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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center of
excellence in advanced technology applications thatis dedicated to the reduction of earthquake losses
nationwide. Headquartered at the University at Buffalo, State University of New York, the Center
was originally established by the National Science Foundation in 1986, as the National Center for
Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout the
United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and post-
earthquake recovery strategies. Toward this end, the Center coordinates a nationwide program of
multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the National
Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the State of New
York. Significant support is derived from the Federal Emergency Management Agency (FEMA),
other state governments, academic institutions, foreign governments and private industry.

MCEER’s NSF-sponsored research objectives are twofold: toincrease resilience by developing seismic
evaluation and rehabilitation strategies for the post-disaster facilities and systems (hospitals, electrical and
water lifelines, and bridges and highways) that society expects to be operational following an earthquake;
and to furtherenhance resilience by developing improved emergency management capabilities toensure an
effective response and recovery following the earthquake (see the figure below).

A cross-program activity focuses on the establishment of an effective experimental and analytical network
to facilitate the exchange of information between researchers located in various institutions across the
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country. These are complemented by, and integrated with, other MCEER activities in education, outreach,
technology transfer, and industry partnerships.

This research provides analytical and numerical methods directed to the development of optimal
strategies for improving the seismic performance of hospitals and other critical facilities. The
sensitivity factors developed in this research provide the basis for a cost effective implementa-
tion of advanced technologies.

This report investigates the parameters of both a seismic input and its effect on a dynamic
system, such as a building. A quantitative measure of the sensitivity of the response to the seis-
mic input or system parameter was developed, called the sensitivity factor. This factor is defined
as the derivative of the response with respect to the parameter value. It can be used to identify
critical parameters, estimate the effect of a small change in the parameter value, and select
optimum values for the parameter. The direct differentiation method is proposed to calculate the
sensitivity factors. By differentiating the governing equation of the system, the governing equa-
tion of the sensitivity factor is obtained. This equation can be solved numerically by a similar
method to that used to calculate the system response. The errors in the numerical method were
investigated and not found to be significant. The method was implemented in two computer
programs:

1. An entire program to calculate both displacement and sensitivity factors was written
using the MATLAB code, for a relatively simple, beam-element level of analysis; and

2. New subroutines were added to an existing finite element analysis program, DIANA, for
more detailed analysis.

An example is given illustrating applications of the sensitivity factors to a hospital in Buffalo,
New York. Both the primary structural and a secondary piping system are considered. The
sensitivity factors are used in identification of critical parameters, selection of retrofit strategies,
and calculation of fragility curves.
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ABSTRACT

A typical problem in earthquake engineering consists of a dynamic system, such as a build-
ing, subjected to a seismic ground motion input. In practical problems, the parameters of
both the input and the system are not well known. This report investigates a quantitative
measure of the sensitivity of the response to an input or system parameter. The measure,
termed the sensitivity factor, is defined as the derivative of the response with respect to the
parameter value. It can be used to identify critical parameters, estimate the effect of a small
change in the parameter value, and select optimum values for the parameter. The direct
differentiation method is proposed to calculate the sensitivity factors. By differentiating the
governing equation of the system, the governing equation of the sensitivity factor is obtained.
This equation can be solved numerically by a similar method to that used to calculate the
system response. The errors in the numerical method were investigated and not found to be
significant. The method was implemented in two computer programs: (1) an entire program
to calculate both displacement and sensitivity factors was written using the MATLAB code,
for a relatively simple, beam-element level of analysis; and (2) new subroutines were added to
an existing finite element analysis program, DIANA, for more detailed analysis. An example
is given illustrating applications of the sensitivity factors to a hospital in Buffalo. Both the
primary structural and a secondary piping system are considered. The sensitivity factors are
used in identification of critical parameters, selection of retrofit strategies, and calculation
of fragility curves.
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SECTION 1
INTRODUCTION

A typical problem in earthquake engineering consists of a dynamic system subjected to
a seismic ground motion input. Systems of interest include buildings, bridges and piping
systems. In practical problems, the parameters of both the input and the system are not
well known. For example, the magnitude and distance of the earthquake event causing the
ground motion are extremely uncertain. The soil conditions at the system site affect the
ground motion, and these are not always well known. Parameters of the system that are
rarely, if ever, certain include material parameters such as strength and stiffness, damping
parameters, and section dimensions.

As the parameters of the input and the system are not well known, the response of the
system cannot be calculated with absolute certainty. It is useful to determine the sensitivity
of the response to the uncertain parameters. This information helps to identify the critical
parameters and can be used in many modeling, design, and retrofit applications. For exam-
ple, when seeking to improve the performance of the system, there is no point in adjusting
parameters which have very little effect on the response. The critical parameters have the
greatest effect on the response and should be considered first.

This report investigates a measure of sensitivity termed the sensitivity factor, which is defined
as the derivative of the response with respect to a parameter of the input or of the system.
This measure has been used before, and is a useful quantitative measure of sensitivity. It
can be used to identify the critical parameters, as well as in applications such as calibration
and optimization of system parameters.

A sensitivity measure is of little practical use if it is difficult to calculate. For a sensitivity
measure to be useful it must be possible to calculate it for the typical mathematical models
used to represent and analyze practical dynamic systems. With this in mind, a large part
of this report is devoted to implementation of calculation routines for sensitivity factors in
computer programs that can be used for the analysis of real systems.

In existing work on this topic, the application of the sensitivity factors to practical problems
is not covered in any detail. This report attempts to remedy this by presenting an example
illustrating the application of the sensitivity factors in the analysis of hospital structural and
piping systems.

1.1 Literature review

The idea of using derivatives for sensitivity analysis is not new. A brief review of the history
of the theory of sensitivity is given by Eslami [19]. Pioneering theoretical work was done by
Bykhovsky in 1947 in Russian [8] and in 1964 in English [9]. This work was primarily in
control theory. References to sensitivity analysis in the structural mechanics literature are



more recent. In 1974 Ray investigated sensitivity analysis for a relatively simple hysteretic
system [54]. Work on the types of nonlinear systems modeled by finite elements that are
of interest here is even more recent. Much of the work has originated from Arora and his
co-workers at the Optimal Design Laboratory at the University of Iowa ([3], [28], [66]), who
use the sensitivity factors primarily for structural optimization; Kleiber and his co-workers
at the Polish Academy of Sciences ([26], [29], [30]); and Zhang and Der Kiureghian at the
University of California at Berkeley ([68], [69]) who use the sensitivity factors in probabilistic
analysis, for example, first-order reliability analysis.

Three methods have been used to calculate the sensitivity factors: the finite difference
method (FDM), the direct differentiation method (DDM), and the adjoint structure method
(ASM). A useful review of the three methods is given by Adelman and Haftka [1].

The existing work on sensitivity analysis can be conveniently divided into three groups:
linear systems, nonlinear path-independent systems, and nonlinear path-dependent systems.
These three groups will be discussed in the following sections.

1.1.1 Linear systems

The simplest problems of all are linear static problems. Lee and Lim [33] [34] use the
sensitivity factors and a Taylor series approximation to estimate the displacement of a system
with random properties and to select optimum properties for the system. Sergeyev and
Mréz [59] use sensitivity factors to optimize the geometry and cross-sectional dimensions of
space frames. Both of these references use the DDM. Choi et al [12] suggest a method to
apply the ASM using an existing finite element program without making any changes to the
source code of the program.

Moving to linear dynamic systems, Liu and Begg [37] derive sensitivity equations for linear
systems subjected to active structural control. Benfratello et al [6] use sensitivity factors to
estimate the response of a system to white noise input. Both of these use the DDM. Hien
and Kleiber [26] give a general formulation of the ASM for linear dynamic systems.

It should also be noted that several authors have investigated the sensitivity of eigenvalues
and eigenvectors to the system parameters ([33], [35], [37], [64], [65]). This work will not

be considered in this report as the systems of interest are nonlinear, but it may need to be
considered in future work.

1.1.2 Nonlinear path-independent systems

For nonlinear problems, many authors fail to make a clear distinction between static and
dynamic systems. Many examples are given in which loads are applied incrementally over
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“time”, but the examples are frequently only quasi-static rather than dynamic as inertia and
damping terms are not considered. A true dynamic system is considered by Ma et al [39],
who investigate the sensitivity of oscillation of a beam fully fixed at both ends using the
DDM. The only nonlinearities considered are geometric. Unfortunately it is not clear that
the formulation can be applied to a problem of a more realistic scale.

The other references considered in this section are quasi-static rather than dynamic. Kleiber
et al [30] do derive some sensitivity equations for dynamic applications, but the examples
given in their paper are only quasi-static. Both the ASM and the DDM were used. Phelan
et al [52] and Arora et al [3] present other formulations of the ASM for static problems. The
formulation of Arora et al was implemented in the ADINA finite element program.

1.1.3 Nonlinear path-dependent systems

It has been concluded by many authors ([3], [28], [29], [30], [66]) that the ASM is impractical
or impossible to use for nonlinear path-dependent systems. All of the references found used
the DDM for this type of problem.

Ray et al [55] calculate sensitivity factors for a multistory shear frame structure with a
simple bilinear hysteretic relationship between story shear and interstory drift subjected to
dynamic ground motion input. However, it is not clear that the formulation can be applied
to more general structures and material models.

Tsay et al [66] and Kleiber [29] derive equations for quasi-static problems with geometric
and material nonlinearity. However, the formulations are very general and more work would
be needed to derive numerically implementable equations for specific material models. Tsay
et al give some simple numerical examples using single degree-of-freedom rods in Part 2 of
their paper [67]. Kleiber gives no numerical examples.

Zhang and Der Kiureghian [68] give the most useful formulation for sensitivity analysis of
dynamic systems using finite elements. Specific equations are derived for the J; plasticity
model implemented in the FEAP finite element analysis program. Simple numerical examples
of a perforated strip and a truss, both subjected to sawtooth oscillating loads, are given.

More recently sensitivity equations have been derived for other specific material models
and structures. Jao et al [28] derive equations for an endochronic material model which
describes plastic and viscoplastic behavior with one set of equations and no yield surface.
The equations are used to optimize the design of a truss subjected to simple ramp force
dynamic loading. Kulkarni et al [31] [32] derive equations for plate elements and shells
of revolution with a viscoplastic material model. The equations of motion are numerically
integrated by the central difference method, which is not commonly used for dynamic analysis
under earthquake ground motions.



This report will concentrate on the DDM for nonlinear, path-dependent problems. Although
the method has been used before, several changes and new aspects not found in the literature

will be included.

e The method will be formulated in terms of history-dependent variables, which may
be clearer to follow and implement in incremental numerical integration finite element
programs.

e Sensitivity equations have not been derived for the material models used in DIANA or
used in piping system analysis. These equations will be derived and implemented.

o A formulation will be included for sensitivity analysis under multiple support excita-
tions.

e The errors in the numerical integration routine used will be investigated.

e The interpretation and use of the sensitivity factors in common earthquake engineering
applications will be demonstrated.

1.2 Report organization

This report is divided into three parts:

e Sections 2—4 contain a general description of the problem and the solution approach to
be followed. Chapter 2 describes the basic principles of sensitivity analysis. Chapter 3
contains details of the governing equations and the proposed method of solution, and
Chapter 4 describes some of the applications of the sensitivity information.

e Sections 5-8 give details of the implementation of the general theory in two software
programs that can be used for practical research, analysis and design. Chapter 6 covers
the MATLAB program, and Chapter 7 covers the DIANA program. FEach chapter
contains details of the material models used, derivation of the necessary equations for
sensitivity analysis, and details of the software implementation.

e Sections 9 contains an example application of sensitivity analysis to two systems of
realistic size and complexity. The systems are the primary structural system and sec-
ondary nonstructural piping system of a hospital in Buffalo. The example demonstrates
the use of the sensitivity factors in practical design and retrofit.



SECTION 2
SENSITIVITY ANALYSIS

2.1 Definition of sensitivity factors

Consider the basic conceptual model of a dynamic physical system illustrated in figure 2-1.
The model consists of an input, which passes through the system, and results in an output.
Uncertain parameters may exist in the input and/or the system. Let & be a vector whose
coordinates consist of all of the uncertain parameters in both the input and the system. As
the properties of the input and the system depend on @, the output w(¢, ) will also be a
function of @ as well as time ¢{. The input, system, and output will be described in more
detail in Section 2.6 for the typical seismic analysis problem considered in this report.

Sensitivity analysis determines the effect on the output w € R™ of changing the parameters
in x. It is useful to introduce a quantitative measure of the sensitivity of w to an arbitrary
element z; of &. Several different measures have been proposed. One fairly intuitive measure
of sensitivity is the derivative of w with respect to z;, denoted by v;:

\ 8u1(t) )
v1i(?) Oz; =2,
811,2(t)
it .
02( ) 8:51 =, 5 ( )
Qus(t u(t,
vilt) = wualt) (= ta(t) =5 (2-1)
0r; |p_g, i le=wx,
vmi(t) | Gum (1)
81.1 w:mo Vs
where @ is the nominal value of @.
Input with System with
uncertain uncertain Output
parameters parameters

FIGURE 2-1 Model of physical system



This measure is a function of time, like the output w. It has been given several names, such
as coefficient of influence 9], sensitivity coefficient [32], and sensitivity function [19]. For
consistency with previous work at Cornell University [57], it will be termed the sensitivity
factor in this report.

2.2 Properties of sensitivity factors

The derivative v;(t) possesses two characteristics that should be expected of a good sensi-
tivity measure: an increasing absolute value of the derivative implies increasing sensitivity;
and a positive derivative implies that w increases as x; increases.

However, a limitation of the derivative is that it measures the sensitivity of u at only a
single value of z;, rather than over a range of values. The extent to which this is a problem
depends on the relationship between u and z;, and on the intended use of the sensitivity
information.

Consider the graph of u versus z; in figure 2-2(a). To illustrate the concepts, the case of scalar,
static u(z) will be shown; however, similar comments apply to vector, dynamic u(t,2). An
excessively detailed sensitivity analysis could conceivably be done by constructing the entire
graph of u versus z. This would provide all of the information that could be required of a
sensitivity analysis, such as the identification of the values of z that maximize or minimize
u; ranges of z over which u changes rapidly as z is changed; and ranges of z over which u
decreases as z increases.

However, it is typically not necessary to consider the whole graph of u vs . In practical
situations, z has a limited range of realistic values, and the behavior of u outside of this
range need not be considered. For example, the damping ratio in a typical building varies
between approximately 2% and 15%. Values outside of this range are unrealistic and thus
the behavior of the system outside of this range is irrelevant. The range of realistic variation
of z, and the behavior of u over this range, are thus key considerations in sensitivity analysis.

A potential problem with the derivative as a sensitivity measure is illustrated in figure 2-2(a).
Suppose that the only sensitivity information available is the derivative at a, and that we
wish to use this information to adjust the value of z so that u(z) is maximized. The negative
derivative at a would suggest that the optimum z value is less than a, while the opposite is
actually true. The derivative is a local measure that gives accurate sensitivity information
about the behaviour of the response near the point a, but cannot in general be extrapolated
to response farther from a.

In view of this, the derivative is a useful sensitivity measure particularly if the possible range
of parameter variation is small (figure 2-2(b)) or if the graph of u vs z is approximately
linear, when it may be considered to be accurate over the entire range.
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FIGURE 2-3 Response u(t,z) at fixed z

If the possible range of parameter variation is large (figure 2-2(c)), it is unavoidable that
analyses will have to be done to determine u at more than one x value to obtain an un-
derstanding of the sensitivity, but derivatives are still useful. For example, suppose that in
figure 2-2(c) the parameter value that minimizes the response is required. Based on analyses
of the system at * = a and @ = b without calculating derivatives, it would appear that
the optimum parameter value should be greater than b. However, with information from
sensitivity analysis it becomes clearer that the optimum value should be sought between a

and b.

In dynamic problems where u is a function of both ¢ and = some additional complications
arise. In many applications in earthquake engineering, the peak value of u over all ¢ is the
critical output, so we are interested in calculating the sensitivity of the peak value to z. It
1s not immediately clear that the sensitivity factor at the time of the peak value of u is the
true sensitivity of the peak value, as the time at which the peak occurs may also depend on
z. This can be investigated as follows. Consider the response u(t,z) plotted against ¢ for
a fixed value of z in figure 2-3. A typical earthquake response consists of many oscillation
cycles. The peak value of u is reached at the peak of one of the cycles.

Suppose for simplicity that there are two cycles with particularly large peak u values, reached
at times t = t,; and ¢t = t,; respectively. In general, as « is varied, the times of the peaks
will vary so we write t,;(z) and tp2(z). We assume that ¢,(z) and t,;(z) are continuous.
The peak u values u(t,(z),z) and u(ty(x),z) are also obviously functions of z. The graph
of u(tpi(x),z) and u(t,e(z),z) versus & will look something like figure 2-4.
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FIGURE 2-4 Peak u values versus z

The peak value of u over all ¢ is the larger of u(t,i(z),2) and u(t,2(z),z). It occurs at
time ¢,(x), with either ¢,(z) = t,1(z) or t,(z) = tya(z). The sensitivity of the peak value,

t
M, is the gradient of u(t,(z), z) in figure 2-4. It is defined for all z except at the
value where u(t,i(z),z) = u(tp2(z), ), where one has to consider left-hand and right-hand
derivatives. Away from this x value, the gradient is well defined. The question that arises
is: does the following hold?

Ou(t,z) _ Ou(ty(z), )

Oz Ox (2-2)

t=tp

In words, is the sensitivity factor at the time at which the peak value occurs equal to the
true sensitivity of the overall peak value? It is not immediately obvious that equation 2-2 is
valid as the left-hand side is the sensitivity factor at a fized time, while the right-hand side is
the sensitivity factor of the overall peak value and the time at which this overall peak occurs
1s not fixed.

