order to get more understanding on the seismic behavior of pier-footing systems of the type
shown in Fig. 1-1, additional parametric investigations were performed. Specifically, insight was
sought toward the following issues: (1) the effect of the rotational restraint atop the pier; (2) the
effect of radiation through the bedrock at the base of the profile, of seismic waves propagating
vertically up and down through the soil; (3) the effect of the stiffness of the near-surface soil; (4)
the effect of the overall thickness of the profile; (5) the effect of the size and the embedment depth

of the footing, on the response of the system.

To this end, a second soil-footing-bridge model was developed, as shown in Fig 3-10. In this new
idealization, the thickness of the second soil layer, H,, was taken to be equal to 84 m (which is

hereafter referred to as “Deep Profile” or “Profile A”), or 30 m (hereafter called “Shallow Profile”
or “Profile B”). Two different values were used for the shear wave velocity of the top layer: Vi, =

80 m/s and 160 m/s which correspond to aratio Vi / Vg, of %4 and Y2, respectively (Vy, =330
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m/s). Six different footing sizes were considered, expressed through the dimensionless ratio R /D
ranging from 1 to 3. Finally, the embedment depth of the footing, D, was taken equal to 3m or
1.5m (a “shallow” and a “deep” footing, respectively), which corresponds to a ratio D/H. (H. =
column height = 6 m) of %2 and %. In this study, full contact was considered between the footing
sidewalls and the surrounding soil (i.e., d = D). The rest of the problem parameters were kept
constant and are provided in Fig. 3-9. It should be noted that the case D = 1.5m, R/D = 1,
corresponds to a footing radius R of only 1.5m. Whereas this extremely small footing leads to a
safety factor of less that 1, the case was considered to provide insight in the elastodynamic

response of bridges on very flexible foundations.

Table 3-1 summarizes the parametric analyses performed for this alternative bridge system. The
cases should read as follows: for example, “A421” means Profile A, V51 /Vo =%, D/H =", and
R/D = 1. Wherever the symbol F is added (e.g., “A421F”), it implies that the pier top is free to
rotate (cantilevered pier). Otherwise, the pier top is assumed to be restrained against rotation
(fixed-head pier). The boundary conditions at the bottom of the profile (i.e., rigid or elastic rock)

are mentioned explicitly in the corresponding graphs and tables.

As in the first parameter study, results were obtained in both the frequency and time domains for
harmonic steady-state excitation and the two transient motions (Artificial and Pacoima). In total,
60 parametric cases were examined. The results are summarized in Tables 3-1II to 3-VI in terms of
peak response for the horizontal acceleration at the free-field soil, the footing, and the bridge

deck. The full set of graphs is provided in Appendix A.

TABLE 3-1. The parametric cases studied in Section 3-2.

Profile Va/Va R/D(forD/H;=1/4) R/D (forD/H:=1/2)
1 2 3 1 2 3
A 1/4 A441 A442 A443 A421 A422 A423
1/2 A241 A242 A243 A221 A222 A223
B 1/4 B441 B442 B443 B421 B422 B423
1/2 B241 B242 B243 B221 B222 B223
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3.2.1 Discussion
The following are worthy of note based on the results of this parameter study:

(1) In the case of the soft surface soil layer (V; = 80 m/s) and for fixed head-conditions atop the
pier, the maximum steady-state amplification of the motion of the deck (with respect to the free-
-field soil), is of the order of 2 to 3 (see Figs A-1 to A-6, A13 to A18). This is equivalent to an
equivalent damping ratio of the SDOF pier

fx5r ~15% 10 25% (3-2)

which implies that an significant amount of energy is dissipated through the surface layer in the
form of wave radiation. [To this end, recall that: (i) the material damping in the structure and the
soil is less than 10% (Fig. 3-10), and (ii) full contact exists between footing sidewalls and soil.] In
contrast, when the surface layer is stiffer (Vi = 160 m/s) or the pier top is free to rotate, the
amplification increases to approximately 5 to 6, which is equivalent to about 8 to 10% damping
(Figs A-7 to A-12, A-19 to A-24, A-109 to A-114). This implies that the significance of radiation
damping is much smaller and energy dissipation is more evenly balanced between the structure

and the soil.

(2) The fundamental period of the deep (H» = 84 m) soil deposit appears to be about 1.1 s (Fig.

A-1 to A-12). As it can be easily checked, the response at this period is largely dominated by the
characteristics of the thick and stiff lower sandy layer (S-wave velocity 330 m/s, corresponding

period 4H,/V, = 1s). In the case of “elastic rock” conditions, the relatively small impedance

contrast, Ir , between this layer and the underlain soft rock:

I ~ prvr _2.2X1200~
R® HoVa = 2x330 ~

4 (3-3)

generates sufficient radiation damping to reduce the soil amplification at this period to a mere 3.3.
One could have expected such a low value at resonance, on the basis of Roesset’s simple

one-layer formula:
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~ 1 - 1 B
A= (7/2) B + Ug)™ ~ (W2)0.07+ 1/4 ~ 2.8 (3-4)

The second natural period, T, of the soil deposit appears to equal almost 0.5 s (V1 = 80 m/s) and
the respective amplification, A, , is nearly 4 --- a rather substantial value for a second-mode
resonance (Fig A-1). Apparently, this mode is dominated by the characteristic of the top clay
layer: natural period of the top layer = 4H / V, = 4 x 9.5 / 80 = 0.48 s . The relatively high
amplification reflect the smaller radiation into the underlain stiff soil layer, due to the now larger
“impedance” contrast:

2 %330
Ir=75%80 35 G-

compared to Iz = 4 between the second layer and underlying base.