Away from the z value where u(t,i(z),z) = u(tp2(z),z), t,(z) is continuous so the correct
gradient of the peak is given by

Qu(ty(z),z)  Ou(t,z) Oty(x) N Ou(t, z)

= 9.
Ox ot Ox Oz |y, (2:3)

t=tp



Ox b=ty
Ou(t,x x ) e .
as —%—) =0 and %(l is finite. We can thus use the sensitivity factor at the time
x

t=tp
of the peak as the true sensitivity factor of the peak, provided that care is taken around
values of © where ¢, jumps.

Similar comments also apply under suitable assumptions when considering the maximum
value of displacement over a two or three dimensional continuum rather than over time.

2.3 Practical applications of sensitivity factors

The sensitivity factors as defined in Section 2.1 have many practical applications, some of
which were mentioned in Section 2.2. It is worth listing the applications that are especially
useful in seismic analysis:

1. The determination of the effect of a small change in the parameter values. If @ is varied
by a small amount he;, the first-order Taylor expansion can be used:

u(t, o + he;) = u(t,@o) + v;(t)h (2-4)

where e; is the ¢-th unit vector and v; the sensitivity factor. This approximation allows
the engineer to estimate the effect of varying a parameter of the system without having
to run a time-consuming second dynamic analysis.

2. The identification of the most critical parameters of the system. This is closely related
to the above point. A critical parameter is one for which the product of the sensitivity
factor (v;) and the uncertainty or variation in the parameter (k) is large. It is clear from
equation 2-4 that these parameters will have the greatest influence on the response.
The critical parameters need to be determined accurately for satisfactory modeling
of the system. They should also be considered first when selecting optimum retrofit
strategies. For example, suppose that it is found that the response of a structure is
more sensitive to the stiffness of a concrete column than to its strength. The best
retrofit strategy to consider would then be one like steel column jacketing that affects
the column stiffness, rather than one like glassfiber wrapping that affects only the
column strength.

3. The calibration of a computer model against data from experiments and/or more de-
tailed computer models. The problem is to adjust the parameters @ so that, for
example, the displacement of a critical degree of freedom u; matches the given data
as closely as possible. The sign of the sensitivity factor v;; indicates the direction in
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which z; should be adjusted, and several methods exist for using the magnitude of
v;; to indicate by how much z; should be adjusted. The same process can be used to
adjust the value of z; so that u; is minimized, as often required during design.

2.4 Calculation of sensitivity factors

The next obvious question is how the sensitivity factor may be calculated. From the literature
review in Section 1.1 it appears that the finite difference and direct differentiation methods
are suitable for nonlinear, path-dependent problems. In order to select one of the two
methods, more details on both of them will be given.

The finite difference method is a common and general method for estimating the sensitivity
factors. For a forward finite difference the derivative is approximated by

vilt) ~ u(t, @o + he}z-) —u(t,xo) (2-5)

The error in the forward finite difference approach is of order h. A better approximation is
given by the central finite difference method, where the error is of order A?

t L) — — .
vilt) ~ u(t, xo + hez)Zhu(t,azo he;) (2:6)

The accuracy depends on the increment he; of @, which is difficult to select a priori. The
finite difference approach actually gives the secant gradient between two points rather than
the tangent gradient at a point. If A is small enough, the resulting approximation is satis-
factory. Unfortunately, we do not know how small A should be without performing several
calculations and comparing them to the exact solution. In addition, if A is too small, the
difference between u (¢, xo + he;) and u(t, o — he;) will be small and numerical errors can
cause loss of accuracy. Another disadvantage of the finite difference method is that it is
necessary to perform at least two analyses of the structure, which may be time-consuming
for large structures.

For the direct differentiation method, the governing equation of the system, used to deter-
mine the output u from the input, is differentiated to obtain the governing equation of the
sensitivity factor. This second equation can then be solved in a similar manner to the origi-
nal equation. The method eliminates the disadvantages of the finite difference method. The
remainder of this report will concentrate on the direct differentiation method to calculate
sensitivity factors.

11



Stiffness z;

m — — — psin zat

FIGURE 2-5 Single oscillator

2.5 Example

A simple example should make the concepts of sensitivity analysis and the direct differenti-
ation method clearer.

Consider a single undamped oscillator subjected to a harmonic force where the stiffness of

the oscillator and frequency of the driving force are uncertain (figure 2-5). This is a dynamic
system with one output, and uncertain parameters in the input (z2) and in the system (z;).

The governing equation of the system is

mi + zyu = psin(zat) (2-7)

with initial conditions v = 0, w = 0 at ¢ = 0. An overdot indicates differentiation with
respect to ¢.

Apply the direct differentiation method to obtain the governing equation of the sensitivity
factors. Differentiating equation 2-7 with respect to z; gives the general form of the equation

8.1'1
Bxi

mu; + £1v; = —

0
u+ 9z, [psin(z2t)] (2-8)
from which the governing equations for v; and v, are

mi)l + 11 = —U (2—9)

miy + 2109 = pt cos(zat) (2-10)
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For this simple example closed form solutions can be found for equations 2-8, 2-9 and 2-10.
The solutions are

i 22/w sin(w P sin(z -
v 211 — (z2/w)’ (t)+:r11—(:z:2w2 (2t) (211)
p 1 .
v = 5 sin(zt)
21 1 = (2o/w)
12— 72/ wt cos(w p_32a/w — (:z:z/w)s sin(w 2-12
! 2211 — (25/w)’ teosli) 2z} [1- (mz/w)2]2 (wt) (12)
v, = —-2L Lt (22/w) 5 sin(wt)
219 1 — (z5/w)’]
+2 P 22/w” 5 sin(zat) + ﬁ—l——zt cos(zat) (2-13)
T [1 _ (xZ/w)z 11 — (29w

where w = /2L, the natural frequency of the oscillator. It is assumed that z; # w.

To illustrate the results, graphs have been plotted for the following parameter values: z; = 2,
o = 0.3, m =1, and p = 2. Figure 2-6 shows the response u. Figure 2-7 shows the sensitivity
factor v; calculated by the direct differentiation method (equation 2-9) only, while figure 2-8
shows sensitivity factor v, calculated by both the direct differentiation method (equation 2-
10) and by the central difference method (equation 2-6) with A = 0.02. As h is reduced
further, the two functions converge. This was used as a test to confirm the accuracy of the
calculated sensitivity factors.

Suppose z; and x5 are uncertain and may vary within £3% of their nominal values. We
can approximately determine the effect on u by using equation 2-4. Figure 2-9 shows typical
results for increasing z; by 0.06 (3% of 2). The approximate (equation 2-4) and exact results
are shown. Figure 2-10 shows the results for varying z, by 0.009 (3% of 0.3).

The figures illustrate a point mentioned in Section 2.3. It is clear from figures 2-7 and 2-8 that
the magnitude of vy is generally larger than v;. From this, one may be tempted to conclude
that u is substantially more sensitive to z3 than z;. However, this would be incorrect. As
described in Section 2.3, there are two factors to be considered in the identification of critical
parameters: the sensitivity factor itself (v;), and the uncertainty in the parameter value (h).
Figures 2-9 and 2-10 show the effects on the response u of increasing a parameter from its
nominal value by 3%, the assumed maximum possible variation. The effects are similar for
each parameter. It is thus incorrect to conclude that u is more sensitive to z; than z;.
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2.6 Sensitivity analysis for earthquake engineering

This section gives details of the physical problem to which we wish to apply the concepts
of sensitivity analysis described earlier in the section. Although sensitivity analysis can be
applied to almost any physical problem, it is worth thoroughly describing the problem under
consideration as the theory in section 3 will be developed specifically for this problem. We
wish to investigate the response of a civil engineering structure to an earthquake load. This
section describes the problem in more detail in terms of the three parts of the model — the
input, system and output.

2.6.1 Input

The input to the problem is an earthquake ground motion record. It specifies the acceleration
of the supports of the structure as a function of time. The ground motion may be based on
a real earthquake record or on an artificially generated record. The motion is also a function
of the uncertain parameters in @ and will be denoted a(¢, ).

One possible example of an uncertain parameter is a scaling factor. Suppose that a given
ground motion w(¢) is based on a real or artificial earthquake. The motion may be scaled to
a different PGA by a factor z:

a(t,z) = zw(t) (2-14)
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In this case the sensitivity factor with respect to z will indicate the sensitivity of the output
to the PGA of the input motion.

Other examples of uncertain parameters arise if the input is modeled as a random process
and a parametric representation of the process is used. Suppose that the input is a Gaussian
random process with one-sided power spectral density g(w, 8) where w is the frequency and
0 = (61,0,,...) is a vector of parameters governing the shape of the spectral density. It is
possible to simulate the process [63] by selecting a cut-off frequency w., dividing the range
(0,w.) into n intervals and approximating the process by:

a(t) =Y /g(wk, 0)Aw (Ay cos wit + By sinwyt) (2-15)
k=1

where Aw = “2; w;, = (k — 1)Aw; and Ay and By are standard Gaussian random variables.
Equation 2-15 is a rich source of parameters that may be considered uncertain. For example,
g(wk,8),k = 1,2,...,n are uncertain if the parameters in 6 are uncertain. Sensitivity
factors with respect to these parameters would thus indicate the sensitivity of the output
with respect to the shape of the power spectral density. Variables Ay, By, k = 1,2,...,n are
random variables. Sensitivity factors with respect to these variables may be used to estimate
the second moment characteristics of the output from a linear Taylor series approximation

of the output in terms of the input variables.

2.6.2 System

The system under consideration is a civil engineering structure such as a building, a dam
wall, a piping system, or a bridge. We will assume that it is mathematically modeled by
discrete elements. In general these elements will be finite elements, although a smaller subset
of finite elements such as beam elements or truss elements may also be used. The position
of the system at any time ¢ is given by vector u(t), which describes the displacement of each
degree of freedom of the system. If the structure is subjected to the input ground motion it
vibrates and the resulting displacement vector u(¢) is the output of the problem.

Other relevant quantities for the discretized system are the mass matrix m, the damping ma-
trix ¢ and the restoring force vector . These are standard quantities in structural dynamics
[13] and will not be defined in more detail here. We will assume that the mass matrix m is
fixed, but that ¢ and » may depend on the uncertain parameters in . This is reasonable as
it is typically easier to accurately determine the mass of a structure than it is to determine
the damping or restoring force characteristics. For a general nonlinear structure » may also
be a function of displacement u, velocity @ and certain path- or history-dependent parame-
ters which will be stored in vector z. These history-dependent parameters are common in
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hysteresis models [58]. For example, z(¢) may contain the maximum value of displacement
in the positive direction between the start of the analysis and time ¢.

It will also be assumed that the geometry of the discretization into elements is fixed. This
means that the number of elements, the shapes of the elements, and the position of the nodes
connecting the elements are fixed. In this report it will generally be assumed that the same
input motion is applied at all supports of the system. However, in Section 3.6 this restriction
will be relaxed and equations will be derived for multiple support excitations.

The governing equation of motion of the system subjected to a seismic ground acceleration
a(t,x) is [13]

mau(t, )+ c(x)u(t,x) + r(u(t, ), w(t,z), z(t,z),x) = —mia(t,x) (2-16)

where ¢ is the influence vector representing the displacement of the masses resulting from
static application of a unit ground displacement. An overdot indicates differentiation with
respect to t.

Many structural dynamics analysis programs exist to solve equation 2-16 for the output w.
Differentiating equation 2-16 with respect to z; gives the governing equation for sensitivity
factor v;. This process, and the resulting equations, will be described in more detail in
section 3.

2.6.3 Output

As mentioned in the previous section, the output from the system is the displacement as
a function of time, w(t,@). This is the quantity that existing programs solve for using
equation 2-16. The displacement itself is frequently a critical variable in structural analysis
and design. However, other quantities based on the displacement may also be critical. For
example, the interstory drift in a multistory building is frequently checked as it is a good
indicator of structural damage [4]. If w;(¢,@) is the lateral displacement of story ¢ in a
multistory building and s is the interstory distance, then the interstory drift is given by

t,x) — ui(t, @)
S

di(t) = el (2-17)

The sensitivity analysis theory developed in section 3 enables the calculation of sensitivity
factors for the displacement. These factors can also be used to find the sensitivity factors
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for the interstory drift as follows:

Juin(t, @)  Jui(t,)
(‘5‘d,(t) 8£L']' 8%']‘

Oz, s

vit1,i () — vi(t) (2-18)

Similar calculations may be done for other quantities based on the displacement. For ex-
ample, various damage indices are based on interstory displacement or joint rotation [10].
Sensitivity factors for these indices may be expressed in terms of the sensitivity factors for
the displacement in a similar manner to equation 2-18.
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SECTION 3
THEORY

3.1 Governing equations

The governing equations of the displacement w and the sensitivity factors v are second
degree differential equations. This section presents the equations, and Section 3.2 describes
a method to solve them numerically.

3.1.1 Original system

The governing differential equation for the displacement of the original system contains the
mass matrix m, the damping matrix ¢, the restoring force vector r, the influence vector <,
and the seismic ground acceleration a; all of which were introduced in Section 2.6. It will
be assumed that the mass matrix m is perfectly known, but that ¢, r and ¢ may depend
on the uncertain parameters in vector @. For a general nonlinear structure  may also be
a function of displacement w, velocity w and the history-dependent parameters in vector z.
From equation 2-16, the governing equation of the system with @ at its nominal value @q is

ma(t, ®o) + c(®o)u(t, xo) + r(u(t, @o), u(t, xo), 2(t, o), o) = f(t,x0) (3-1)

where f(t,20) = —maia(t,zo). This is the equation that is solved by common existing
structural dynamics programs to determine the displacement u of a structure subjected to
a ground motion. It is a second degree nonhomogenous differential equation. For general
nonlinear restoring force functions, it is also a nonlinear differential equation.

3.1.2 Sensitivity factors

We will start by finding the governing equation of a single sensitivity factor v;. Later, we
will combine the equations to obtain a single equation for all of the sensitivity factors.

The governing equation of v; is obtained by differentiating equation 3-1 with respect to z;.
The derivative of the restoring force »(w(t,®o), (¢, o), 2(t, o), ®o) With respect to z; is

8u+6_r
ou

Ju Or 0z or

8Z u,u,:c 8.’132 sz u’,uz

or __8_1;
8xi—8u

(3-2)

U,z2,& dz; u,z,.T Oz;

where, for example is the partial derivative of » with respect to w with u, z and

u,z,x

r
" Ou
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8r 8T'k
8’U, kl (‘3u1

are held fixed from the notation. This convention will be followed here, with the exception

or o
of 5 , as this quantity may be confused with the partial derivative on the left hand
Tilu,i,z
side of equation 3-2.

@ held fixed; and

It is common in engineering [24] to drop the variables that

With this in mind, equation 3-1 may be differentiated with respect to z; giving

ou(t,xg) Oc(wo)
m Ox; + dx;

or ou or ou
+ a—u(tawo) : %(taa:O) + —a—u(t>w0) o

(9u(t, 2130)

u(t, ®o) + c(xo)

+ —Z(t’ :1:0) a8

Changing the order of differentiation with respect to ¢ and z; and rearranging

(1) + |efea) + e (tma)| 6,(0)+ (b zaloit) =

of Jc or

. 0z
%(ta%) - azi(%)"(tﬂ%) - l:awi

8:&

(t,@o) + g (t,@o)=—(t,x0) (3-4)

u,u,z

It is worth examining equation 3-4 in some detail as it is the governing equation of the
sensitivity factor, the subject of this report. The equation is similar in form to equation 3-1
in that it is a second degree nonhomogenous differential equation. However, as the coeflicients
of ¥;, v; and v; and the right-hand side (RHS) of equation 3-4 do not depend on v;, it is a
linear differential equation with time-varying coefficients. This is true even if the structure
is nonlinear in a structural engineering sense. The coefficient of v; is frequently just c(xo)

81‘,

as = 1s zero for most of the restoring force models of interest. The exception would be for

rate- dependent material models, but these are rarely encountered in earthquake engineering.

or
The coefficient of v;, T , 1s the tangent stiffness matrix of the structure and is often used

in the calculation of w. On the right-hand side (RHS) of the equation depends on the

0
* da;
input model and is usually not difficult to calculate. If z; is a parameter of the material

0 :
model and not the input, then —'t is zero. Similarly, -a—c— is also usually not difficult to
T

81’2'

find, and generally needs to be calculated only once at thezbeginning of the analysis. If z;

i1s a parameter of the input or the restoring force only, then will be zero. The term

8:6@'
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or or 0z . ) .
, — ——, is usually the most difficult to calculate. It contains two
8$C¢ u,u,z 8z 81‘1'

of the four terms of the derivative of  with respect to x;, and may be thought of as the
derivative of » with respect to z; with w and @ held constant.

in brackets

Before considering methods to solve equation 3-4, it is necessary to determine whether a
unique solution exists. The equation is a linear differential equation. However, the coeffi-
cients of v; and v; and the RHS are in general not continuous functions of time but may
exhibit discontinuities or “jumps” at a finite number of time instants. For example, the
coeflicient of v; is the tangent stiffness of the structure. For an elasto-plastic structure the
value of this stiffness will jump from the elastic stiffness to the tangent plastic stiffness when
yielding occurs. The RHS and the coefficient of v; will in general also exhibit discontinuities.