(3) For the response of the fixed-head bridge (Figs A-1 to A-24, Figs A-55 to A-78), the role of
the second resonance in the soil is much more significant than the first, for two reasons: First, the
fundamental natural period of the pier-foundation-soil system is between about 0.3 and 0.6 s ---
much closer to T, than to Ti; hence, the amplitude increase and broadening of the bridge
amplification curve (with respect to rock outcrop motion) at resonance. Second, in the time
domain, the response of the spectra of both rock excitations (Figs A-25 to A-52) show that most
of the incident seismic energy is carried by harmonic components with periods smaller than or
about equal to 0.5 sec. This is, in fact, the usual case with “rock” motions. For periods exceeding
by far 0.5 s (e.g. T =T, = 1.1 s, for the Deep Profile), the input motion is too weak to produce a
substantial soil or structure response, despite the unquestionably amplification by a factor A = 3.3
. As a result, the bridge acceleration histories (for fixed-head conditions) show prevailing periods
of the order of 0.5 s, with hardly an evidence of a role for the fundamental natural period of the
deposit. Similar observations have been reported by Mylonakis et al (1997) for a similar
pile-supported bent.

(4) In the case of a free-head pier (Figs A-109 to A-114), opposite trends are observed. In this
case, the natural period of the bridge-foundation system varies between about 1.1 sec (for the

“small” R = 1.5 m footing --- Fig A-109), to approximately 0.6 s for the “large” R = 4.5 m footing



(Fig. A-111). In the first case, the fundamental natural period of the system coincides with that of
the deep soil profile, leading to a substantial amplification of the response with respect to the rock
outcrop: A = 65 (Fig. A-109). This is more than 5 times the one in the corresponding fixed-head
case (Fig. A-55). In contrast, with the shallow profile (Fig. A-112) the fundamental natural period
of the soil, T, = 0.6s, is much smaller that of the free-head pier (1.1 s) leading to a peak
amplification with respect to rock outcrop of only 12. It is worth mentioning that this value is

smaller than the A = 13 of the (much more heavily damped) fixed-head pier (Fig. A-67).

(5) In the time domain, the effects of the superposition of the various frequency components tend
to smoothen out (or even reverse) the differences observed in the steady-state peaks. For
example, despite the aforementioned huge differences in bridge deck acceleration between cases
A441F and B441F (Figs A-109, A-112), the peak values in the time domain (obtained from the
0.4 g artificial motion) are almost equal: 10.6 and 10.3 m/s* in the two cases, respectively (see

Table 2-1V).

Based on the above observations, it appears difficult to determine a priori whether soil-structure
interaction will increase or decrease the response of a bridge. In the realm of equivalent linear

analysis this seems to be controlled by the following parameters:

(a) Radiation damping: if the fundamental period of the flexibly-supported bridge is significantly
smaller than the “cutoff” frequency of the soil (such as in the case of a short pier on a deep and
soft deposit), radiation damping will be significant and the response of the system at resonance
will decrease. In particular, if the cutoff period of the soil is very large (such as in the case of a
structure on halfspace), radiation damping will be substantial. This implies that modeling the soil
as a halfspace (as done in existing seismic regulations), may lead to unconservative estimates of

structural response.

(b) Resonance between structure and soil. If the modified, due to SSI, fundamental natural period
of the system is close to one of the natural periods of the soil layer (especially the first or second),
resonance will develop which will tend to increase the response. If the Foundation Input Motion

(FIM) is rich in that period, the increase can be substantial.
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(c) Double Resonance. If the fundamental natural period of the system coincides with both the
natural period of the soil and the predominant period of the earthquake motion (at rock level),
double resonance will develop (i.e., between structure, soil, and excitation). In this case the

response may increase substantially.

(d) Non-linear effects. The development of plastic deformations in the structure and soil,
including foundation uplift and development of pore water pressure, may increase the “effective”
natural period of the structure and the soil and, thereby, alter the response. This period shift may
lead to either de-resonance (if, for instance, yielding develops as a result of resonance), or to

resonance, which may lead to the so-called “progressive collapse”.

In conclusion, design of critical bridges to be founded on soft soil in earthquake prone areas
requires careful assessment of both soil and seismic environments. Use of design spectra and

simplified / generalized soil profiles may not reveal the actual seismic risk in the structure.

! The term “effective” is used because in the nonlinear range natural period ceases to exist in the classical
sense.
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TABLE 3-II. Cases A441 — B223: Summary of results for 0.4g artificial motion and 0.4g
harmonic steady-state motion. Absolute values are used for all entries.

Boundary Conditions: ELASTIC ROCK , NO ROTATION AT COLUMN TOP
Free-Field Footing Bridge
CASE Acceleration Acceleration Acceleration
(/) (m/s’) (m/s’)
Frequency Time Frequency Time Frequency Time
Ad41 15.05 6.87 12.27 3.86 43.9 12.90
Ad42 15.05 6.87 9.80 3.74 21.25 9.02
Ad43 15.05 6.87 8.98 3.56 16.62 7.38
A421 15.05 6.87 7.80 3.03 16.23 7.16
A422 15.05 6.87 7.84 2.95 13.21 5.96
A423 15.05 6.87 7.89 2.94 12.54 5.87
A241 11.25 4.53 6.12 2.52 39.98 9.49
A242 11.25 4.53 5.68 2.52 26.58 9.49
A243 11.25 4.53 5.68 2.34 27.05 8.07
A221 11.25 4.53 5.68 2.16 27.05 8.71
A222 11.25 4.53 5.64 2.14 31.12 8.72
A223 11.25 4.53 5.64 2.17 3241 9.15
B441 21.17 9.46 15.95 5.35 47.82 17.20
B442 21.17 9.46 12.82 5.08 27.24 11.60
B443 21.17 9.46 12.11 4.85 23.95 10.20
B421 21.17 9.46 11.09 4.19 24.74 9.66
B422 21.17 9.46 11.02 4.07 18.74 8.68
B423 21.17 9.46 11.13 4.06 16.86 8.68
B241 13.21 7.76 7.68 3.90 42.34 12.80
B242 13.21 7.76 7.21 3.90 32.42 10.60
B243 13.21 7.76 7.06 3.94 31.71 10.60
B221 13.21 7.76 6.78 3.68 35.75 11.30
B222 13.21 7.76 6.78 3.77 34.57 11.10
B223 13.21 7.76 6.86 3.84 35.44 11.50
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TABLE 3-111. Cases A441 — B441: Summary of results for Pacoima, Northridge (1994) and
0.4g harmonic steady-state motion. Absolute values are used for all entries.

Boundary Conditions: ELASTIC ROCK , NO ROTATION AT COLUMN TOP
Free-Field Footing Bridge
CASE Acceleration Acceleration Acceleration
(m/s?) (m/s?) (m/s”)
Frequency Time Frequency Time Frequency Time
Ad41 15.05 8.21 12.27 3.60 43.90 13.20
Ad442 15.05 8.21 9.80 4.38 21.25 11.30
Ad443 15.05 8.21 8.98 4.40 16.62 9.67
B441 21.17 11.70 15.95 5.28 47.82 19.20
B442 21.17 11.70 12.82 6.27 27.24 16.50
B443 21.17 11.70 12.11 6.37 23.95 14.10
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TABLE 3-1V. Cases A441 — B223: Summary of results for 0.4g artificial motion and 0.4g
harmonic steady-state motion. Absolute values are used for all entries.

Boundary Conditions: RIGID ROCK , NO ROTATION AT COLUMN TOP
Free-Field Footing Bridge
CASE Acceleration Acceleration Acceleration
(m's?) (m/s?) (m/s?)
Frequency Time Frequency Time Frequency Time
Ad41 41.16 15.90 23.13 6.75 56.84 21.40
Ad42 41.16 15.90 21.56 6.79 30.89 16.50
A443 41.16 15.90 22.97 7.35 49.78 15.80
Ad421 41.16 15.90 20.93 6.64 30.14 15.40
Ad422 41.16 15.90 20.78 6.74 26.22 13.40
A423 41.16 15.90 20.89 6.86 24.97 12.70
A241 35.95 18.90 18.70 7.16 59.19 21.00
A242 35.95 18.90 18.23 7.02 30.03 26.60
A243 35.95 18.90 18.15 7.70 21.09 27.60
A221 35.95 18.90 18.11 7.38 35.40 29.40
A222 35.95 18.90 18.07 8.05 37.08 28.30
A223 35.95 18.90 18.11 8.50 39.16 28.40
B441 40.38 25.70 21.13 11.20 52.14 37.90
B442 40.38 25.70 24.26 12.20 43.90 31.60
B443 40.38 25.70 22.97 12.00 49.78 27.10
B421 40.38 25.70 21.13 10.80 52.14 26.60
B422 40.38 25.70 20.93 10.80 41.16 26.60
B423 40.38 25.70 21.21 10.70 36.85 20.60
B241 37.79 22.40 21.80 10.40 64.29 34.40
B242 37.79 22.40 20.50 10.80 42.34 29.40
B243 37.79 22.40 20.11 11.20 37.20 31.10
B221 37.79 22.40 19.36 10.40 39.59 33.10
B222 37.79 22.40 19.36 10.60 37.98 32.60
B223 37.79 22.40 19.52 10.70 39.04 33.00
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TABLE 3-V. Cases A441 — B441: Summary of results for Pacoima, Northridge (1994) and

0.4g harmonic steady-state motion. Absolute values are used for all entries.

Boundary Conditions: RIGID ROCK , NO ROTATION AT COLUMN TOP
Free-Field Footing Bridge
Acceleration Acceleration Acceleration

CASE (m/s’) (/s?) (m/s?)
Frequency Time Frequency Time Frequency Time
Ad441 41.16 9.77 23.13 4.24 56.84 15.70
Ad42 41.16 9.77 21.56 5.21 30.89 13.90
Ad43 41.16 9.77 22.97 5.29 49.78 12.00
B441 40.38 16.10 21.13 7.96 52.14 26.80
B442 40.38 16.10 24.26 8.51 43.90 23.70
B443 40.38 16.10 22.97 8.77 49.78 20.30

TABLE 3-VI. Cases A441 — B443: Summary of results for 0.4g artificial motion and 0.4g

harmonic steady-state motion. Absolute values are used for all entries.

Boundary Conditions: RIGID ROCK , COLUMN TOP FREE TO ROTATE
Free-Field Footing Bridge
Acceleration Acceleration Acceleration

CASE (mv/s?) (m/s?) (m/s?)
Frequency Time Frequency Time Frequency Time
A441F 41.16 15.90 18.93 7.86 245 10.60
A442F 41.16 15.90 21.68 6.65 57.23 16.90
A443F 41.16 15.90 21.40 6.77 45.47 19.40
B441F 40.38 25.70 20.50 12.60 44.69 10.30
B442F 40.38 25.70 13.72 11.00 106.62 31.90
B443F 40.38 25.70 17.37 11.00 179.14 37.70

70




SECTION 4
PORE PRESSURE GENERATION AND SOIL FAILURE; FOUNDATION UPLIFT

4.1 Bearing capacity

The inertia developing during an earthquake on the masses of the superstructure transmit onto the

foundation an horizontal force of amplitude He, an overturning moment of amplitude M, and,

whenever vertical excitation is being considered, an additional vertical force of amplitude Ve .
The foundations must be designed to avoid, with an adequate factor of safety, bearing capacity
failure under the combined action of V=V + Vg, M =M, + My, H = H; + Hy , where the

subscript “st” denotes the static components of the loads.