We may prove the existence of a unique solution for v; in the presence of these discontinuities
by considering intervals of continuity. Suppose that discontinuities in one or more coefficients
on the left-hand side of equation 3-4 occur at times 7q,79,73,... with 1 < 7 < 73 < ...
Consider first the interval 0 < ¢ < 7. Over this interval the coefficients are continuous
and equation 3-4 can be solved if initial conditions v;(0) and v;(0) are given. A well-known
theorem (for example, Theorem 2 of section 2.1 of [18]) states that the solution for v; exists
and 1s unique. At time 7y record v;(7;) and v;(71). Consider next the interval 7 <t < 7.
Over this interval the coefficients are again continuous and we can find a unique solution
for v; given initial conditions v;(71) and v;(71). The same procedure can be followed for
intervals 7 <t < 73, 73 <t < 74, .... In this way it becomes clear that a unique solution
for v; exists from time ¢ = 0 until the end of any time period of interest.

3.2 Numerical solution

For general earthquake input motions, it is not possible to find analytical solutions for
equations 3-1 and 3-4. Solutions based on numerical integration of the equations are thus
required. These numerical solutions are found at a series of discrete time steps t1,1%s,13,. ..
separated by intervals of size A¢. The Newmark method [46] of numerical integration is
widely used in earthquake engineering [13] and will be presented here to solve equation 3-1
for the displacement w. The method will then be extended to solve equation 3-4 for the
sensitivity factor v;.

3.2.1 Original system

The approach followed by the Newmark method is based on an assumption of the variation
of the acceleration @ over a time step At; for example, that @ remains constant over the
step. Integrating the acceleration results in equations for the increments of velocity and
displacement over the step. These equations are then substituted into the governing equation
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(equation 3-1) giving a linear equation for the increment of displacement over the step. After
solving for the displacement increment, the new displacement, velocity and acceleration can
be calculated.

To simplify the notation, the dependence of m, ¢, f and w on @, and r on u, u, z and x
will be suppressed. At a general time step ¢;, equation 3-1 can be rewritten as

mu(t;) + cu(t;) + r(t;) = f(t;) (3-5)

The incremental form of equation 3-5, obtained by subtracting equation 3-5 written at time
t; from that at time ¢4, is

mAu(t;) + cAu(t;) + Ar(t;) = Af(;) (3-6)

where Au(t;) = w(tj41) — @(t;); and other incremental quantities are defined analogously.

For small time steps the following approximation can be made

Ar(t)) & (1, Au) (37

. . . . r . .
As mentioned in Section 3.1, the matrix Ju commonly known as the tangent stiffness
u

matrix.

Substituting equation 3-7 into equation 3-6, we have

mAi(;) + eAi(l;) + oe(t;)Au(t) = AS(L) (39

As stated in the introduction to this section, the Newmark method is based on an assumption
of the variation of @ between ¢; and t;;1, and results in the following equations

u(tjy) = w(t;) +[(1 —y)Atat;) + (vA)a(tjn) (3-9)
u(tjpr) = u(t;) + (At)a(t;) + [(0.5 = B) (A1) a(t;) + [B(AL)] d(tj41) (3-10)

where v and 3 are the parameters of the method. These parameters determine the accuracy
and stability of the solution. A special case is the average acceleration method, obtained by
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selecting v = § and 8 = ;. This method is unconditionally stable and is recommended for
multi degree-of-freedom, nonlinear systems [13].

Rearranging equations 3-9 and 3-10

Au(t;) = @Au( ) - ;u(tj) + At (1 - 2—’2-) a(t;) (3-11)
N 1 I . 1.
Au(t;) = B(—AT)QA"(U) - @“(tj) - 55"(%’) (3-12)
Substituting equations 3-11 and 3-12 into equation 3-8
k(tj)Au(t;) = Af(t;) (3-13)
. _ Or 0% 1
where k(¢;) = %(t])—l— ﬂAtc+ ﬂ(At)zm
AF) = M)+ | gt Je alty

1
[%m-l-At (% — 1) ] w(t;)
Equation 3-13 represents a set of simultaneous linear equations and suitable linear algebra
methods exist for solving it for the displacement increment Aw(t;). From this u(¢;4,) may
easily be calculated and the equilibrium (equation 3-1) at time ¢;4, checked. If the equi-
librium is not satisfied within a specified tolerance, iteration may be required. This may
happen if the time step is too large for equation 3-7 to be accurate or if geometric or mater-
ial nonlinearities arise between ¢; and ¢;41. Once u(;41) is satisfactorily found, wu(¢;41) and
w(t;41) can be calculated and the solution can proceed to the next time step.

3.2.2 Sensitivity factors

As it is also not possible in general to find an analytical solution to equation 3-4 for the sensi-
tivity factor, a numerical solution will be required for this equation as well. As equation 3-4
is similar in form to equation 3-1 and the two equations will frequently be solved by the
same computer program, the Newmark method will also be used to solve for the sensitivity
factor.

The method can be extended in a simple manner to solve equation 3-4 for the sensitivity
factor v;. First it is necessary to derive the incremental form of the equation. At time ¢;,
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we have

mu;(t;) + {C + S—Z(fj)} v;(t;) + g—Z(tj)Ui(tj) =

of Jdc . or or oz _

P tj) — gx—i"(tj) - [a% s (t;) + 8—z(tj)5;(t]) (3-14)
mi;(t;) + &(t;)0i(t;) + k(t))vit;) = Filt)) (3-15)

where ¢(t;) = c+ g—;(t])

. or

k(t;) = 8—,“(75;')

Fit) = g2(t) - poit) - [ ol )+ ()

Subtract equation 3-15 at time ¢; from that at time ¢;4; to obtain the incremental form

MAD; () +E(tj11) Ay (1)) Hhe(tia1) Avi(ty) = AF(t;)—A&(t;)0i(t;)— Ak(t;)vi(t;)(3-16)

It should be noted that jumps in the values of &, k and }' may occur at a time instant
between t; and t;;;. The correct approach would be to determine the time instant of each
jump and restart the problem at these times with new equations and the state vector at
that instant as the initial conditions. However, this would be extremely difficult and time
consuming so we will assume that as At is small the errors introduced by not finding the
exact time instant are negligible. Section 3.5 will examine these errors in more detail.

Analogous to equations 3-9 and 3-10, we have from the Newmark method

Avl(t]) = &Avi(t]’) — %’U,(t]) + At (1 - %) 'Uz(tj) (3-17)
A (L) = 1 Aw-(t 1 . 1. ; 318
0i(t;) = BIAL? vi(t;) — @vi(tj) - %’vi( i) (3-18)

Substituting equations 3-17 and 3-18 into equation 3-16 and rearranging

k(1) Avi(t;) = AFi(L) (3-19)
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where IAc(tj) = %(tj+1)+ ——

AFt) = AFit) — Ae(t;)ilt) — Ak(t)vi(t;)

Equation 3-19 can be solved for Aw;(¢;), and v;(¢j41), vi(t;j4+1) and ©;(t;41) can be found.
As equation 3-4 is linear in v, no iteration is required.

It can be seen that IAc(tj) is independent of :. The n equations based on equation 3-19 for all
n sensitivity factors may thus be combined into one

k(1) Av(t;) = A (1)) (3-20)

where A'l;(tj) = [A’lfl(tj) A'I{z(t]‘) Alig(tj) A’U/:n<tj) ]
AF(L) = | AF(1) Ab() AFu(t) - AT |

We can solve for all of the sensitivity factors at the same time using the same linear algebra
routine used to solve equation 3-13.

3.3 Solution strategy

To summarize, the basic steps required to calculate the sensitivity factor v are

e Solve numerically for displacement u (equation 3-13)

or or 0z

e Calculate necessary derivative quantities such as — + —=
0 |4, 020z

e Solve numerically for v (equation 3-19).

There are two possible approaches to carrying out these steps: (1) solve for u over the entire
duration of interest, storing the necessary information at each step, and then solve for v; and
(2) solve for u at a time step ¢;, calculate the necessary information, solve for v at ¢;, and
then move on to ;1. The second approach is preferred as the first would require storage of
prohibitively large amounts of information for large problems.
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The required procedure at a typical time step is summarized in figure 3-1. Two comments
should be made to clarify the procedure:

1. It can be seen that a—z(tj_H) is calculated after v(t;). An example will illustrate the

need for this order. Consider a path- or history-dependent plasticity model in which
the restoring force at step ¢;, 7(¢;), depends on the plastic strain at the previous step,
el’(t;_1), as well as @ and the displacement at the current step, w(¢;). The history-
dependence of the model is introduced through the e (¢;_;) term. Such a model will be
introduced in section 7. In the terms used in the formulation in this section, the plastic
strain at ¢;_y, €7 (¢;_1), is the history-dependent variable z(¢;) used in the calculation
of r at time ¢;, or

2(t;) = " (1) (3-21)
SO
0z _0eP(t;)
(%im = = (3-22)
therefore
. Py,
or or, 0z _Or ; or(t;) 0e(tj-1) (3-23)

()4 521090 = Bty T BP0 0,

dz; w,u.z
Assuming that m
v(t;) can be calculated by equation 3-19. Next, for this model it is found that the
9" (1)

Oz
the displacement at time ¢;, v(t;). After v(t;) is calculated,

is known, the quantity in equation 3-23 can be found and

, is a function of the derivative of
asp(t]’)
Oz

0z eP
stored for use at the next step as ——(¢;41). The value of S to be used at the first
x

oz;

step can be found from the initial conditions.

derivative of the plastic strain at time ¢;,

can be found and

2. A large proportion of the work required to calculate the sensitivity factor is in the cal-

or

: . r
culation of the derivatives —, —, etc. Some authors, such as Greene and Haftka [25],

suggest a “semi-analytical” approach: use finite differences to calculate these deriva-
tives, and then solve for v using the numerical method of equation 3-19. Unfortunately,
this method is subject to the same disadvantages of the finite difference method as de-
scribed in section 2. Direct differentiation of the material restoring force and damping
models is a more accurate and satisfactory method of calculating the necessary deriv-
atives. The derivatives can be found on an element-by-element basis and assembled
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Solve for displacement u(¢;)

or 0z _

Calculate ar

81‘2'

U,z

Y

Solve for v(t;)

0z .
Calculate 8—%(2?]'“), 1=1,2,3,...

FIGURE 3-1 Basic procedure at a typical time step ¢,

into a global matrix in the same way as the element restoring force and stiffness ma-

or or 8_z

trices. For example, figure 3-2 shows the assembly of the global — —
0t |y a2 0z0z

matrix. Details of the material models considered and their derivatives will be given
in sections 6 and 7.

3.4 Example

A simple example will illustrate the theory and test the accuracy of the numerical solution.
The example is the single degree-of-freedom oscillator of Section 2.5 with viscous damping
of magnitude ¢ added, and the linear spring replaced by a non-conservative bilinear spring
(figure 3-3). The oscillator is driven by a harmonic forcing function pg sin(wt) (figure 3-4).
We wish to find the sensitivity factor with respect to the stiffness z. For this relatively
simple problem, an analytical solution can be found to check the accuracy of the numerical
solution. The problem will be solved for the following values of the parameters:

m = 0.3
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First element [ =1

A

Calculate transformation matrix I';

A

Convert to local coordinates: u] = Tyu,, w; = I'ja

l=1+1 j

8_r
Oz

Call subroutine to calculate element derivative vector <

|
or
(2
or

Convert to global coordinates:
Add data in element vector to correct position in global —

or 0z r [ Or
u,U,z +8hz—a;)1 —Pl (5;
oz

vector

FIGURE 3-2 Flowchart of loop through elements to calculate
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)

or 0z
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e

FIGURE 3-3 Restoring force vs. displacement

¢ = 0.529
g = 80
fy = 926
g = 0.2
po = 308.8
w = 6.283

and zero initial conditions.

3.4.1 Analytical and numerical solutions

The oscillator is at rest at at time ¢ = 0 so that the starting point on the restoring force vs.
displacement diagram (figure 3-3) is point A. At time 7p it reaches point B, at time 7¢ it
reaches point C, etc. As different equations for the restoring force r apply on the different
ranges A - B, B — C, etc., different governing equations for v and v apply on each range. It
is thus necessary to consider each of these ranges in turn. This will now be done in more
detail.

e A — B: The restoring force is given by
r(t,z) = zu(t, z) (3-24)
so the governing equation for u for z = xq is
mu(t, o) + cu(t, zo) + zou(t, zo) = posin(wt) (3-25)
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and for v
mo(t) + co(t) + zov(t) = —u(t, zo) (3-26)

These equations can be solved analytically for u and v. Details are given later in this
section.

B — C: The restoring force is given by

r = f,(1— B) + Brou(t, zo) (3-27)

so the governing equations for v and v are
ma(t, zo) + cu(t, zo) + fy(1 — B) + Bzou(t, z0) = po sin(wt) (3-28)
mo(t) + co(t) + Brov(t) = —Pu(t, zo) (3-29)

Equation 3-29 can be solved analytically with v(7g) and 0(7g) as initial conditions.

C — D: The restoring force is given by

r= Zg(t, ZE()) + Zo [U(t, IUo) - Zl(t, .’L'())] (3-30)
where z(¢,z9) = displacement at last velocity sign change
= U(T(;’ ‘TO)
z9(t,z9) = restoring force at last velocity sign change
= r(7c, o)

= fy(1 = B) + Bzou(7c, o)
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The governing equation for u is
mu(t, xo) + cu(t, zo) + za(t, o) + xo [u(t, zo) — z1(t, T0)] = po sin(wt) (3-31)

The right-hand side (RHS) of the governing equation of v is more difficult to find in
this case and is

B or Jr 0z
RHS = — % e (t,.’l)o) — éz—l(t,wo)a_m(t; $0)
or 0z
- 5—22@73?0)%(@%) (3-32)

= —[u(t,z0) — u(7c, 20)] — [—z0) v(7c) — 1[Bu(7c, To) + Bzov(Te)]
so the governing equation of v is

mo(t) + co(t) + zov(t) = (3-33)
— [u(t, zo) — u(7c, 20)] — [—zo] v(7¢) — 1 [Bulrc, z0) + Brov(Te)]

These three ranges illustrate the typical equations involved. Equations for D-E, E-F and
F-G are similar and will not be given here.
The general analytical solutions of the above equations for u and v have the form

u(t) = C)sin(wt) + Cy cos(wt)
+ e7“nt [ Cy cos(wyt) 4 Cysin(wgt) | 4 Cs (3-34)

v(t) = Cgsin(wt)+ C7cos(wt)
+ e7¢“m [ Og cos(wgt) + Cg sin(wgt) |

+ te—cw"t [ ClO cos(wdt) + Cll sin(wdt) ] + 012 (3—35)
where (w, = 3= =7.559 x 107"
wyg = frequency of damped vibration

= 1.510 x 10* for A-B, C-D, E-F; and 6.719 for B-C, D-E, F-G

Cy, Cq, Cs, ..., C19 are constants that depend on the parameter values and initial conditions.
As the governing equations are different for each range A-B, B-C, C-D, etc., the constants

33



will have different values on each range. The calculated values of the constants are given in
table 3-1 and the critical time instants which separate the ranges are calculated as

B
TC
™D
TE

F

0.182

0.397

0.568

0.901

1.063

TABLE 3-1 Values of constants
‘ Range | A-B | B-C | C-D J
C 1.629 1.491 x 10* 1.629
Cy —8.183 x 1072 | —2.272 x 10" | —8.183 x 1072
Cs 8.183 x 102 2.549 x 10! 8.911 x 107!
Cy —6.737 x 107! -7.258 5.112 x 1071
Cs 0 -4.630 1.660
Ce —2.449 x 1072 | 5.435 x 107! | —2.449 x 1072
Cy 2.467 x 1073 1.254 2.467 x 1073
Cy —2.467 x 1073 —1.296 —3.078 x 1072
Co 1.429 x 1072 | —6.279 x 107! | 5.915 x 1073
Cio | —6.374 x 1072 | —3.086 x 107! | 4.837 x 1072
Cu | —7.742 x 1073 —1.084 —8.431 x 1072
C1a 0 5.788 x 1072 | —1.895 x 1072
Range D-E E-F F-G

Ch 1.491 x 10* 1.629 1.491 x 10*
Cy —2.272 x 10! | —8.183 x 1072 | —2.272 x 10!
Cs 3.774 x 10! 3.277 x 1071 5.385 x 10!
Cy -2.415 -1.660 8.154
Cs 4.630 -1.991 -4.630
Ce 5.435 x 107! | —2.449 x 1072 | 5.435 x 1071
Cr 1.254 2.467 x 1073 1.254
Cg —1.530 1.168 x 1071 —2.144
Co —5.317 x 1071 | 6.494 x 1072 | —7.117 x 1072
Cio | —1.027 x 107! | —1.571 x 107! | 3.467 x 107!
Cu —1.605 —3.100 x 1072 —2.290
Ciz | —=5.788 x 1072 | 4.658 x 1072 5.788 x 1072
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The resulting solutions for v and v are plotted in figures 3-5 and 3-6. The problem was
also solved using the numerical method described in Section 3.2, and results are shown in
the figures for time step size At=0.001. It is clear that the numerical method gives suitably
accurate results.

The coefficient of © in the governing equations for v is simply ¢, which is a constant. The

coefficient of v is e which is only piecewise constant, with discontinuities at 75, 7¢, Tp, . . ..
u

Figure 3-7 shows a_r as a function of time. The right-hand side (RHS) or “driving force” of

u
the equation for v is shown in figure 3-8. It is piecewise continuous, with discontinuities at
TBy TCs TDy -« -+

3.4.2 Graphical calculation of derivatives

Several different mathematical formulations of the physical system shown in figure 3-3 are
possible. Equations 3-24, 3-27 and 3-30 represent just one possible formulation. There is a
tendency for the mathematics to obscure the physical problem, particularly when calculating

. 0 : e :
the derivatives (a_r and the RHS) required for the sensitivity factor calculation. No matter
u

what mathematical representation is used, the derivatives should be the same. Fortunately,

the derivatives can also be obtained from graphical analysis of figure 3-3. This process

can be used to check the derivatives obtained from any mathematical representation. It
e or :

can also help to confirm intuitively the forms of Em and the RHS and the existence of the

u
discontinuities.
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FIGURE 3-8 Right-hand side

r
Both —— and the RHS have graphical interpretations on the restoring force vs. displacement

du
: or . : . . .
graph. The coefficient of v, ——C, is the easier of the two to interpret. It is the gradient of the
U
graph, which is 2o on A-B and C-D and zq on B-C.

The RHS is more difficult. As (9_f and —8—0

oz Oz
or
| oz

or the negative of the rate of change of r with z at constant w. This can be determined by

applying a small change Az to z and finding how r changes at a fixed u. More precisely, the
A

RHS is — lim — where Ar = r(u,zo + Az) — r(u,zo). This will be done for A-B, B-C,

Az—0 Az
and C-D (figure 3-9).

are zero, the RHS is

L 0o or oz
0z Ox Oz, Oz

U,Uy21 ,22

A A
A-H: Ar = Az u, or 2 u; therefore — lim 2 _wasin equation 3-26.
Az Az—0 Az

e H - B: Leave out for now. As Az — 0, H — B so the behavior on the H — B line
becomes irrelevant.

A A
B-C: Ar=8Azu,or il Bu; therefore — lim i —pPu as in equation 3-29.
Az Az—0 Az

e D — E: This is more complicated than the previous ranges. In general, due to the
changed restoring force characteristics of the system between A and C, the point
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at which the velocity changes sign will move from C to C’, increasing u(7c, o) by
Au(7e,z9). The change in r may then be derived from:

%

as in equation 3-33.

B [zo + Az] Au(7e, o) (3-36)

Bzo Au(te, o) + B Az Au(7c, To)

Bro Au(Tc, zo)

B Az u(re, zo)

a+b

Ty + Az

Bro Au(Tc, zo) + B Az u(c, xo)
zo + Az

Au(re,z0) — ¢

Bzo Au(tc, o) + B Az u(1c, o)
zo + Az

Au(te, zg) —

[zo + Az]d

Bzo Au(rc, z0) + B Az u(1c, 20)
zo + Az

[z0 + Az] Au(7e, 20) — Bro Au(Tc, 20) + B Az u(7c, 20)

zo Au(7e, o) — Bro Au(rc, o) + B Az u(7c, 20)

Az [u(Te, zo) — u]

__f —e

Az [u — u(7e, 20)] — 2o Au(Te, T0) + Bro Au(rc, 20)

+ B Az u(7c, o)

[zo + Az] | Au(Tc, z0) —

Au(Te, o)
Az

—[u = u(7c, 20)] + zov(7c, T0) — Brov(7c, To) — Pu(7e, To)

u(7c, To)

[u = u(re, z0)] - 2 + 8202200 20) 4 gy (r6,20)

Similar graphical checks can be done for other parameters of interest and for other restoring
force vs. displacement models.

3.5 Error analysis

As indicated in Section 3.1, the coefficients of the governing equation for the sensitivity fac-
tor have time-varying coeflicients with discontinuities or “jumps” at several time instants.
The correct approach to solving for the sensitivity factor would be to restart the problem at
each discontinuity. After each restart, the problem would be solved with the new governing
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differential equations and the state vector at the time of the restart as the initial condi-
tions for the new problem. This approach may be reasonable for a single-degree-of-freedom
system. However, in a multi-degree-of-freedom system there may be a large number of dis-
continuities occurring at slightly different time instants and the task of determining all of
the time instants and restarting the problem each time would rapidly become enormously
computation-intensive and impractical. It may be more reasonable to sacrifice some accuracy
and find the sensitivity factor at predetermined time steps ¢y, to, 3, . . . separated by intervals
of size At only. In general, these time steps will not coincide with the discontinuity time
instants. This section attempts to determine the extent of the resulting error.

3.5.1 Basic approach

A common approach for determining errors in numerical integration methods is to calculate
the error in a single time step of a single degree-of-freedom system ([22], [27], [70]). The
initial conditions at the start of the step are assumed to be correct, and exact and numerical
solutions for the displacement at the end of the step are calculated. The local error is
defined as the difference between the two solutions. The lowest power of At in the local
error is particularly important as it determines the convergence properties of the numerical
method. This approach will be used here to investigate the error in a Newmark numerical
solution caused by a discontinuity occurring during a time step.

Consider the following equation, similar to the governing equation of a sensitivity factor for
a single degree-of-freedom system

mi(t) + cb(t) + k(t)o(t) = f(2) (3-37)

and a single time step of length At. Discontinuities in & and f occur at a general time
instant during the step. The time instant is nAt after the start of the step, where 0 < n < 1.
Such simultaneous jumps in both k and f are often observed in the governing equations of
sensitivity factors; for instance, in the example of Section 3.4. For the first part of the time
step, k = ki, and after nAt, k= ky. f varies linearly from fi to f; over nAt, after which it
jumps to fs and varies linearly to f; at the end of the step. The situation is illustrated in
figure 3-10.

The assumption that k remains piecewise constant is necessary to allow the use of the exact
solution for a linear system. In the context of sensitivity factors, if the original system
has a piecewise linear restoring force-displacement relationship then the assumption is valid.
However, even if this is not the case it may still be reasonable to assume that the stiffness k
is approximately constant over the short time periods nAt and (1 — n)At.

The conditions at the start of the step are v; and ¥;. Just before the discontinuity, the
solution and its derivative are v, and v9; just after the jump, vs and v3; and at the end of
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the step, vy and v4. Clearly vy = v3 and vy = v3. The next problem is to determine exact
and numerical solutions for v4 in terms of the initial conditions and the system parameters.

For the numerical solution, equilibrium of the initial conditions requires

miy = fi — ey — ko (3-38)

so from equation 3-19

P fu (= o+ (5 o+ 2000+ 202 = e~ hawy)
k4+ K2;C+ ﬁm
n fa+ fi — (ks + k)vy + 320
ks + A%c—f— ﬁm
(f~4 + fl)At2 - (k4 + kl)’Ul At2 + 4dm At ’[Jl

Vg = U

= ’Ul

= v+

ks At2 +2Atc+4m
= v+ 0 AL+ Jatfi Rtk v — —i1 | At2+ O(AL?) (3-39)
4m 4m 2m
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where g(At) = O(At*) means that g(At) ~ CAt* as At — 0 for some finite constant C'.

The exact solution can be determined by applying a linearly varying force over a time
duration nAt to the system with k = k; and v; and v; as initial conditions, determining v,
and v,, and applying a second linearly varying force over time (1 —n)At to the system with

k = k4 and vy and ¥, as initial conditions.

The solution for a linearly varying force applied to a system can be found in [13] and gives

Giv1 +£L_f~i. Gt +f2—f1_2412—1
A/1 — Cl2 Wd1 kl \/1 — C12 k'l (.ddl'f]At
L o2
! ]{?1 k‘l wnlnAt

vy = e S1wmnAtgiy (wa1nAt)

+ e~ Gwn AL (g (wanAt)

(3-40)

fl fZ-fl [1 2(1 :|
k‘l kl

e = e~ S1wninAt —Wn1V1 — (101 f~1 ( Wnl G )
vy = € sin (wpnAt) | ———=— + — +
VI—G R\VI-G AT
h G
kinAt /1 — (2
4+ e C1wn1nAL (g (wdﬂ]At) v — fk‘i;Affl
fa= fi
3-41
+ klnAt ( )

The solution at the end of the step is then given by

Cavz Vg f 3 Ca

V1= wae ks (/12

vy = e Gawns(l=n)At gy (waa(1 — n)At)

oS 2
]{,‘4 u)d4(1 — T])At

py_ 2 fim e 2

—<4wn4(1"77)At -
te cos (was(1 — 1) At) ko ' ke wua(l— )AL
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fs | Ja— s 204
kTR [1 T (1 — n)At]

: i - f 2
= e D8 sin (waa(1 — ) At) { vV 1§i % [i_i + kx ! (1 - wnlilA)

o fi Js Ca fi—F 202 -1 }

waskinAt ks /T 2 ks wa(l —n)At
+ e—(4wn4(1—77)At cos (wd4(1 _ ’I])At) {i_l_ + f2 - fl (1 o 2(1 >
1

k‘l wnlnAt

s fi—fs _ 264
k‘4 k‘4 wn4(1 - n)At
4 e CremnAt=Cawns (=8 gin (4 nAL) sin (wae(1 — 1) Al)
{ Ca [ G1o1 U1 fl C1 f2 - fl 2¢7 -1
> _— . + .
V14

_I_
V1-¢G wa ko1 k1 wainAt

_1_ —Wn1VU1 — Cli)l + fi Wn1 + Cl
Wy V1= ki \\/1=C  nAty/1 -2

R ] }
kinAt /1 — (2
+ e~ CwmnAt=Caung(1=n)At (wainAt)sin (waa(1 — n)At)

{ Ca [v h f~2_f1' 2¢

}

+ e~ CwnnAt=Cuuna(1-n)At g1 (wa1nAt) cos (wya(1 — n)At)

{ Civy oA G famfi 22— 1}

1 {1')1 fo—h

+ wa k1 + k’l . wle]At

V1I-G wa ki 1=

+ e~ CemnAt=Cawna (=AY o6 (0 nAL) cos (waa(1 — ) At)

, _ﬁ+f2_fl. 261
Yk ki wanAt

fs  fi— s 24
+ k_4 + k‘4 {1 B wn4(1 — n)At:| (3_42)

Noting that (jwn1 = (4wns = 5= and replacing the exponential and trigonometric functions
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by their Taylor expansions about zero, this becomes

ve = {wd4(1 — )AL — z_cn?"d‘*(l )AL
g ""34 3 A3 4

fa— i

L = R)eg-1)

{ Ga [E_M_fé]+_l_
Vi-G

kinAt k4
c c? Wiy 5
- —(1 - - = —n)At?
+ {1 Qm(l AL+ (8m2 2 ) (1=m)

2 3
Wyy € L \3A43 4
+ (4m 48m3> (1 —n)°At°+ O(At )}

{é_(_ﬁ___fl)_c_é (f4—f3)c}

Wi4

ky kinAt ky K31 —n)At
+ {wdlwdm(l —n)At* — iwdlwdm(l —n)At® + O(At")}
{ G4 [ G V1 f1 G f2—h ) 2(12 —1

+ == +

VI-GVI-¢G wa ki /1-(] ki wanAt
PR SR S LI 1 G
P V< B WV e TN e

kG
kmAt M}}

C
+ {wa(l = mAt = wa(1 - )AL

Fwu(l =) wi(1-n)° wiwun’(l-n) 3 4
+< 8gmz 6 2 )At+O(At)}
f (fz fi)e . A
{ e e R

-|— wa At — 2—wd1nAt

C'Wwq1m wdln wdlwdw(l — 77)2 3 4
_ _ t At
< 8m? 6 2 AT+ 0(AF)

{ C1vy U1 f~1' G fg-fl.QCf—l}

wa Kk wanAt

\/1—C12+Wd1 ki \/1—C12+ ky

kinAt ka(1 —n)At

2m

8m?

_|_{1__C_At+ ( C2 _w§1772

_ wﬁ‘l(l — 77)2 At2
2 2

cw? n?
d17
4m 4m

48m3

2 (1 _ )2 3
+ de4(]. 77) _ C )At3+O(At4)}
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f4 (ﬁ;—fB)C
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where the last line follows after noting that f2 — fi and fs — f5 are both O(At), based on
the continuity of f away from the jump.

The local error is the difference between the exact and numerical solutions (equations 3-39

and 3-43) and is

_ ky — Ky n* 1 fi— fi n’ 1 2
Error = {[ — (—2—1—77—4 v — — —2+17 1 At

+ O(A#?) (3-44)

Several conclusions can be drawn from equation 3-44:

o If k; = k4 and there are no discontinuities in f S0 f4 — fl = O(At) then the local error
is O(At?). This agrees with existing results for the Newmark method [27].

o Ifn=1- % ~ 0.2929 then the local error is also O(At?). This condition is only of
academic interest as it will not in general be met.

e In general, if there are discontinuities in either k or f, the local error will be O(At?),
one order less than that found in the absence of discontinuities. It is often stated
that the Newmark method has O(A#%) local errors. This statement is incorrect if the
driving force is not continuous.

The global error at any time during an analysis is the total error accumulated by that time.
It is more important than the local error of a single step. However, it is either very difficult
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or impossible to calculate for anything other than unrealistically simple systems. A rule of
thumb [24] is that the order of the global error is one order lower than the local error. This
is often checked by a numerical example, which will be done in Section 3.5.3.

3.5.2 Additional considerations for sensitivity factors

The previous section presents an analysis of the errors associated with the Newmark method
for the numerical integration of equations with discontinuous coefficients. It was assumed
that the value of the RHS of the governing equation is known. However, an additional
consideration is necessary for the calculation of sensitivity factors. Following the routine of
figure 3-1, the displacement w is calculated first and used as input to the calculation of the
sensitivity factor v;. As can be seen in the example in Section 3.4, the RHS of the governing
equation of the sensitivity factor is in general a function of the displacement. As there will
be errors in the numerical solution for the displacement, the RHS will also contain errors.

The problem can be investigated using the same approach as in the previous section: take
a single degree-of-freedom system, assume that the initial conditions at the start of a step
are correct, and calculate exact and numerical solutions for the displacement and sensitivity
factor at the end of the step. Consider a single degree-of-freedom system with the following
governing equation of displacement

mii(t) + cu(t) + r(u(t)) = f(¢) (3-45)

and, as in the previous section, a single time step of length A¢. The details of the restoring
force relationship r(u(t)) are not important; however, it will be assumed that over the step
it is piecewise linear with a change in tangent stiffness at a time instant nAt after the start
of the step. For the first part of the time step, the tangent stiffness is k;, and after nAt,
the tangent stiffness is k4. The situation is illustrated in figure 3-11. As f(¢) is based on
an earthquake ground motion, it will be assumed to be continuous over the step, varying
linearly from f; to fs.

The governing equation of the sensitivity factor v is

md(t) + co(t) + k(t)o(t) = f(t) (3-46)

Wherejc = k, for the first part of the time step, and & = k4 after nAt. The exact form of the
RHS f(t) depends on the function r and the uncertain parameter, but based on the example
of Section 3.4 it will be assumed that f(¢) is a linear function of u(t).

The exact and numerical solutions to the problem proceed as follows:
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FIGURE 3-11 Restoring force r

1. Solve for the displacement. An exact solution can be found for u,, us and u4, similar
to that in Section 3.4. The numerical approach uses the Newmark method to calculate
the displacement at the end of the step. In general this method has an O(A¢?) local
error so will not give the exact value of ug, but will give uy + O(A#?).

2. Use the calculated displacement as input to the RHS of the governing equation of the
sensitivity factor (equation 3-46). The exact solution will have the correct values for
]il, fg and f4 calculated from wj, uz and us. The numerical solution will only have
J1+ O(A#®), calculated from ug + O(A#®). The situation is illustrated in figure 3-12.

3. Calculate the exact and numerical solutions for the sensitivity factor at the end of the
step. The exact solution is identical to that in the previous section (equation 3-43).

The numerical solution is given by

—_— fo+O(A®) + fi — (ka + k1)vr + B
' ks + Zc+ zpm
(i + O(AL) + FI)A2 — (ky + ky)vs AL + 4m At 6,

= ut ki A2 T2 ALct 4m
fodt fi ka4 k
= v 4+ A+ Jathi ket 1’()1—50-—-1.)1 At? + O(A?) (3-47)
m

4m 4m

which is equal to equation 3-39.

As the exact and numerical solutions are the same as in the previous section, the local
error in the sensitivity factor is equal to equation 3-44 and the same conclusions as in the

47



1

o
1§

14
o
[

1

: fi +0),

\

| |
P - |
| i ks | | ksl
E— R |
LAt (1-n) At . VoAt (1-n) At .
t g T t+ At t 7 t+ At
Exact solution Numerical solution

FIGURE 3-12 Single time step

previous section apply. The errors in the numerical solution for the sensitivity factor caused
by using the calculated displacement as input are higher-order errors and do not affect the
convergence of the solution. Consequently, it can be concluded that the local error in the
sensitivity factor is O(At?). The next section uses an example to estimate the order of the
global error.

3.5.3 Numerical example

The example of Section 3.4 was used to estimate the order of the global error. The problem
was solved numerically using several different time steps and the magnitude of the error at
different times determined by comparison with the exact analytical solution. Assuming that
the global error at time ¢, €(t), can be approximately expressed as C(t)At*, then

log €(t) ~ log C'(t) + k log At (3-48)

so the order of the error can be estimated from the gradient of a loge(t) versus log At
graph [2]. These graphs have been plotted for the example of section 3.4 for both the solution
for the displacement (figure 3-13) and the solution for the sensitivity factor (figure 3-14).
The lines on the graphs are for several different values of ¢: ¢ = 0.1,0.2,0.3,...,1.4. Lines
with gradients of 1 and 2 have been drawn on the graphs for comparison.

For the displacement, it is clear from figure 3-13 that most of the lines have a gradient of
approximately 2, indicating that the global errors are generally O(At?). This agrees with the
rule of thumb for global errors, and with existing results for the Newmark method ([22],[70]).
For the sensitivity factors, from figure 3-14 it appears that most of the lines have a gradient of
approximately 1. The exception is the line for ¢ = 0.1, which is before the first discontinuity
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at t = 0.182. The figure indicates that the global error after the first discontinuity is O(At),
one order less than the local error.