With the exception of soils whose strength degrades under strong cyclic loading (e.g. liquefiable

soils, sensitive clays), current state of practice usually assumes that the ultimate capacity of a
foundation carrying such loads is not influenced by the dynamic character of He, Mg and Vg .

Static bearing capacity theories are therefore used, such as Meyerhof’s (1963) and
Hansen-Brinch’s (1975), which provide ‘“correction factors” to account for the presence of the

lateral loads H and M.

In recent years, theoretical (and some experimental) evidence has been published showing that the
horizontal inertia forces that develop in the soil within the failure zone can have a detrimental
effect on bearing capacity. With increasing acceleration levels, Richards et al (1993) found a rapid

degradation of bearing capacity. Such degradation can be expressed as a decrease of the
“Terzaghi” bearing capacity factors Ny, Ny and N. with increasing acceleration o in the soil.

On the other hand, analytical studies by Pecker (1996) showed that soil inertia has a rather minor

effect on bearing capacity.

In addition to the /imit analyses and the Coulomb-wedges type of analyses used by Richards and
his coworkers, the kinematic reduction in bearing capacity (i.e. the one stemming from the soil
inertia, only) was investigated by the authors using an elastoplastic finite element code. The soil

mass acceleration was simulated by equivalent distributed inertia forces applied statically on the
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finite element mesh (pseudostatic approach). A vertical load, N, was applied on the footing, and

the bearing capacity was calculated for different values of soil mass acceleration.

Moreover, a simplified analytical solution was developed for undrained loading using limit

equilibrium analysis for the kinematic reduction of cohesion-related factor (from N¢ to Nee). A
circular failure mechanism was used and N¢ was expressed in terms of the soil (uniform)

acceleration o (= A/ g), the undrained shear strength S, , the unit weight y, and the width B

of the strip footing.

In Figure 4-1 the computed reduction of N., Ng, N, is plotted as a function of o. The figure
compares the results of finite element analyses with those by Shi & Richards (1995). For the N
factor, for which the analytical solution (for y B /S, = 3) is also included, Shi & Richards predict
no reduction, while a slight reduction is obtained with the finite element code and the analytical
method. As the discrepancy is not significant, it could be concluded that in general the N, factor
is only slightly affected soil mass acceleration. This means that the kinematic effect (inertia in the
soil only) is not significant when estimating the bearing capacity of the frictionless soil (¢ = 0).
A possible exception: where the acceleration is very high and the y B/ S, ratio is very large

(e.g.,YB/S,>5).

In contrast, differences between our finite element solutions and those of Shi & Richards (1995)

are obvious for Ny, and Nge . The values proposed by Shi & Richards are significantly smaller

than those obtained here. In Fig. 4-2 the ratios Ny / Nys and Nge / Ngs are plotted against the

seismic acceleration. The plots include the reduction given by Meyerhof and by Brinch Hansen
(solely inertial loading, in the form of inclined static load), and the factor given by Shi & Richards
when both inertial and kinematic loading is applied. The contribution of kinematic loading (soil
inertia) is verified by plotting Meyerhof’s results multiplied by the results of finite-element
analyses for kinematic loading. It is obvious that the reduction due to kinematic loading alone, is
very small when compared to the reduction due to inertial loading. The soil inertia (“kinematic™)
effect is judged as even more insignificant when considering the differences among the various

methods for
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FIGURI.E 4-1. Ratio of seismic to static bearing capacity factors. Kinematic loading of the
foundation (inertia only in the soil under the footing).
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FIGURE 4-2. Combined kinematic loading (inertia of the soil) and inertial loading (inertia
forces from the superstructure making the load “inclined”) on the total reduction of bearing

capacity factors N, and N,.
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the inertial effect (Meyerhof versus Brinch Hansen). For this reason, not only is the difference in
kinematic reduction given by the two methods insignificant, but as a good approximation the

kinematic effect could in most cases be ignored.

From all the above, it is concluded that the kinematic component of loading may in some cases be
important, but it does not seem to be as crucial as it was initially suggested by early solutions to
this problem. Its contribution to the “degradation” of the bearing capacity of a surface footing is
rather negligible compared to the degradation due to the inclination and eccentricity that arise
from the inertia of the superstructure, and the detrimental development of cyclic pore-water

pressures.

In any case, seismic bearing capacity is quite different from static failure. Whereas a static bearing

failure could lead to substantial sudden displacements, bearing capacity settlement in an
earthquake takes place at the “moments” when the horizontal acceleration, o, , exceeds a certain
critical value o . This can only happen in an earthquake for a finite number of small time periods.

Thus seismic settlement would be expected to be finite, and made up of a number of small

increments.

This is analogous to the accumulation of displacement during earthquake shaking of a slope (the
well known “Newmark™ concept). The critical acceleration, o, in this case can be approximated

by the pseudostatically applied acceleration that produces a factor of safety equal to 1.