3.5.4 Conclusions

Examples suggest that the solution for the sensitivity factor has errors that are one order
less than the order of the errors in the displacement solution. The numerical solution for
the sensitivity factor will thus converge as At is reduced, but will converge more slowly
than the displacement solution. This certainly does not mean that the numerical solution
for the sensitivity factor will be insufficiently accurate. All of the examples of sensitivity
factors calculated in this thesis have been checked and found to be satisfactory. Sensitivity
factors for the simple examples were checked against analytical solutions, while sensitivity
factors for the more complex finite element models were checked against finite difference
calculations with several different finite difference sizes to ensure accuracy. As indicated in
section 3.1, the governing equation of the sensitivity factors is a linear differential equation.
It is expected that a time step small enough for a nonlinear dynamic structural problem will
be small enough to give a sufficiently accurate result for the sensitivity factor.

It may be possible to find more accurate methods for the numerical integration of the scale
factor. However, the proposed method has the advantage that it also used to solve for the
displacement, which leads to simpler implementation of sensitivity analysis and may also

save computation time. For example, in equations 3-13 and 3-19 k and k are identical in the
absence of rate-dependent material models. This means that it is not necessary to calculate

A

k separately, which would probably be necessary if a different numerical integration method
were used.

3.6 Multiple support excitations

In many applications, ranging from long-span bridges to piping systems in buildings, the
assumption that the same input motion can be applied at all supports of the system is not
valid. This section contains a formulation of the governing equations of the displacement
and sensitivity factors for systems where multiple support excitations must be considered.

It is necessary to divide the degrees of freedom of the system into two groups: supported
and free. A supported degree of freedom has a prescribed displacement: either a given
time history of displacement for a degree of freedom that is subject to seismic excitation, or
zero for a stationary degree of freedom. A free degree of freedom does not have a prescribed
displacement, but the displacement must be calculated from analysis of the system subjected
to the motion of the supported degrees of freedom.
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Both the free and supported degrees of freedom of the system must be considered in the
governing equation. However, it can be written in partitioned form where a subscript f is
used for free degrees of freedom and s for supported degrees of freedom

Y 3 bl :!}(@?) v L )
-I-{rf("f(ta o), us(t, o), Uy (L, 0), Us(t, 0), 2 (2, @o), wo>}:{fs(£mo)} (3-49)

T‘s(’uf(t, 330), ’U,s(t, 330)7 il’f(ta 1130), ":"S(tv 2120), Z(tv 2130), 330)

where f, are the support reactions. The zero off-diagonal terms in the first matrix in
equation 3-49 follow from the fact that the mass matrix is diagonal for lumped mass systems.

We are interested in displacement of the free degrees of freedom, wf(t, o). The governing
equation is the first equation contained in equation 3-49

myts(t, o) + cs(®o)us(t, ®o) + cps(®o)us(t, To)
+rp(up(t, o), us(t, @o), ws(t, @o), ws(t, @), 2(¢, o), o) = 0 (3-50)

The governing equation of the sensitivity factors of the free degrees of freedom, vy ;(t), is
obtained by differentiating equation 3-50 with respect to z; and rearranging

. or . or
myv(t) + [Cf(wo) + 8—4(%%)] vyi(t) + %i‘(t,wo)vf,i(t) =

 Ocy(o) dcss(®o) . ory
3z, ws(t, @o) — oz u,(t,@o) — |css(o) + E

ory Ory or 0z
— Lt o) (t) — ¢, (4, @)= (4, 3-51
aus( mO)v , ( ) [ax’ uf:us,ufyﬂs,z ( mO) i 0z ( mO) axl( mO) ( )
0 Ou, . . .
where vy; = _a’l'«_f and v,; = 8l If z; is not a parameter of the input motion then
ZI; Z;

vs; = U,; = 0; otherwise v,; and v;; must be given. Equation 3-51 is similar to equation 3-
4 for a single support motion.

The formulation of a numerical solution proceeds in the same manner as for a single support
motion. At a general time step ¢;, equation 3-50 can be rewritten as

mytig(t;) + cpup(t;) + cpsus(ty) +rp(t;) =0 (3-52)
The incremental form of the equation is
mAug(t;) + cpAug(t;) + cpsAug(t;) + Arg(t;) = 0 (3-53)
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For small time steps the following approximation can be made

a’l'f ' 8rf
Ju,

() Aus(t;) (3-54)

The same steps are followed as in the single support motion case, ending in the following
equation analogous to equation 3-13

k(t;)Auy(t;) = Af(t;) (3-55)
- 0
where k(t;)) = szf (t;)+ ,BZt 7+ ﬂ(it)me
T _ c%f 1

o)) — esinlty) + | 5ms + Jes] e

JERMRVEN ot

The numerical solution for the sensitivity factors is much the same as before, ending in the
following, analogous to equation 3-19

k(1)) Av(t;) = A1) (3-56)
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SECTION 4
APPLICATIONS OF SENSITIVITY FACTORS

4.1 Optimization

Among the most useful applications of the sensitivity factors are the calibration of the
parameters of the structural model to match experimental data, or the selection of an optimal
value of one of the parameters. Both tasks can be accomplished by nonlinear programming
methods [38]. To formulate the problem, consider a scalar function of the the displacement
of the structure, g (u(¢,@)), called the objective function. We wish to find the value of @
that minimizes the value of this function. This can be accomplished by a suitable nonlinear
programming algorithm. Such algorithms are typically iterative, starting at a given point in
x-space and at each iteration taking a “step” in a direction such that the objective function
is reduced. Different algorithms use different methods to select the direction and size of the
“step”. It is possible that a local rather than a global minimum will be found. The iterative
nature of the algorithm means that ¢ (u(¢, )) will have to be evaluated at several values of &
before the minimum is found. Each evaluation requires a time-history analysis of the system,
which may be time-consuming. The usefulness of the sensitivity factors is in calculating the
gradients of g with respect to @. These gradients allow more efficient nonlinear programming
algorithms to be used, with a reduction in the number of evaluations of g (u(¢,z)).

For an example of a typical objective function, consider the common problem of calibrating
a simple computer model of a structure against either experimental data or data from a
more accurate but also computationally intensive model. More specifically, the problem is
to find values of the parameters of the simple model so that the calculated time history of
displacement of a selected degree of freedom of the structure, say u;(t), 0 < ¢ < 7, matches
a given time history v(¢), 0 < ¢ < 7. A commonly used objective function for this problem
1s the integral of the square of the difference between the two time histories:

gluta) = [ fu(t.e) - o) d (1)
0
Minimizing this objective function will tend to draw w(¢,@) closer to v(t) over the whole
period under consideration.

The derivative of g is given by

ag_(g%_@ - /0 "y [u;(t, &) — v(t)]vii(t) dt (4-2)

A second typical objective function is often found in seismic retrofit problems. The problem
is to find the parameter values that minimize the peak absolute value of the displacement of
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a critical degree of freedom. The objective function for this problem is
g (u(t, @) = max |u(t, ) (43)

As explained in section 2, the sensitivity factor at the time of the peak can be used as the
sensitivity of the peak, so the derivative is

W = v;,i(¢7)sign (u;(t", @) o

where t* = arg max; |u;(¢, )|, the time at which the maximum displacement occurs.

Many different nonlinear programming algorithms have been pre-programmed [42] [53] and

dg (u(t, z))
81’1'

and return the values of @ for the following iteration. These algorithms can be used with
the software used to calculate the sensitivity factors. For example, MATLAB [42] uses the
Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method [38].

are available for use, often simply as “black boxes” which take values of @, g and

4.2 Approximate fragility curves

The sensitivity factors can also be used in probabilistic analysis to generate approximate
fragility curves. Assume that the parameter vector is random. We will follow the convention

that random quantities are written in uppercase letters, so the parameter vector will be
denoted by X . The mean of X is py.

Consider a function g (u(t, X),0 < ¢t < 7) which defines the acceptable response of the sys-

tem. Failure is assumed to occur if g < 0. For example, the criterion that the maximum
value of displacement in degree-of-freedom j should be less than u.. can be expressed as

g(u(t, X),0<t<7)=ue — max u;(t, X) (4-5)

The set of values of X for which g > 0 is frequently termed the “safe set” [40]. The boundary
of the safe set is defined by g = 0.

The fragility Py is defined as the probability of failure,

Pr=Plg(u(t,X),0<t <7)<0]
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It is generally not possible to find a closed form solution for the fragility, so approximate
methods have to be used.

Monte Carlo simulation is one of the most commonly used methods for complex systems.
Zhang and Der Kiureghian [69] use the first-order reliability method (FORM) [40]. However,
both of these methods require many time-history analyses of the system, which may be time-
consuming.

The sensitivity factors can be used to calculate approximate fragilities using the Monte Carlo
or FORM methods with only one time-history analysis of the system. The approach is based
on the first order Taylor expansion (equation 2-4) written about the mean

w(t, X) ~ ult, py) +v(t) (X — ) (4-6)

As equation 4-6 is approximate, the resulting fragilities are approximate. The accuracy
depends on the accuracy of equation 4-6. The methods are

e First-order Monte Carlo simulation: The required steps are listed below.

1. Generate a sample @ of X.

2. Calculate u(t;, @) ~ w(t;, px) + v(t;) (® — py) for ¢ = 1,2,3,... and check g(u)
after each step. It is not always necessary to consider every time step — the
process can stop as soon as a failure is detected.

3. If a failure is found, increase Ny, the number of failures, by 1.
4. Repeat steps 1-3 a preselected number, Ny, times.

5. The failure probability is approximately Ny/N;.
e First-order reliability method (FORM): The required steps are listed below.

1. Transform X to standard Gaussian space by Y = f(X) where the elements
of Y are uncorrelated standard Gaussian random variables. The form of the
transformation f depends on the distribution of X. If X is Gaussian then f
can be determined from X = aY + py where matrix a can be calculated by a
Cholesky factorization of the covariance matrix of X.

2. Set u(t;,y) ~ u(t;, px)+v(t:) (7 (y) — px) and solve the constrained optimiza-
tion problem:

Minimize 8 = v/yTy such that g (u(t,y),0 <t <7)=0

3. The failure probability is approximately 1—®(3), where ® is the standard Gaussian
cumulative distribution function.
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The optimization problem can be solved by one of the many nonlinear programming
algorithms available. The Microsoft Excel Solver [23] also works well for this problem.
The FORM method tends to be quicker than the first-order Monte Carlo method
presented above, but is more approximate. However, as both methods presented here
are based on equation 4-6 and are already approximate, this may not be a problem.
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SECTION 5
GENERAL STRATEGY

Sections 57 describe the development of software for numerically calculating the sensitivity
factors. The software is based on developments in Section 3. As explained in that section,
the method used to calculate the displacement can be extended to calculate the sensitivity
factors as the same time-stepping numerical integration method is used for both, derivatives
of the restoring force are calculated in a similar manner to the restoring force itself, and
results from the calculation of the displacement are used in the calculation of the sensitivity
factors. It is thus sensible to use the same program for both sets of calculations. T'wo options
are available: add sensitivity analysis capabilities to an existing program, or write an entirely
new program. The following objectives should be considered when developing the software:

1. The program should allow the analysis of structures of a realistic size, like those de-
scribed in Section 2.6.2.

2. A library of realistic material models is required. All models commonly used for steel
and reinforced concrete structures should be included.

3. Various levels of detail of structural modeling should be possible.

4. The sensitivity analysis program should be able to be linked to other programs or
routines that use the sensitivity factors in, for example, calibration.

5. The program will be used in education as well as research and analysis, so should
illustrate the concepts of sensitivity analysis in a simple and clear manner.

It was felt that it would be difficult for a single program to satisfactorily meet all of the
above objectives, so two programs were developed:

¢ MATLAB: An entire program to calculate both displacement and sensitivity factors
was written using the MATLAB code [42]. The program was titled SABER (Sensitivity
Analysis of Buildings subjected to Earthquake Records). SABER is intended for a
relatively simple level of analysis and is user-friendly so that it can be used in education.

e DIANA: An existing finite element analysis program, DIANA [17], was adapted for
sensitivity analysis. The existing program calculates the displacement and new sub-
routines were added to calculate the sensitivity factors. DIANA is intended for a more
detailed level of analysis, such as that required for research purposes.

It must be emphasized that despite their differences, both programs follow the same basic
procedure for calculating sensitivity factors as outlined in Section 3. The calculation se-
quence, equations used, and numerical integration method are the same for both. The only
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major computational differences are in the types of element and material models available,
and in the method used to calculate the element stiffness matrices and restoring forces.
MATLAB uses stiffness elements with predefined stiffness matrices, while DIANA uses fi-
nite elements for which the stiffness matrices are obtained by numerical integration. Other
practical differences between the programs are outlined below.

The MATLAB program has a graphical user interface and is the easier of the two to use.
Several material models have been included, and others can be added through user-supplied
subroutines. The program is intended to be the start of an evolving effort and further
modules to allow, for example, cost-benefit analysis, can easily be added. It is intended to
be used for a relatively simple, beam-element level of structural modeling, and would have
limited accuracy and usefulness for more highly-detailed modeling.

DIANA allows much more detailed analysis, with a larger range of material models and
element types. For example, plasticity and cracking material models and shell and plane
stress element types are available. It may be used for accurate, detailed analyses against
which a simpler MATLAB model can be calibrated. DIANA is generally more difficult and
time-consuming to use than MATLAB.

Sections 6 and 7 cover the MATLAB and DIANA programs respectively. Each chapter
contains a more detailed description of the program; an outline of the flow of calculations
performed by the program; a description of the material models available; derivation of the
sensitivity equations for each model; and an example to illustrate the use of the program.

The sensitivity equations derived depend on the material models used and are not specific

to MATLAB or DIANA. They could in principle be used with any structural analysis code
that uses the same material models.
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SECTION 6
MATLAB IMPLEMENTATION

6.1 Introduction

MATLAB is a general purpose programming environment with particularly strong matrix
analysis and graphics capabilities. It can be used to develop programs with graphical user
interfaces so that the programs can be used without any knowledge of the underlying MAT-
LAB code [41]. MATLAB also features SIMULINK, which allows analysis of general dynamic
systems by means of graphical block diagrams [50]; however, SIMULINK was not used here
as the graphical user interface approach is more traditional in structural analysis and may be
more familiar to likely users of the program. The SABER program has been developed with
such a graphical user interface as a relatively simple, easy to use and flexible program to
illustrate sensitivity analysis [57]. SABER can be used to define the geometry and material
properties of a structure and perform dynamic analysis to calculate displacement and sen-
sitivity factors. Other modules to apply the sensitivity factors to problems like cost-benefit
analysis can easily be added.

The program can be downloaded from ceeserver.cee.cornell.edu/mdg12 in the form of p-files
which run with MATLAB Version 5.3 or later.

There are two versions of SABER. The original version, SABER-2D, is limited to two di-
mensions and a single input motion at all supports and is intended for analysis of building
frame systems; while the newer SABER-3D version allows three dimensions and multiple
support motions and is intended for analysis of piping systems. The systems are defined in
the traditional manner using nodes and elements. SABER is intended to be as flexible as
possible so includes several different types of elements. The first version of SABER-2D in-
cludes linear and nonlinear truss and rotational spring elements, and a linear beam element.
The first version of SABER-3D includes linear pipe elements, linear elbow elements, linear
beam elements, dashpots and a rotational spring element for modeling nonlinear behavior of
pipe elbows. The addition of further elements is also relatively simple, as the formulation of
each element is contained in a separate subroutine. Additional subroutines can be written
and used with the existing program.

Fach element is connected to two nodes. For spring elements the two nodes should be
coincident so that the element has zero length, while beam and truss elements are required
to have non-zero length.

The program is designed for dynamic earthquake analysis. Masses, in the form of lumped

nodal masses, are thus required. External forces such as static nodal or distributed loads
cannot be included in the analysis. The damping is specified using the Rayleigh damping
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FIGURE 6-1 Typical element for SABER-2D

approach as a function of the mass and initial stiffness matrices:

C:aM'l-bKo

The coefficients @ and b are typically chosen to give reasonable damping ratios in the first
two linear elastic modes of the structure. Damping due to dashpots in SABER-3D is also
added to C.

6.2 Material models

Several quantities must be calculated before the numerical integration routine (equation 3-
19) can be used to solve for the sensitivity factor v. Three of these, the tangent stiffness, the
derivative of the restoring force with respect to the uncertain parameter, and the derivative
of the vector of history-dependent variables with respect to the uncertain parameter, depend
on the element and material model for the restoring force r.

This section contains descriptions of some representative elements: the linear frame and
nonlinear truss elements used in SABER-2D, and the nonlinear rotational spring used in
SABER-3D. The models and equations are formulated for individual elements, and may be
combined into global quantities by the procedure of figure 3-2.

The general SABER elements are shown in figures 6-1 and 6-2. For SABER-2D, the general
element is a two dimensional, six degree-of-freedom element; while for SABER-3D it is a
three dimensional, twelve degree-of-freedom element. Many different types of element and
material models may be defined based on these general elements. For example, a truss
element is defined by providing stiffness in the axial direction only. The possibilities will be
clearer after reviewing the elements in this section.
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FIGURE 6-2 Typical element for SABER-3D

6.2.1 Linear elastic frame element (SABER-2D)

The linear elastic frame element is a commonly used element in structural analysis. The
element properties that must be specified are the elastic modulus E, cross-sectional area
A, and moment of inertia I. Any of these parameters can be considered to be uncertain.
The element length [ is fixed by the geometry of the structure and is thus considered to be
deterministic according to the assumptions of section 2.6.

The restoring force at time ¢, (), is given by [43]:

B0 0o -E 0 0 T ( w()
5 e — % _ u;:,t
r(t) = EA 5 ! EA ! ! S (6-1)
o 1%1«31 gEI N 120EI gEI U4(t)
SO S o o B
| 0 = = 0 — 2 -7 1\ uﬁ(t)J

6.2.2 Nonlinear truss element (SABER-2D)

A truss element has stiffness and restoring force in the axial direction only, so this element
can be treated as a special case of the general element in figure 6-1 in which ro = r3 = r5 =
r¢ = 0. The axial force-displacement relationship follows the elastic-plastic behaviour shown
in figure 6-3. The yield surface for this uniaxial stress state consists of two parallel lines
with gradient @, one on the positive r; side and one on the negative side. To simplify
the equations, the change in length of the element, u;(¢) — u4(t), will be shortened to du(t).
Element properties that must be specified are the elastic modulus F, cross-sectional area A,
yield stress f, and stiffness ratio 3.

Although there are many different ways of mathematically formulating this element, in
SABER it is done by considering three cases:
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FIGURE 6-3 Axial force-displacement for nonlinear truss element

e Case 1 holds on the yield surface on the positive r; side, that is, if

at) + 5 5ult) — 2(0)] > A%+ 55 st - 2]

where z;(t) = du at last velocity sign change

zo(t) = 7y at last velocity sign change
e Case 2 holds on the yield surface on the negative r; side, that is, if
EA

1) + 22 [ou(t) — 2a(1)] < ~Af, + 87 [M) N iEl]

e Case 3 holds when inside the yield surface.

The restoring force is then:

Afy+[3 { fy], Case 1
ri(t) = —Af,+ 5 A{ u(t) + iy—l}, Case 2

E
zo(t) + —E;lé [6u(t) — z1(t)],  Case 3
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r4(t) is always simply the negative of ry(t).

Equation 6-2 is valid for all ¢. However, when considering the equations for the history-
dependent parameters z; and 23, it is necessary to take account of the fact that the solution
is found at series of discrete time steps. The notation ¢; and ¢;4, will be used for two general
adjacent time steps.

If no sign change occurs at time ¢;, that is, if sign[u1(¢;) — wa(t;)] = sign[d(tj—1) — walt;-1)],
then

z21(ti) = 2(ty) A (6-3)
zo(tjv1) = 22(t))

where z1(to) and z5(to) are zero for zero initial conditions.

However, if sign[u,(t;) — @4(t;)] # sign[d(tj—1) — wa(t;—1)] then

z1(tjp) = du(ty) (6-4)
zo(tjv1) = ri(t;)

6.2.3 Nonlinear rotational spring element (SABER-3D)

This nonlinear rotational spring element is unique to SABER-3D. It is intended to repre-
sent the in-plane, nonlinear bending behavior of a pipe elbow, and is based on detailed
finite element analyses. An example of one of the finite element models used to analyze
an elbow is shown in figure 6-4. The model was subjected to a cyclic sawtooth load and
moment-rotation curves plotted. Geometric and material nonlinearities were considered.
The governing equations of the SABER element were obtained by fitting a suitable model
to the moment-rotation curve.

A schematic drawing of the element is shown in figure 6-5. The element is actually a ro-
tational spring at a point so nodes 1 and 2 should be co-incident; however, to determine
the correct local axes it is useful to imagine the nodes a small distance apart. The model
relates the restoring force and displacement in degrees of freedom 6 and 12 (figure 6-2), the
rotations around the local zaxis, only. The element is assumed rigid in other directions so
Uy = uy, Uy = Us, ..., us = uj;. The local z-axis must be given by specifying a vector
corresponding to the node 1 closing rotation direction using the right-hand rule. The local
z and y axes are arbitrary.

The moment-rotation relationship of the model is shown in figure 6-6. The parameters of
the model were determined from the finite element analyses. No attempt was made to relate

65



FEMGV 5.2-02.A Cornell University 4 OCT 2000

Model: ELBOWS

Elbow

FIGURE 6-4 DIANA finite element model of elbow

~ local z-axis

Ue

NODE 1

FIGURE 6-5 Schematic of element
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FIGURE 6-6 Moment-rotation for nonlinear elbow hinge element

the parameters to the elbow dimensions or the material properties. Parameters for three
common steel elbows are listed in table 6-1. An example of the fit of the model to the finite
element analysis output is shown in figure 6-7.

To simplify the governing equations, the rotation of the element, ug(t) — uio(t) will be
shortened to du(t). The model consists of 4 cases:

e Case 1 holds on the descending branch of the yield surface on the positive r¢ side, that
is, if

zo(t) + K (t) [6u(t) — z1(t)] > My + K [du(t) — 65] and du(t) > 0,

Ko Su(t) > 0,2(t) > g—
Where ]X’(t) — [X’3 N 5u(t) Z 0, Zl(t) < —}-T?gz
¢ ( Mye ) §u(t) <0
K U
* \ Koz(t)
z1(t) = Odu at last velocity sign change
z2(t) = re at last velocity sign change
z3(t) = max [maxongt 5u(7’),]\1/gc]
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FIGURE 6-7 Comparison of moment versus rotation from DIANA and SABER-3D
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e Case 2 holds on the yield surface on the negative rg side, that is, if

25(t) + K (1) [6u(t) — z1(t)] < Myo + Ko [au(t) -

My,
Ko

e Case 3 holds on the constant branch of the yield surface on the positive rg side, that

is, if

zo(t) + K (t) [6u(t) — 2z1(t)] > My and du(t) < 0,

e Case 4 holds when inside the yield surface. It has three subcases:

Case 4a: du(t) > 0,z(t) >
Case 4b: du(t) > 0,21(t) < Myo

Myo

Ko
Ko

Case 4c: 6u(t) <0

The restoring force is then:

My + K [du(t) — 0s],

M,, + K, [5u(t) _ AXZ] ,
Myca
29(t) + K(t) [du(t) — z1(t)],
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Case 3
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r12(t) is always simply the negative of rg(¢).

If no sign change occurs at time ¢;, that is, if sign[ue(¢;) — t12(¢;)] = sign[de(tj—1) —tw12(t;-1)],
then

z1(tjv) = z(ty) (6-6)
zo(tjy1) = 2(tj)

where z(to) and z3(to) are zero for zero initial conditions.

However, if sign[ug(t;) — ©12(¢;)] # sign[te(tj—1) — w12(¢j—1)] then

z2i(tj) = du(ty) (6-7)
zo(tjv1) = relt))

The final history-dependent parameter is given by

z3(tj41) = max [Su(t;), 23(t;)] (6-8)

yc

where z3(tp) = 7o
10

6.3 Sensitivity of material models

or Qﬁ or 0z
ou 9z 9z on

z .
and —— needed to solve for the sensitivity factors for the linear frame, nonlinear truss and

This section contains the equations used for calculating the quantities

T
nonlinear rotational spring models in Section 6.2.

6.3.1 Linear elastic frame element

The tangent stiffness and partial derivatives with respect to uncertain parameters £, A and
can be calculated relatively simply for the linear elastic frame element. The tangent stiffness
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1s

R R
0 12E1 6E1 0 __12E1 6E1
13 2 3 %2
or 0 6E1 4F1 0 __6EI 2E1
(t) = EA e ! EA 2 ! (6_9)
Bu - 0 0 - 0 0
__12F1 6E1 0 12E1 __6EI
3 2 3 2
0 GE‘I 2ET1 0 __6EI 451
L 2 l 12 l -

4 0 0 -4 0 0 7 ( wit)
oon_( 0 = T 0 -5 7 us(l )
=2 0 0 4 g g walt) (6-10)
I S Al )
Lo % 7 0 =% 7 ] Lu(t)

o If the uncertain parameter z is the cross-sectional area A then:

E 00 -200 ui(t) )

0000 0 00| | u

or | 0 00 0 00] ) u)
DT —E 00 B 00 |) we ( (6-11)

0000 0 00| [

L0000 0 00 | ut)

[0 0 0 0 0 0 1 ( w(t))
9T = T 1 E us .
=10 0 0 0 0 0 |) w0 (6-12)
0 —uE sz g uE o _sm || )
I
[0 % F 0 -F F ] Lul®) )
0 0 :
As there are no history-dependent variables, 8—: and £— can be taken as zero at all times.
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6.3.2 Nonlinear truss element

) . or )
The components of the tangent stiffness matrix — for the nonlinear truss element are:

ou

EA
or, o Ors or, Ora 5T, Cases 1 and 2

hd 3 _ 4 2 — 6-13
EA 70, 0 = Ea (6-13)
Case 3

o

=~ ou

If the uncertain parameter z is the elastic modulus £ then

ory ory, .0z _
%—(t) + 5;(05;(15) =

5?511@), Cases 1 and 2 (6-14)

A EAD )
7 bu(t) = 21 (0)] - —l—b%(t) + %(t), Case 3

The derivative of r4(t) with respect to any parameter is always simply the negative of
the derivative of r;.

0 0 o
The equations for a—zl(th) and ﬁ(tﬂ,l) depend on whether a velocity sign change oc-
T

Oz

curs at time ¢;. If no sign change occurs, that is, if sign[u(¢;) —w4(t;)] = sign[i(t;-1)—

ua(tj-1)]; then z(tj11) = 21(t;) and z5(tj41) = za(t;) so

0z 0z
B—azl(tj“) = E,Cl(tj) (6-15)
0z 0z
a—;(tm) = 5;2(751') (6-16)
921, ) and 224 f initial conditi
52 (to) an £ (to) are zero for zero initial conditions.

However, if sign[t(t;) — @4(¢;)] # sign[ta(¢j—1) — wa(tj—1)] then z1(¢;41) = du(t;) and

z3(tj11) = ra(t;) so:

a—x(tm) = vi(t;) — va(ty) (6-17)
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ﬂlé5u(tj) + ﬂ#[vl(tj) —v4(t;)], Cases 1 and 2

822
Faltn) = 4 Dlsu(ty) — a)]+ ) - ue) (6-13)
EFA 82:1 822
—T%(t]’) + -87(25]'), Case 3

e If the uncertain parameter z is the yield stress f, then

%, Case 1
or ory, 0z _
O+ 050 = ¢ 128 Case 2 (6-19)
EAD 9
—Tél(t)—l—a—?(t), Case 3

If sign[iy (t;) — w4(t;)] = sign[i(¢;-1) — w(t;—1)] then equations 6-15 and 6-16 hold,

otherwise

(921

5;(?%1) = vi(t;) — va(t;) (6-20)
1-— FA
_Xé + /BT[Ul(tj) — v4(t)], Case 1

0z 1— EA

8_11:(tj+1) = ——Aﬁ + ,BT[vl(tj) — v4(t5)], Case 2 (6-21)
EA EAOz 0z
T[Ul(tj) — vy(t;)] — Ta—xl(tj) + 8_5132(tj)’ Case 3

e If the uncertain parameter z is the stiffness ratio 4 then

‘El—A(;u(t) —Af,, Case 1
ory ory, 0z EA
3. Ot 5 M50 = —=ou(t) + Af,, Case 2 (6-22)
EAOz 0z,
——l——‘%(t) -|- %(t), Case 3

If sign[u(t;) — @4(t;)] = sign[i(¢;-1) — @a(tj—1)] then equations 6-15 and 6-16 hold,
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otherwise

0z

55(’5]“) = vi(t;) — va(t;)

0z

gf(tjﬂ)
#5“(’@ —Afy+ ﬁ%é[vl(tj) —va(15)], Case 1 (6-23)
EA EA

7514(’5;‘) + Afy + 57[01(%‘) — v4(t;)], Case 2

EA EAO0z 0z
T[Ul(ta’) — vg(t;)] = Tgxl(tj) + a_;(tj)v Case 3

e If the uncertain parameter z is not a parameter of this element but is an input pa-

. or .
rameter, damping parameter or parameter of another element, then — will be zero

X
or 0z

but ——— may be nonzero. This is a difference between nonlinear, history-dependent

0z Oz

systems and non-history-dependent systems. In this case the equations are

Bl 9 9 0, Cases 1 and 2

() + () (t) =

Oz 0z 'Oz %%(t) N %
[ Oz Oz

(6-24)

(t), Case 3

If sign{y(t;) — wa(t;)] = signfts(tj—1) — wa(t;—1)] then equations 6-15 and 6-16 hold,

otherwise
0z
b)) = valty) — valty) (6:25)
EA
%(t ) B ﬂT[Ul(tj)_W(tj)], Casesla,nd(g%)
9z M EA EAdz 02,

7 il(ty) —valty)) = == 5~ (ti) + 5 ~(15), Case3

Notice how much larger the problem has become for the nonlinear element than for the linear
element.
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6.3.3 Nonlinear rotational spring element

. . or : : :
The components of the tangent stiffness matrix ™ for the nonlinear rotational spring ele-
u

ment are:
K, Case 1
K,;, Case?2
STG t) = g’"“ t) = _%ﬂs_t - _88“2(75) = (6-27)
u u u
¢ 12 12 He 0, Case 3
K(t), Case4
o If the uncertain parameter z is the initial stiffness Ky then
Ore Ore, 0z
E (t) + gz(t)é‘:;(t) =
0, Cases 1 and 3
KoM,
K2 Case 2
- 0z 0z, (6—28)
[u(t) — z1(t)] — Ko——(¢) + ——(¥), Case 4a
) oz Oz
S 821 822
— IX3 aw (t) + %(t), Case 4b
M v _ 821 822
Su(t) — z1(t yc — )K" — K(t)—(t)+ =—(¢
out) = 2(0] (25 (- K57 - KO T2 0+ 20
- ]‘41/C 7 —y—1 823
— [du(t) — z1(t)] Ko ( e ) vyz3(t) %(t), Case 4c

The derivative of r13(¢) with respect to any parameter is always simply the negative of
the derivative of rg.

0 0 o
The equations for —Zl(tjﬂ) and —Q(tﬂ_l) depend on whether a velocity sign change oc-

oz Oz

curs at time ¢;. If no sign change occurs, that is, if sign[we(t;) —12(¢;)] = sign[te(t;—1)—
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U12(tj—1)], then z1(tj11) = z1(¢;) and 2za(t;41) = 22(¢;) so

0z 0z
B 1) = (1) (6-29)
0z 0z
7 ) = 5o (1) (6-30)
9 9
%(to) and a—?(to) are zero for zero initial conditions.

However, if sign[ig(t;) — @12(¢;)] # sign[te(tj—1) — t12(¢j—1)] then z1(¢;41) = du(t;) and
z2(tj+1) = re(t;) so:

82’1

%(tﬂl) = ve(t;) — v12(¢) (6-31)
Kifve(t;) — via(t5)], Case 1
KoM,
X2K2y + Ka[ve(t;) — v1a(t;)], Case 2
0
0, Case 3
[0u(t;) — z1(t;)] + Kolvs(t;) — v12(¢;)]
, 0 s,
- 1‘0‘(‘9%(’51') + a—?(tj), Case 4a
822 (t ) 1{3[v6(tj) - 1)12(tj)] (6 32)
8_.17 AR - 82 az -
- [{3_8;1(751') + a—;(tj), Case 4b

butey) )] ( 5) (1= K5
+ K (t;)[ve(t;) — vi2(t;)]
~ K(t) g 1) + 22 ()

—mm—mmm(%§”

Ky

yzs(t) T = (1), Case 4c



The equation for —3(t]~+1) depends on whether a maximum closing displacement is
T

reached at time ¢;. If ug(t;) — u12(t;) < 23(¢;) then z3(¢;41) = 23(¢;) so

0z 0z
5 (tin) = (1) (6-33)
However, if ug(t;) — u12(t;) > 23(t;) then z3(¢;+1) = ue(t;) — ui2(t;) so
0
T (ti1) = volty) — via(t;) (6-34)
e If the uncertain parameter z is the closing yield moment M,. then
87’6 87‘6 82 .
5z Wt 55 (5 (1) =
1, Cases 1 and 3
0, Case 2
, 321 822 (6—35)
Ko 05, —(t)+ 8x(t) Case 4a
- 821 822
— K3 55 ()+8x(t) Case 4b
. 0z 0z
ult) = =1(8)] K3 2a() Myt — () 9k 0) + S2(1)
Myc 7 823
— [u(t) — z1(¢)] Ko ( e ) yz3(t) ™" 5 —(t), Case 4c

If signfue(t;) — G12(t;)] = sign[te(tj—1) — u12(t;—1)] then equations 6-29 and 6-30 hold,

otherwise

821

8—x(tj+1) = ve(t;) — v12(t;) (6-36)
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1+ Kifve(t;) — vi2(t)], Case 1

KQ[’UG(t]') - ’Ulz(t]’)], Case 2
1, Case 3
- .0 0
Kolvs(t;) — vis(t;)] — Ko a"’l( )+ 8'12 (t;), Case 4a
. , 0 3}
9z Bsloo(t5) = via(t;)] = Kam(t;) + 5= (1), Case 4b
% ty41) = : (6-37)
[6ulty) — 21(t;)] Ko za(ty) Ty My,
+ K (t5)[ve(t5) — via(t;)]
K 821 622
~ [Bu(ts) — =1 ()] Ko ( z)’
0
- yza(t ~)_7‘1%(t ) Case 4c
J ax e
Oz3
Equations 6-33 and 6-34 for 3—( j+1) apply.
e If the uncertain parameter z is not a parameter of this element then
67'6 87‘6 82
ROk 8_z(t)8_a:(t) =
0, Cases 1, 2, 3
0 0
— K, ;1( ) + a—ZQ(t), Case 4a
v ‘” (6-38)
. 0z 022
— K3 55, ()+8$(t) Case 4b
- 821 822
—K ()5~ (0) + 5-(1)
M, \" 0
— [du(t) — z1(t)] Ko ( X, ) 723(15)_”"18—23@), Case 4c

If sign[ue(t;) — t12(t;)] = sign[ue(tj—1) — w12(¢j—1)] then equations 6-29 and 6-30 hold,
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otherwise

921

5, (Li+1) = ve(ti) — via(ts) (6-39)
Ki[ve(t;) — via(t;)], Case 1
Ks[ve(t;) — vi1a(t;)], Case 2
0, Case 3
; 0z 0z
, Kolvs(t;) — v1a(t;)] — AOB_;(tj) + a_;(t]‘), Case 4a
%2 , .0z 0z
%—(tﬂ'l) =\ Kslvs(t;) — via(t;)] — I\’sa—;(t]’) + a—;(tj), Case 4b (6-40)
K(t;)[ve(t;) — via(t;)]
., 0z 0z
KR ) + 22 )
M, \"
- foutey) - (6] Ko ()
0
-723(tj)‘7'1%(tj), Case 4c

Equations 6-33 and 6-34 for %ﬁ(tﬂl) apply.
x

6.4 Calculation procedure

Figures 6-8 and 6-9 outline the algorithms in SABER-2D and SABER-3D. The differences
between the two are not due to the difference in dimension, but to the multiple support
excitations in the 3D version. The flowcharts show the equations used at a typical time step
t;. The flowcharts are based on equations developed in Section 3 and are included here for
convenience.