For the bearing capacity problem, the critical acceleration is obtained as the acceleration that
produces a bearing capacity factor of 1, under constant V, H, and M. The permanent vertical

displacement, §, when a, > a. can then be computed from the following approximated formulas:

o=2A 4-1)

where A is the displacement computed according to Newmark (1965) / Franklin-Chang (1977) /
Richards-Elms (1979):

A~ 012 8] (42)
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where u, = the peak value of horizontal ground velocity.
4.2 The method of Pecker et al (1996)

Pecker et al (1996) proposed a simple static formula for determining the bearing capacity of
footings on the surface of cohesive soil deposits. According to that method, the bearing capacity
of strip footings on the surface of a homogeneous material following the Tresca criterion without

tensile strength (saturated clay), is given, in terms of total stresses, by:

(pn)* Gm)°

@)1 -a7] " @V)f[i-a7]

7-1=0 (4-3a)

Where V, T, M are dimensionless factors defined as

17 14 - |4 7 Vv N N

V: Su B ) T: Su B ) M: Su 32 ) N: Su B (4"3b)
a=0.7, b=1, c=214  d=18l (4-3c)
a=-=,  f=3 y=0.36 (4-3d)
with the conditions: 0<aN<1, ‘T} <1 (4-3e)

In the above equations S, denotes the undrained shear strength of the material, and B the width of
the footing. Based on results from the above equation and other analytical studies, Pecker et al

(1996) and Pecker (1996b) conclude the following:

1. For foundations designed with a safety factor higher than 2 under a vertical centered load, the
effect of seismic forces in the soil (soil inertia) can be neglected without loss of accuracy. In
contrast, for foundations with small safety factors, soil inertia forces may reduce significantly

bearing capacity.

2. In normally-consolidated clays, bearing capacity is not strongly influenced by soil anisotropy.
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3. If the load eccentricity e (computed as e = M / V) is less than 0.3 times the width of the
footing B no significant permanent displacements tend to develop and, accordingly, any load
combination (T, V, M) is acceptable. In contrast, if e/B is larger that 0.4, the magnitude of
permanent displacements is very sensitive to small variations in the magnitude of the applied

loads.

The above conclusions are in accord with those of the preceding section.

4.3 Pore-water pressure and permanent displacement of foundations under seismic
excitation

Seismic excitation induces several cycles of loading, unloading, reloading to the soil elements
below foundations. For dry soils, the result of this cyclic loading is to accumulate permanent
strains in the soil and permanent displacements in the foundation. For saturated soils, permanent
strains and displacements are followed by excess pore water pressure built up, which may

ultimately lead to a bearing capacity failure in the case of strong and sustained seismic shaking.

From a practical point of view, it is important to note that the above phenomena occur at

relatively high levels of seismic acceleration, when the cyclic shear strain amplitude in the soil

exceeds a minimum value 7, , referred to in the literature as (plastic) threshold strain (Dobry &

Ladd, 1982; Dobry et al. 1980). Although 7, appears to depend on various factors (e.g. soil type,
density, static and cyclic stress history or number of shaking cycles) experimental data show that

it is of the order of 10* for sands and 4x10* for clays (Fig. 4-3).

Analytical computations of permanent foundation settlements and pore pressures require an
elaborate modeling of the cyclic soil response and the foundation-soil interaction, especially when
soil is at a near-failure state of stress, due to the combined static and dynamic loading. However,
for well designed foundations with an adequate factor of safety against static and seismic loads, it
is possible to perform simplified computations following essentially the same general methodology
as in the case of static loading: the foundation is divided into horizontal layers with “uniform” soil
properties; stresses, permanent vertical strain and pore pressure in each layer are computed from

the results of cyclic tests or from equivalent empirical relationships.
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Based upon the empirical relationships for permanent strain accumulation proposed by
Bouckovalas and Gazetas (1996) and Egglezos and Bouckovalas (1998) for normally

consolidated clays and sands, one may derive the following empirical equations for approximate
computation of permanent vertical strains, €y, and residual pore pressures, Au/C3c, under triaxial

test conditions.

ev= C1(C Q4 +1/3)y%2 N¥ (4-4a)
== =1 —exp(C3 y& N) (4-4b)
with

Q=715 (4-4c)

where 7. is the cyclic shear strain amplitude in percent; N is the number of cycles with uniform

shear strain

Goct =(G1 +T +3G3)/3 (4-44d)
g=(o1-03)2 (4-4e)
M =3sing,/(3 - singp) (4-4f)

and ¢p is the peak friction angle.

Equations 4-4 assume that during seismic loading the soil under the foundations can deform freely
in the horizontal direction, it may consequently overestimate the permanent vertical strains.
Alternatively, for lower-bound computations, one may use the following empirical relationship

derived for cyclic odoemeter test conditions, with no lateral strain allowed:

ev=Cyy? NI (4-3)
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FIGURE 4-3. Effect of strain amplitude on residual pore water pressure (after Dobry and
Ladd, 1980).
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Typical values of the parameters C;, C,, C; , d;, d, d; of the above equations are given in the

Table 4-I for fine sands of medium density and for normally consolidated clays.

Table 4-1. Values of parameters C,, C;, C;, d;, d2, and d; for pore pressure computation,
(from Bouckovalas, 1991).

SANDS CLAYS
D, =50-70%) (Normally Consolidated)
C 0.016 0.005
C; 7.27 117
G 1.92 2.14
d 2.00 5.00
d: 1.26 1.70
d; 0.40 0.50

4.4 Partial footing uplift

For severe earthquakes, large overturning moments arise which may lead to tension in part of the
area of contact of the basemat of the structure and of the soil, according to a calculation based on
a linear theory. As tension is incompatible with the constitutive model of soil, the basemat will

become partially separated from the underlying soil (uplift).