It can be seen from the flowcharts that the element subroutines are called at various stages

or Or 0roz 0z

—, — + —— and —. Th

) _ _ “ 9w 9z 9z0z 9z 0
are calculated using the equations presented in Sections 6.2 and 6.3 and the procedure of
figure 3-2.

to calculate the restoring force r and the derivatives
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Y

First iteration: £ =1

\

_Or _ 0% 1
k(t;) = 51;(%) + ﬁAtc+ ™

AR = af()+ | gigme+ Je| e+ [ym + a0 (35 - 1) e ey

Call subroutine to calculate » (u(l))

|

FIGURE 6-8 Flowchart of calculations at a typical time step t; for SABER-2D

80



FIGURE 6-8 (Continued)

l

Calculate unbalanced force

AR = ARW — [ (u®) — r (u-1)] - [fc(t].) - Qﬁ(tj)} Au®)
u

Check unbalanced force AR**Y) against tolerance

N

Tolerance not satisfied. Tolerance satisfied.
Iteration required: k =k + 1 Solution for u(t;4;) found.

Au®) = [ic(t]-)] ~AR®

|

w®) = 1) 1 Ag(®)

|

Call subroutine to calculate = (u(k))
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FIGURE 6-8 (Continued)

l

u(tjy) = ul®
Au(t;) = u(tjzi) —u(t))
w(tjpr) = u(t;) + ﬁZ_tA"(tj) - %i&(tj) + At (1 - 5%) u(l;)
lL10) = 1) + G Au(L) — i) - i)

|

Call subroutine to calculate g—:;(tj_,_l) and g—;(th)
- or
¢(tjpr) =c+ 5 it
or 1

b(t;) = G (t) + 5 etin) + grmm
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FIGURE 6-8 (Continued)

Y

First uncertain parameter: i = 1

A

Call subroutine to calculate g:: (tj+1) and g: (t“'l)aa; (tit1)

~ 0 Jc . or or 0z
Filtin) = 8—3{(75]'“) - '%u(tjﬂ) - %(tﬂl) Ep (t”l)[)x (tjt1)

1 ’7
i (T
ﬁAtm+ ﬁc(tj+1) ()
1 v . .
i=i41 Tlagpm A (% - 1) c(tj+l)] o)
Loop
through all J
uncertain N 1 A
parameters Awv;(t;) = {k(t])] A}i(tj)

vi(tj41) = vi(t;) + Av(t;)
Biltin) = 0lt) + 5 Awitt) = Zode) + A (1= L) o)
Billinn) = Bils) + oAt — ga7oits) - 5760)

l 0z 0z

Call subroutines to update z, — e
8.’171 6562

|

Move on to next time step: 7 =7 +1
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\

First iteration: £ =1

y o, 1

(1) = ep i) + | gicms + T 1)

[21[3mf+At< 23 1) Cf] ug(l;)

|

k(1

3
Af(t;) = (

ARYM = Af(t;)
wf) = uy(t))

|

aulp) = [k(ty)| " AR

|

ug,l) =uy(t;) + Aug,l)

|

Call subroutine to calculate 7/ (uip)

|

FIGURE 6-9 Flowchart of calculations at a typical time step ¢; for SABER-3D
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FIGURE 6-9 (Continued)

l

Calcugate unbalanced force
r r
%(tj)i\u(fl) + an(tj)Aus(tj) - ["f (u(f”) — 7y <"§r0))]

AR — g—g(tj)Au(fk) - [rf (ug,k)) —ry (ug,k_l))}, k=23,4,...

AR® =

Check unbalanced force AR**+Y) against tolerance

N

Tolerance not satisfied. Tolerance satisfied.
Iteration required: k =k +1  Solution for wus(¢;;1) found.

|

Auf = [k(t;)] " AR®

Call subroutine to calculate r I <u§¢k))
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FIGURE 6-9 (Continued)

J
(%)

ug(tjt1) = uy
Aug(t;) = ws(tirn) — ws(ly)

- %uf(tj) + At (1 - 1—) uy(t))

|

Call subroutine to calculate —a(?’;—};(tﬂl) and ‘g_:;‘;‘(tj_*_l)
a’l'f

k(t;) = E')—u—f(t”l) + BlAE&(tj“) + Wit_)?mf
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FIGURE 6-9 (Continued)

First uncertain parameter: ¢ = 1

or or 0z
Call subroutine to calculate 8xf(t]+1) and azf(t]+l)8:c (tj+1)

~ dc Jdec SJ_ or .
Filtin) = *533—? (t;) — aai us(t;) — [Cfs+ a,ui(tj)] V()

1
T %é(tm) vy,i(t;)
1=1+1
ot [ ggms At (5 1) et 1ty

through all

uncertain J

parameters A -1
Avy(t) = [k(t)]  AFi(ty)

'Ufi(tj+1) = vy,(t;) + Avyilt;)

——Awvy,(t;) — /vil( j) + At (1 - 27;) y,i(t5)

Vyilti) = vpalty) + 3 At
. . 1 1 .
Vyi(tje1) = vpi(ty) + BIAL? T Avsa(ts) — @vf,i(t i) — Qﬂ"’fz(t i)

Jdz 0z

Call subroutines to update z, ——
all subroutines o up € 8x1 8:172

Move on to next time step: 7 =7+ 1
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6.5 Example

A simple example will be used to illustrate the use of SABER. As the entire program is new,
the example is intended to illustrate all of the capabilities of the program so each step of the
analysis will be shown: input of the structural model data, input of the dynamic analysis
data such as the time step size, and calculation of the sensitivity factors. The example
selected is a steel portal frame mounted on the shake table at the University at Buffalo
(figure 6-10). The frame has been tested both bare and with dampers installed. A fair
selection of experimental time history data is thus available and can be used to calibrate the
models of the frame. The use of SABER-2D will be demonstrated by modeling a 1997 test
subjecting the bare frame to the El Centro ground motion [14]. The SABER-3D program is
very similar to SABER-2D; the major difference being the extra dimension available for the
coordinates.

The displacement of the frame during the tests was small enough that linear behavior can
be assumed. Linear beam elements are thus used to model the frame. Rotational spring
elements are used to model the connection between the baseplate and the shake table, and
the loosely attached concrete slab at the top is represented by a beam element with a low
bending stiffness and a high axial stiffness (figure 6-11).

The geometric and material properties of the steel beam elements can be fairly accurately
determined. However, the damping and the rotational stiffness of the connection between
the baseplate and the shake table are more difficult to determine so we will consider them to
be uncertain. To start, we will use estimated values for these parameters. For the rotational
stiffness we select a value that makes the fundamental frequency of the frame the same as that
observed in the experiments. This is the same approach that was followed at the University
at Buffalo when modeling the frame using the ANSYS finite element program [14]. The
damping used by SABER is Rayleigh damping and we will calculate the damping parameters
to give damping ratios of 3.7% in the first two of the fourteen modes of the structure. This
value of damping was found experimentally for the first mode.

To start the program, open MATLAB and type “saber” on the command line. This will open
the graphical user interface, consisting of a main menu containing the commands required to
run the program, and several graphics windows. One graphics window containing a plot of
the structure is always open, and others will be opened as necessary to plot displacements,
sensitivity factors or other results. The default MATLAB figure menu has deliberately been
left on the graphics windows. Each figure’s menu can be used to save the figure, zoom in
or out, or manipulate the figure in other ways. The MATLAB command window will also
remain open, but need not be used at all during the running of the program.

The main menu items are:

e File: save the structure or open an existing structure data file.
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FIGURE 6-11 Buffalo test frame model

e Edit structure: input data or edit existing structure data.

e Sensitivity analysis: perform a dynamic analysis to calculate displacement and sen-
sitivity factors.

e Tools: contains various tools or “wizards” to guide the user through using sensitivity
factors for calibration, fragility curve generation, etc.

To enter the model data, we proceed through the “Edit structure” menu as follows:

e Coordinates: We call up the coordinate box and enter the values (figure 6-12).

e Elements: Call up the element box. Elements can be entered either by clicking on the
nodes or by entering the node numbers in the element box. The element properties
are contained in property sets, so three different sets will be required: one for the
columns, one for the beam and one to model the concrete slab. We will use property
sets 2, 3 and 4 for these beam elements, and property set 1 for the rotational spring
elements. The element types and property set numbers are entered in the element data

box (figure 6-13).

o Properties: Set 2 is used for the columns, and we enter the data in the property set
box as shown in figure 6-14. Set 3 is used for the beam, so it is almost the same as set
2. The program indicates the data required by different element types.

A property set cannot be used for more than one element type. For example, in
this model property set 2 is used for one group of linear beam elements, and set 3
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FIGURE 6-14 Property set data

for another group of less stiff linear beam elements. The program will give an error
message if the user attempts to use property sets 2 or 3 for a different type of element
such as a nonlinear beam element. The graphical user interface guides the user through
correctly submitting the property set data.

Supports: The rotational springs are fixed to the base, so nodes 1 and 5 are fixed in
all degrees of freedom. Although not strictly necessary, the second nodes of the two
rotational springs, nodes 2 and 6, can also be fixed against translation. Degrees of
freedom are fixed by clicking on the appropriate boxes in the supports box (figure 6-
15). Supports are indicated on the structure plot as red arrows in the direction of
fixity.

Nodal masses: Lumped nodal masses are entered on the masses box (figure 6-16). The
non-zero masses appear on the structure plot as green asterisks.

Damping: We calculate Rayleigh damping parameters a and b to give a damping ratio
of 3.7% in the first two modes and enter the data accordingly (figure 6-17).

The model data is now complete and the structure is shown in the structure window (figure 6-
18). We are now ready to proceed to a dynamic analysis to calculate the displacement and
sensitivity factors for the nominal structure under the given ground motion. The necessary
commands are found in the “Sensitivity analysis” menu item. First the uncertain parameters
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FIGURE 6-17 Damping data

for which sensitivity factors are to be calculated are entered (figure 6-19). The rotational
stiffness of the springs and the damping are uncertain, so we wish to calculate sensitivity
factors for these parameters. Next the data file containing the acceleration time history of
the shake table is selected. Finally the time step size to be used for analysis and the number
of steps to be analyzed are entered and the analysis started (figure 6-20).

The displacements and sensitivity factors can be plotted when the analysis is complete. The
x-direction displacement of node 3 gives the lateral drift of the frame and is an important
degree of freedom of the structure. The displacement plot for this degree of freedom is
shown in figure 6-21, and the sensitivity of the displacement to the rotational stiffness of the
base spring is plotted in figure 6-22. To check the accuracy of SABER, a finite difference
approximation of the sensitivity factor is also shown on figure 6-22. Differences between the
two are shown on the same axes in figure 6-23. There is good agreement between the two
curves. As the size of the finite difference is reduced further, the errors are reduced and the
two curves become identical as shown in the part of the plot enlarged in figure 6-24. For a
finite difference size of 1000 or less, the two sensitivity factor curves are indistinguishable.
This confirms the accuracy of the sensitivity factors calculated by SABER. Further details of
the use of these sensitivity factors for calibration and optimization will be found in Section 9.
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# System

FIGURE 6-25 Piping system in SABER-3D

The use of the SABER-3D program is very similar to use of the SABER-2D program. Ob-
viously, additional coordinates must be specified for the nodes and supports. The support
excitations are specified in a text file, with one column for each excitation time history. The
support conditions are then given by then either specifying the support as stationary, or
specifying the column number corresponding to the support acceleration time history. An
example of a piping system model in SABER-3D is shown in figure 6-25.
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SECTION 7
DIANA IMPLEMENTATION

7.1 Introduction

DIANA (Displacement Analyzer) is a comprehensive finite element package developed at
TNO Building and Construction Research in the Netherlands. A wide range of element
types and material models is available for structural, geotechnical, and fluid flow analysis.
DIANA is particularly well suited for structural analysis of reinforced concrete structures. It
allows reinforcing bars to be defined inside the finite elements, and features good constitutive
models for concrete; for example, the smeared cracking model. Pre- and post-processing can

be done using the graphical user interfaces of FEMGEN and FEMVIEW [36], or using
DIANA itself.

In addition to powerful finite element analysis capabilities, DIANA provides an environment
in which the FORTRAN source code of the program can be modified to develop new features.
The program is divided into several segments. The user can modify one segment and create a
new, private version which can then be used with the other original segments. The advantages
of this approach are that it is not necessary to recompile the whole program each time, and
that other users can continue to use the original version of the segment. Each segment reads
and writes data to a central data storage system known as the FILOS (File Organization
System) file. The user can also store additional data on the FILOS file as required.

To implement sensitivity analysis in DIANA, many new subroutines had to be written for
segments that form part of the linear static analysis (1s40) and nonlinear analysis (n140)
applications. The sensitivity analysis was implemented for the plasticity models used in
analysis of realistic structures. It was also necessary to implement equations for sensitivity
analysis for each element type that may be used and this was done for beam, plane stress,
plane strain, shell and solid elements. Damping in DIANA is specified using the Rayleigh
damping approach, and equations for calculating the sensitivity with respect to the damping
parameters were also implemented.

The material models considered are described in Section 7.2 and equations for the sensitivity
analysis are derived in Section 7.3. Section 7.4 describes the new subroutines added to
DIANA and some special treatment required for certain elements. An example of the use of
the program for sensitivity analysis is given in Section 7.5.

7.2 Material models

This section contains details of the material models in DIANA for which sensitivity analy-
sis has been implemented. Recall from Section 3 that the material model determines the
restoring force r as a function of displacement u, velocity w, history-dependent variables z
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and uncertain parameters . The function r(u, %, z,®) appears along with its derivatives
in the governing equations for the displacement w and sensitivity factor v (equations 3-13
and 3-19).

In general for DIANA and other finite element packages, the global restoring force r is given
by [15]

r= Z C; /Q Boi(u,u,z,x)dQ (7-1)

where the summation 7 is over all elements of the structure; 2; is the volume of element ¢; C;
converts from local to global coordinates; B; depends on the geometry and shape function
formulation of element i; and o;(u, w, 2, @) is the stress in element 7. The integration over
the element volume is typically done numerically by considering a partition of the element,
with part j of element ¢ having volume (Avol);;. Each part has a representative integration
point with o;; being the stress at the integration point in part j. The restoring force is then

r = ZC,-Zwi]-BijO',-j(u,'d,z,m)(Avol)ij (7—2)

4 J

where w;; is a weighting factor depending on the element formulation and the integration
method used.

In equation 7-2, the stresses o;; depend on the material model and must be evaluated at
every step, while the other quantities depend only on the model geometry and the element
formulation and remain constant throughout the analysis. The stresses are converted to
forces r simply by multiplying by the relevant constants. The material models in the follow-
ing sections are thus formulated in terms of stress o rather than force r.

To simplify the notation as much as possible, subscripts will be used for the time index. Two
general adjacent time steps will written as ¢ and t 4+ At for consistency with existing DIANA
documentation.

The names of the material model parameters will be written as five or six letter words as this

is how they must be entered in the DIANA input data file. For example, Young’s modulus,
commonly denoted by F, will be written as YOUNG.

7.2.1 Plasticity

Plasticity is a common nonlinear material model. In the existing DIANA plasticity formula-
tion, the strain at an integration point is decomposed into an elastic part and an irreversible

104



or plastic part:
e=ef ¢ (7-3)

where € is the total strain; e the elastic strain; and ef the plastic strain. The history
dependence is taken into account by introducing an internal parameter x which evolves with
time according to a specified law. In a uniaxial stress situation x is the plastic strain, but
for more complex stress situations it does not have such a simple physical interpretation.

The general elastoplastic behavior is governed by the following assumptions:

o The elastic stress—strain relationship, which specifies the relationship between total
stress and elastic strain:

g = DEE (7_4)

where D is the elastic stress-strain matrix.

o The yield function f(o,k). If the value of the yield function is less than zero the
stress state is elastic, while if it is equal to zero o is on the yield surface and plastic
flow occurs. The value of the yield function cannot exceed zero for rate-independent
plasticity.

o The flow rule, which specifies the plastic strain rate as a function of the stress state

cp_ 39900,k (7-5)
o
where g (o, k) is the plastic potential function.
o The hardening hypothesis which specifies the evolution of «.
Ok
— =h 7-
o (7-6)

The above assumptions define the basic plasticity model. Different types of plasticity models
such as von Mises and Tresca correspond to different f, g, and h functions.