The phenomenon has been observed in many earthquakes. For example, during the
Arvin-Tehachapi, California earthquake of July 1952, a number of tall, slender,
petroleum-cracking towers stretched their anchor bolts and rocked back and forth on their
foundation. After the Alaska earthquake of March 1964, ice was found under some oil tanks,
evidence that lift-off occurred during the earthquake. Rocking of monuments and tombstones has
been observed in many earthquakes; for example, during the Assam, India earthquake of June

1897, rocking was so strong that it resulted in overturning of these small structures.

A considerable amount of analytical and experimental work on the response of uplifting flexible
systems has been performed [see Chopra and Yim (1985), Huckelbridge and Clough (1978),
Meek (1975, 1978), Psycharis (1981, 1983), Yim and Chopra (1984a, 1984b, 1985)]. The
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analytical solutions of the problem is quite complicated, because the system continuously changes
between the regimes of full contact and uplift. As a result the behavior is nonlinear, although in
some cases the differential equations, which govern the motion in each regime, can be linearized.
Figure 4-3 illustrates the model utilized herein (following the work of Psycharis, 1983). It consists
of a 1-DOF system supported on a dynamic Winkler bed of linear springs and dashpots. The
footing is not bonded to the soil and, thus, downward reactions cannot be generated. In this way,
the system uplifts whenever the overturning moment about O or O’ is greater than the restoring

one. Also, it is assumed that friction is sufficient so that sliding does not occur.

In general, it can be said that lift-off results in a softer vibrating system which behaves
non-linearly, overall, although the response is composed of a sequence of linear responses. After
lift-off, the solution of the equations of motion include hyperbolic terms upon which harmonic
terms are superimposed. The effect of uplift is mainly shown in the effective fundamental period
of the system which increases with the amount of lift-off. The word “effective” is used because
the uplifting system does not posses a fundamental natural period in the classical sense. This
period is always larger than both the fundamental period without lift-off and the fundamental
period of the fixed-base superstructure. In contrast to the first mode, the second and higher
modes of the structural model are not affected by either the soil-structure interaction or the uplift.
Figure 4-4 (from Psycharis, 1983) portrays the increase in effective period T with increasing
magnitude of uplift. The latter is measured through the parameter 3 which is equal to the ratio of
the maximum angle of rotation, ¢%,, , which would occur if uplift were not allowed, over the
critical angle, ¢.,, at which lift-off happens in the absence of vertical oscillations. Psycharis

(1983) has suggested the following algebraic expressions for T=T b :

T/1T =2 /) [arcsin(1/8) + [BF =1 | (4-3)

in which T; is the fundamental natural period of the interacting system when lift-off is not
allowed. It is seen that the apparent fundamental period increases rapidly with the value of the

normalized impulse, and for large values of 3, the ratio TIT: is essentially proportional to 3.
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At the same time, the “effective” damping of the system, E , may decrease (fewer “dashpots” are
dissipating energy during uplift). The ratio of z over the & of the system without uplift is
plotted, also as a function of B in Fig. 4-5 (Psycharis, 1983). It is seen that % is a decreasing
function of [ except for B < 1.2 ; evidently, at such small values of [ the impact of the

uplifting footing overcompensates for the decreased radiation damping in the soil.

As a result of the above-mentioned phenomena (increase in T , decrease or increase in E), the
dynamic behavior of a structure allowed to uplift may be very different from the response without
lift-off. It seems that the angle of rotation increases non-linearly with the excitation, but the effect
on the amplitude of the relative deflection and the resulting stresses is not clear, although the
appearance of the response is greatly affected. In general, it cannot be concluded from this study
whether uplift is beneficial to the structural response or not; the work done so far indicates that

this depends on the parameters of the system and the characteristics of the excitation.
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SECTION 5
CONCLUSIONS

The main conclusions drawn from this study are:
Section 2

1. The decomposition of soil-structure interaction into a kinematic and an inertial part provides a
convenient way to analyze this complicated boundary-value problem. To account for the
unavoidable nonlinearities in the soil during strong seismic excitation, it is reasonable (though not
strictly correct) to separate soil nonlinearity into “primary”, arising from the shear-wave induced
deformations in the free-field soil, and “secondary”, arising from the stresses induced by the
oscillating foundation (which is concentrated close to the surface). Although both phenomena
occur simultaneously, in the realm of equivalent linear analyses different soil moduli can be used in

the two steps.

2. Kinematic Interaction leads to a “Foundation Input Motion” which is usually smaller than the
motion of the free-field soil and, in addition, to a rotational component. Ignoring the rotational
excitation may lead to errors in the unsafe side. These errors are small when determining the

response of short squatty structures but may be large for tall slender structures.

On the other hand, neglecting kinematic interaction altogether usually leads to slight conservative

results. It is therefore recommended for design of non-critical bridges.

3. In embedded foundations and piles, horizontal forces induce rotational, in addition to
translational, oscillations, hence a “cross-coupling” horizontal-rocking impedance exists. Ignoring
the coupling stiffness may lead to underestimation of the fundamental period of a
flexibly-supported pier. On the other hand, coupling impedances are usually small in shallow

foundations and can be ignored.

4. The contact between the sidewalls of an embedded footing and the surrounding soil tends to
increase both the stiffness (spring constant) and damping (dashpot constant) of the footing. The

actual sidewall area that is in “good” contact with the surrounding soil is usually smaller than the
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nominal contact area. The actual contact area does not necessarily attain a single value for all

modes of vibration.

5. If bedrock is present at shallow depths beneath a footing, the static stiffness in all modes of
vibration increases. Particularly sensitive to the presence of bedrock is the vertical mode.
Horizontal stiffnesses may also be appreciably affected. The torsional and rocking stiffnesses are

essentially not affected.

6. The variation of the dynamic stiffness coefficients is also sensitive to the presence of bedrock.
The amplitude of the foundation motion may increase significantly at frequencies near the natural
frequency of the deposit. Radiation damping is insignificant at frequencies below the “cutoff”
frequency of the layer. As with their static counterparts, torsional and rocking damping

impedances are not particularly sensitive to the presence of bedrock.

7. The dynamic impedances of footings on a soil stratum overlying a halfspace exhibit
intermediate behavior between those for halfspace and for a stratum over bedrock. The flexibility
of the halfspace leads to a decrease in stiffness but an increase in radiation damping. The latter
stems from the fact that waves emitted from the foundation-soil interface penetrate into the
halfspace rather than being fully reflected. For the earthquake problem, the increase in radiation
damping is most significant in the swaying dashpot, at frequencies below the “cutoff” frequency of

the stratum.

Section 3

1. The damping characteristics of a flexibly-supported bridge depend primarily on the radiation
damping in the soil and on the relative stiffness between structure and soil. In the case of a stiff
superstructure (e.g., a short fixed-head pier) and soft soil, wave radiation is significant and the
overall damping may exceed 20 percent. With a more flexible superstructure and stiffer soil, the

influence of wave radiation decreases; the overall damping may be less than 10 percent.

2. It appears difficult to determine a priori whether soil-structure interaction will increase or
decrease the response of a bridge. In the realm of equivalent linear analyses this seems to be

controlled by the following main parameters: (a) The system damping: if the fundamental period
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of the flexibly-supported bridge is significantly smaller than the “cutoff” frequency of the soil
(e.g., a rigid pier on a deep and soft deposit), radiation damping will be significant and the
response of the system will decrease. In particular, if the cutoff period of the soil is very large
(e.g., a pier on halfspace), radiation damping may be substantial regardless of natural period of the
system. This implies that modeling the soil as a halfspace, as done in existing seismic regulations
(ATC-3, NEHRP-97), may lead to unconservative estimates of the response. (b) Resonance
between structure and soil. If the increase in fundamental natural period due to SSI brings the
period of the bridge close to a natural period (especially the first or the second) of the soil,
resonance will develop which will tend to increase the response. However, if the frequency
content of the excitation is not strong in that particular period, the increase may be insignificant.
(c) Double Resonance. If the fundamental natural period of the system coincides with both the
natural period of the soil and the predominant period of the earthquake motion (at rock level),
double resonance will develop (i.e., between structure, soil, and excitation). In this case the
response may increase dramatically. Whether or not this will result to damage is related to several
additional parameters that are not discussed in this study. (d) Non-linear effects. The development
of plastic deformations in the structure and soil, including development of pore water pressure
and uplift, may increase the effective natural period of the structure and the soil. This shift in
period may lead to either de-resonance or resonance (e.g., bringing the structure closer to the
predominant period of the excitation), which, in turn, may lead to “progressive collapse”. To date,

such strong nonlinearities are beyond the state of the art of seismic soil-structure interaction.

In conclusion, design of critical bridges to be founded on soft soil in earthquake prone areas
requires careful assessment of both soil and seismic environments. Use of design spectra and

simplified / generalized soil profiles may not reveal the actual seismic risk in the structure.

The conclusions drawn from the parameter studies should not be generalized to bridge piers, soil
deposits and seismic excitations with characteristics vastly different from these of the studied
cases. However, the observed phenomena and the discussed interplay between the various natural
periods of the system and the dominant periods of the ground excitation, can be of help in
predicting qualitatively the response in other cases, or in interpreting the results of numerical

studies.
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Section 4

1. Soil inertia appears to be less significant for estimating the bearing capacity of footings than
suggested by early solutions of the problem. For strip foundations designed with adequate safety
factor against centered gravity loads (i.e., larger than 2), the effect of the inertial forces in the soil
can be neglected. With smaller safety factors soil inertial effects can be important, but this is not

of practical significance.

2. To limit the development of permanent displacements, strip footings on the surface of cohesive
soils should be designed for eccentricities smaller than 0.3. If the eccentricity is larger than 0.4

significant displacements may develop.

3. During uplift the effective fundamental natural period of a foundation-structure system always
increase, whereas damping may decrease. The higher modes of vibration are not affected by either
the uplift or the soil-structure interaction. Both the increase in period and the decrease in damping

can be calculated approximately through simplified expressions and graphs provided in the report.

As with SSI effects, it cannot be concluded whether uplift is beneficial to structural response. It

seems that this depends on the parameters of system and the characteristics of the excitation.
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FIGURE A-86 Case A242: Acceleration histories for 0.4g artificial excitation rock motion
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186



30

—— Bridge
20 |

10 |

—— Footing

I

5| " / |

Acceleration (m/s?)

a
=)
T

Free Field

10 | |
-
0
Sl J
10 }
4 6 8 1

Time (s)

0

FIGURE A-88 Case A221: Acceleration histories for 0.4g artificial excitation rock motion

187



30
—— Bridge
20 |

10 |

—— Footing

1
5} ‘ , ‘

5| 1 !

Acceleration (m/s?)

Free Field

4 6 8 10

Time (s)

FIGURE A-89 Case A222: Acceleration histories for 0.4g artificial excitation rock motion

188



30

Bridge
20 | H

10

-10 |

-20 |

-30

15

—— - Footing
10 |

!

5| |

0 ___\,v./\,/\/\l[\/\/\l“\/\v\/\,/\\,v,\‘%__,\\._,“‘
st b

Acceleration (m/s?)

20

Free Field
15 |

10}

0 2 4 6 8 10

Time (s)
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FIGURE A-97 Case B241: Acceleration histories for 0.4g artificial excitation rock motion
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FIGURE A-109 Case A441F: Harmonic Steady-State Transfer Functions
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APPENDIX B

LIST OF SYMBOLS

SYMBOL EXPLANATION

A soil amplification function

a Ramberg-Osgood parameter

Ay foundation basemat-soil contact area

Ol critical value of horizontal acceleration to cause bearing capacity

settlement in an earthquake

Oh horizontal soil surface acceleration, critical horizontal acceleration value

ag (t) Kinematic Acceleration

Ay total area of the actual sidewall-soil contact surface

Avce sum of projections of all sidewall area in directions perpendicular to
loading

Aws sum of projections of all sidewall area in directions parallel to loading

B linear hysteretic damping factor, parameter equal to the ratio of ¢p,. over
Per

B foundation halfwidth or “equivalent” radius in the direction examined, or of

circumscribed rectangle

C “dashpot” modulus of a footing

C, C(w) radiation damping (“dashpot”) coefficient

Ci, Gy, G parameters for pore pressure computation

Crad radiation damping

d total height of the actual sidewall-soil contact surface

D embedment depth of footing

) permanent vertical displacement due to a.

A displacement computed according to Newmark (1965) / Franklin-Chang

(1977) / Richards-Elms (1979)

di, dz, ds parameters for pore pressure computation
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de

Es

&y

F(Ux)

(O]

Per
fp
FIM

c
max

p

oh

Ye
Go

Tp
Yy

diameter of bridge pier
eccentricity
soil modulus of elasticity

permanent vertical strain

free-field pseudo-rotation

frequency in Hz of the harmonic seismic wave
phase angle

Fourier Amplitude Spectrum of the design motion at the free-field ground
surface

rotation about out-of-plane horizontal axis through the center of
foundation base

fundamental natural frequency of the soil deposit in compression-extension
critical angle at which lift-off happens in the absence of vertical oscillations
natural frequency in shear of a hypothetical soil stratum of thickness D
Foundation Input Motion

maximum angle of rotation which would occur if uplift were not allowed
peak friction angle

fundamental natural frequency of the soil deposit in shear

shear modulus

acceleration of gravity

soil unit weight

cyclic shear strain amplitude in percent

maximum low-strain soil shear modulus

plastic threshold strain

characteristic shear strain

distance of the (effective) sidewall centroid from the ground surface
height of bridge pier

horizontal force amplitude due to inertia on the masses of the
superstructure

imaginary unity
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LI

Iy

be

k, k(w)
KI

I?emb s Cemb
Fix
Fry

Kstr
K SUrs CSUI’

VA

Fsery s Fyax

ar
Hy

Ar

Inertial Interaction

mass moment of inertia of the superstructure

polar moment of inertia about z of soil foundation contact surface
moment of inertia about x of soil foundation contact surface
moment of inertia about y of soil foundation contact surface
rotational kinematic interaction factors

mass moment of inertia of the foundation

impedance contrast between soil and rock

translational kinematic interaction factors

dynamic stiffness (“spring”)

complex wavenumber of S waves

static stiffness

dynamic stiffness coefficient

Kinematic Interaction

dynamic stiffnesses and dashpot coefficients of an embedded foundation

rocking impedance (moment-rotation ratio), for rotational motion about
the long axis of the foundation basemat

the rocking impedance (moment-rotation ratio), for rotational motion
about the short axis of the foundation

dynamic structural impedance of the superstructure
dynamic stiffnesses and dashpot coefficients of a surface foundation

torsional impedance (moment-rotation ratio), for rotational oscillation
about the vertical axis

cross-coupling horizontal-rocking impedances

longitudinal (swaying) impedance (force-displacement ratio), for horizontal

motion in the long direction

semi length of footing (or of circumscribed rectangle)

wave length of the Rayleigh wave
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mj

M.

Mo
N

v,
Nes to Nee
NY ’ Nq ’ NC

Nye and Nge .

p

PGA, pga
Py(t)

r

R

Pr

Ps

SA
SDOF
SH
SSI

st

Up

mass of the superstructure

overturning moment amplitude due to inertia on the masses of the
superstructure

mass of the foundation
vertical load on the footing, number of cycles with uniform shear strain
Poisson's ratio

cohesion-related bearing capacity factors

Terzaghi bearing capacity factors

axial gravity load carried by the bridge system
Peak Ground Acceleration

vertical force

Ramberg-Osgood parameter

radius of bridge footing
elastic rock mass density

soil mass density

spectral acceleration

Single Degree of Freedom system
horizontally polarized S waves
soil-structure interaction

static components of forces and moments
undrained shear strength

vertically polarized S waves

vertical normal stress

effective period

period

time

fundamental period of the interacting system when lift-off is not allowed

peak value of horizontal ground velocity.
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Uy

u,(t)

e

<

Zyy Zny Lty Zy

residual pore pressures

vertical displacement of foundation

apparent wave propagation velocity along the surface

vertical force amplitude due to inertia on the masses of the superstructure
“Lysmer's analog” wave velocity

average shear wave velocity, shear wave velocity of elastic rock
propagation velocity of shear waves in the soil

soil shear wave velocity

cyclic frequency

effective damping of the system

angle of incidence of an S wave along the horizontal axis

depth from soil surface

depths of influence in vertical, horizontal, rocking, and torsional vibration
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