The basic plasticity model above is implemented in DIANA in a form suitable for solution
at discrete time steps. By applying the Euler backward algorithm [61], a set of equations
governing the solution at two adjacent time steps is obtained. This set of equations must
always be satisfied and is used by DIANA for plastic structural analysis.
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If o441 a¢ is on the yield surface, the equations are

Ouar =D [€t+At - €f+At] (7-7)
9g (o, k)
eP = EP —|— A)\ [ . (7_8)
t+ At t 80, t4 At
Kirat = K¢ + AMNh (7—9)
flowat kerar) =0 (7-10)

If 041+ is not on the yield surface, then the following equations are satisfied:

ot =D [€t+At - eﬁ.At] (7-11)
Eﬂ.At = ef (7—12)
Ki+at = Kt (7-13)

The value of o:1a; obtained from equation 7-7 or 7-11 is then used in equation 7-2 to
calculate the global restoring force 7.

7.2.1.1 von Mises

The von Mises material model considered has four parameters: elastic modulus YOUNG, Pois-
son’s ratio POISON, yield stress YLDVAL and plastic modulus YOUNPL. The functions defining
the model are

flo,k)=g(o,k)=+/10TP,,0 —7(kK) (7-14)

h=1 (7-15)
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where & (-) is the uniaxial stress versus uniaxial plastic strain relationship derived from the
uniaxial stress versus total strain relationship for the material (figure 7-1). P,,, is termed
the projection matrix and is given by

2 —1 100 0

1 2 —100 0

1 -1 2 000
Fm=1"09 09 0 600 (7-16)

0 0 0 060

0 0 0 00 6|

Based on this, the four governing equations for o:ya; on the yield surface, analogous to
equations 7-7-7-10, are

Oiint = Dlegae _sil-At] (7-17)
P, o
P P vm U t+ At
€ =€, + A/\—‘_— 7‘18
t-l-At t 20_ (K:t_'_At) ( )
Ki4+At = Kt + AN (7‘19)
\/% o"tT+AtP”m TN (Kt+At) =0 (7_20)

For sensitivity analysis, only the simple uniaxial stress versus plastic strain relationship
shown in figure 7-2 was considered. The equation is

& (k) = YLDVAL + & - YOUNPL (7-21)

7.2.1.2 Rankine/von Mises

The Rankine/von Mises model is a multi-yield surface plasticity model intended for brittle
materials such as concrete [20]. It consists of a maximum principal stress or Rankine yield
criterion in tension, along with the von Mises criterion in compression (figure 7-3). The
model is formulated in DIANA for two-dimensional stress states so can only be used for
plane stress, plane strain and axisymmetric elements. For plane strain and axisymmetric
elements the Rankine criterion applies in the out-of-plane direction as well.
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The sensitivity equations were also implemented for the pure Rankine plasticity model, which
can be considered to be a special case of the Rankine/von Mises model in which the von
Mises yield surface is never reached.

The Rankine/von Mises model considered is defined by six parameters: elastic modulus
YOUNG, Poisson’s ratio POISON, tensile yield stress YLDVAL, compressive yield stress YLDCMP,
fracture energy HARVAL and plastic modulus CMPVAL.

As there are three yield criteria, there are three internal variables: (1), () and x®). The
defining functions are

Y (o, m(l)) =g (o, I‘E(l)) =/to"P.o +imwrg- ) (I{(l)) (7-22)

D (0,6 = ¢@ (0,5 = /ToT P — 5 (x) (7-23)

£ (0,60 = g0 (o, 5®) = 7@ — 50 (5O)) (7-24)

A = p® = p® =1 (7-25)

Equation 7-24 applies to plane strain and axisymmetric elements only.
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In the above, () (fi(i)), 1 =1,2,3,... are the uniaxial stress versus uniaxial plastic strain
relationships (figure 7-1). P,, is the von Mises projection matrix of equation 7-16. The

Rankine projection matrix P. is given by

N.L vl

N
S OO O OO
O O N O OO
OO OO OO
OO OO OO

OO OO
O OO Ove

and the projection vectors by

1
1
2 = 8
0
O Y,
0 A
0
1
P ) - 0 \
0
O /

(7-26)

(7-27)

(7-28)

With three yield surfaces, each of which may be either active or inactive, eight different
cases are possible. However, the governing equations analogous to equations 7-7-7-13 can

be summarized as follows for all eight cases

ount =D [€t+At - €f+At]

F, O At

\/2Gf+AtRGt+At

F,. Oi1 At
\/20-?+At -Pv'rn Ot At

ef_l_At = ef-l—A)\(l) +La()

+AND + ANC B
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FIGURE 7-4 Uniaxial stress versus plastic strain relationship for Rankine

Ra = mD) AN, =123 (7-31)

AXD = 0 if yield surface f®) is not active, 1=1,2,3 (7-32)

V30T P O n +4070 yy e 5V (,@glgm) — 0 if yield surface fO) is active  (7-33)

VAOT 0 Pon O pa — @ <&£?At> = 0 if yield surface f? is active (7-34)
7o n — 5O (Rﬁ)m) = 0 if yield surface f® is active (7-35)

For the sensitivity analysis, the simple uniaxial stress versus plastic strain relationships shown
in figures 7-4 and 7-5 were considered. The relationship for the Rankine yield criterion is
based on linear softening where HARVAL is the fracture energy, usually written Gy, and h is
the “crack bandwidth”. DIANA assumes a value for h related to the square root of the area
of the element. The relationship for the von Mises yield criterion is linear hardening as in
the previous section. It will be assumed that CMPVAL is nonzero.

The equations are

h(YLDVAL)® (1)

& (kM) = YLDVAL — ——— 1
2(HARVAL)

(7-36)
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FIGURE 7-5 Uniaxial stress versus plastic strain relationship for von Mises

& (k) = YLDCMP + CMPVAL - 5 (7-37)

h(YLDVAL)? )

7® (k®) = YLDVAL —
7 (=) 2(HARVAL)

(7-38)

7.3 Sensitivity analysis for material models

: : . L : : .. Or
This section contains derivation of the equations used for calculating the quantities —

Tuu,z
or 0z z e . -
—— and —— needed to solve for the sensitivity factors for all of the material models in

0z Oz Oz
section 7.2. The tangent stiffness g_'r is already calculated and used by DIANA so it will
u

not be covered here.

As in equation 7-2, 7 is given by
r = Z Ci Z wijBijaij(u, ’l'l,7 z, ZB)(AVOI)Z‘]' (7—39)
d J

It should be noted that w;;, C;, B;; and the volume are independent of  and z. This means
that

B_T
Oz

80,,» 8_z
0z Oz

(Avol);; (7-40)

8r Bz do;;
C; i
e oS oSy |
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Or + — Or 0z by first finding 0o ?ga_z and then
85’7uuz 0z Oz oz w2 6z8:v

multiplying it by the necessary constants. This approach will be followed in the following
sections.

It is thus possible to find —

7.3.1 Plasticity

Equations 7-7-7-13 can be used to derive equations for the quantities needed to solve for the

sensitivity factor. Differentiating equations 7-7-7-10 with respect to the uncertain parameter
T

00iin oD den, Oefl
D)ot O

defin,  Oef +3A/\ e [6‘9(0’,/@)}
t+At

Oz Oz Jz oo
LA [829(0,/@) 'aatw
0o? LAl Oz
829 (0'» ’i) 0 Kiyar
Al [W] BE
0 dg(o,k)
| } 2
aK/H—At _ a/’it 8A)\ ah
% = e + 52 h+ A)\% (7-43)

8f(U,K)] aO'H_At l:af(o’,lﬂ)jl 3&t+m I:af((f,li):l
=/ . 1 . + =0 (7-44)
[ 0o |,ias Oz Ok rne O Oz AL

The above equations contain derivatives with respect to vector quantities, which need to be
defined for clarity. If

a1
g2

o= 03 (7-45)
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then the derivatives are defined as

)

99 (o, k)
80'1
99 (o, k)
80'2
dg (o, k) dg (o, k)
do Oos

(7-46)

dg (o, k)
do, J

&g (a,k) g(o,k)  g(o,x) |
8012 60'180'2 80180n
0%g(o,k) 0%g(o,k) B 2*g (o, k)

8290(:27 K) _ doy00, do? . doy00s, (7-47)

9%g (o, k) 9’g (oK)
0o, 00, Jo?

n .

)

9%g (o, )
00,0k
9%g (o, k)

9 80’28/‘5
Pglo,x) | 9% (o,k)

= 7-48
0o 0k D30k ( )

9°g (o, k)
00,0k ]

2 2
In equations 7-41-7-44, aD, 09(a,x) : 9g(o,x) ’ d%g(o,k) ,
Oz 00 liia 00 Jipac 0o 0k | iyar

+
[ 9 ag<a,,g>] dh laf(a,n)] [8f (M)} and [M] depend on
dz 0o |, .., Oz’ do  |iar t+At Oz t+AL

Ok

the plasticity model used and the uncertain parameter and can be determined relatively sim-

6 (o
. +At
ply once o4 a; and Ky1a¢ are known. There are then 2n + 2 remaining unknowns:

oz ’
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8eﬁ_m, 0 AN and a:"’it+At
Jz Oz

unknowns can be uniquely determined.

. Equations 7-41-7-44 form a set of 2n + 2 linear equations so the

The two quantities that are needed to solve for the sensitivity factors are

0 or 0 0

il + TTIZ and —z; or equivalently, as explained in the introduction to Section 7.3,
0|44y, 0z0z Oz

do do 0z 0z

— —— and —. As explained in Section 3, the first of these two quantities is
0 |4y 4., 0z 0z Ox

the partial derivative of o with respect to  with displacement u held fixed, and the second
is the derivative of the vector of history-dependent variables. Holding the displacement fixed

means that the strain e is also fixed, so the required partial derivative can be found by (1)

rearranging equations 7-41-7-44 to find a solution for 99 and (2) setting %= to zero. This
x

will be done in the following sections for the plasticity models of Section 7.2.1.

. : : : . def 0
The resulting equation will be in terms of the known quantities and L and aﬁt, the
x

x
derivatives of the history-dependent variables. Equations for calculating these derivatives
are also required, and can be derived from equations 7-41-7-44. As in the flowchart of
aeﬂ_m and BKH_At

oz Oz

in the equation for 97 at the following time step. The values used at the first step will

will be calculated at the end of each time step and then used

figure 3-1,

T
depend on the initial conditions.

If o744 A+ 13 not on the yield surface, the equations become simpler. Differentiating equations 7-
11-7-13 with respect to z

0on; 0D Oein; Oef
at;- t — aa: [et+At — Efi—At] + .D |: at;:— t _ a’t;At (7‘49)

P P
N _ Oe

9z~ oa (7-50)

8/<3t+At . a’ft
oz Oz (7-51)
0 €pt 30'3_z

, o
to zero in equation 7-49 gives the equation for —

ox oz Wiz + 0z Oz

P
Oeipar and 0 Kera

In this case, setting

directly and equations 7-50 and 7-51 give without any further manipu-

x x
lation. Then solution for this case is straightforward and need not be examined in any more
detail for the different plasticity models.
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7.3.1.1 von Mises

Differentiating equations 7-17-7-20 with respect to a general

do A oD de A OeP
il mE Y R P P
865{-At . 8ef 4 0 AN I)vm T At
8:[ B (?.T 8.’13 20 (’{t-I-At)
T AM P, ) 0oiiat

20 (KZH_At) a.’L’
3 F,, on: [85] 0 Kiyat
_ P UIA L e L At
2[0 (Ktyar)] Ok O
P, O At ) 0o (l‘ft+At)
2[0 (Kerar)) Oz

8"(‘7t+At o a/{t + (?A/\
oz Oz Ox

=0

o/ niPom . 00yt B [@] _ 0 Kirat B 00 (Ketat)
\/2 aampvm Oirar Oz Ok 4 as oz Oz

Substituting equation 7-20 into equation 7-55 and rearranging

T _ _
OiinPom 00 o) 0 Kyt 4 07 (Ktat)

20 (Kipar) Oz - [_3—1-@] ear Oz Oz

Pre-multiplying equation 7-53 by 0';":'_ At

P T
ol . Ieppnr _ oI . 0ef  0AN inBPom orpa
AL 8.’17 t+at 81} 8$ 20 (KZH.At)
T
o P 6 T4 At
+ AN t+At” vm +

20 (Kt-l-At) 8."1:

T _
o't+Athm O At |:80':| ) 0 Ri+ At
t+At

2 [5' (K,t_l_At)]z % afl:
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(7-52)

(7-53)

(7-54)

(7-55)

(7-56)



a-?.f_AtR/m O 1At . 0o (’%-}-At)
2[o ('ft+At)]2 Iz
oef AN
= a'?+At ’ a—; oz 0 (Kitat)
8(—7 a:“&t.'_At 65' (Ht-}-At)
el
Ok LA Oz Oz
— A) [@} ) 0 Kitar
Ok 1AL Oz
_ A/\86 (gH—At)
X

deP  9AN
0'?+At : F;‘ + e -0 (Ketae)

therefore

OAN _ ofia [0efia, Oef
Oz 7 (kupar) | Oz oz

Substituting 7-54 and 7-58 into 7-53

aeﬁAt _ aef
Oz Oz
o'tT+At [8eﬁm _ 88{3] FP,, oiin:
o (K't-i-At) 6.’17 833 25' (’it+At)
P,, 80’t+At
+ Al— .
20 (Keyat) ox

(7-57)

(7-58)

P
Je,

2 [5' (Kt-i-At)]z 5/; aﬁc o (/ﬁ:t.i.At) 8.’17
P, oin: ' 00 (Keyat)

2[5 (Keyae)] Oz

oef
Oz

Pim 014a ”;‘F+At ) [Beﬁrm _ aef}

2 [5’ (K/t+At)]2 oz 0z
P, ao’t+At

AN .

LY
P, oy Ha&] Oky 0o (f‘ét+At)]

)\_—2 = +
2 [O' (I‘it_*_At)] 8/@' t+AL a:I} 81/'
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3 Pim 011 a _[85] _[a’it_i_ olia <a€£|-At _
t+At

Oz

)



_ apy B ra "tTgAt . [3_5'] . [a efiar 355} (7-59)
2[6 (Kepar)] Ok t+At Oz Oz
Rearranging equation 7-59
[I_ -Pvm o-t'f‘Ato-t-l—At (1_ A)\ [80':| ):| asﬁ_m
2[5' (/‘JH_A,{)]Q 5- ’Qt+At) aK/ t+ At 81’
S ool Gl L W
B 2[0’ ’iH—At K?H.At 8& N 8:1:
P, 8Ut+At
+ Ad— .
2¢ (’Qt+At) 83:
_ AN -F?m 0't+At2 Ha—&] 0 Ky n 0o (f‘it+At)] (7-60)
2[5 (kerar)]” LLOR] pa, O Oz
where I is the identity matrix. From equation 7-60
deline Ol
Oz Oz
Pvm Ot At a-zjl-At AN 85 -
+ I — — 5 1—— =
2 [0' (K/t+At)] g (Kt+At) Ok t+At
P, aUt+At
AN .
{ 20 (K/'H‘At) 332
_ AN -P_’Um 0't+At2 Ha_&] 0 Ky n do (KJH-At)jI } (7-61)
2(6 (Kerar))” LLOK] pn, O Oz
Substitute 7-61 into 7-52
oo oD
7 Y
8 Etr At a sf
D { dr Oz
Tt ) )
2[5 (ki) o (keyar) LOR]
F,, 0 O At
AN )
[ 20 (K/t+At) 3:6
_ A P_vm C"t+At2 ([8_5_] ) 0 Ky + do (’W+At)):l } (7—62)
2[0 (Kirar)] 0k]iin; Oz 0z
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Rearranging equation 7-62

_ -1
I—l—D[I——PvmaHAtU?EAt (l—— _ AN ) [?ﬂ} )} _A/\-Pvm ao’t+At
2[0 (Kerat)] 0 (kirat) |0k t+At 20 (Ketat) Oz

oD
= 5:(:- [et+At - Eﬁ_m]
P
ep{T -5 s
By )
2[5 (Kepar)]? 0 (kerat) LOK] g
P, oiia: _82 0k 00 (Kiyat)
2[5("5t+At)]2 k] pae O Oz

therefore

-1
00 nt [ P, oiin: 0?+At < AN [35] >]
= <I+D|I—- ] — —m—— | —
Dz { * 215 (rerar)]’ 5 (kesar) L08] a0,

-1
AMNP,,, oD
___)} . {% [€t+Ai - ef:—At]

20 (Kitat

8et+At 8€f

+D{ dr Oz
-Pum at+At o.;r+At A)\ 35 -
+ | I - - 5 1l —m— | =—
2[0 (kesrat)] 0 (Kerar) LOK ] qa
p Pim gtz Ha_a] L (gt+m)] } } (764
2[0 (kevat)] Ik t+At Oz z
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. Oe : . . . .
Setting ~—§ﬁ to zero on the right hand side of equation 7-64 results in an equation for the
T

quantity required

80’t+At
8IE uw,u,z 8zt+At 3&:

I + D [I _ -Pvm O 1At O-ZEAt (1 — - AN [@} )] ! _A/\Pum
2 [5’ (KZH—At)] ag (I'CH_At) 3/{ AL 20 (KH—At)
oD def
' {5; [eesar — Efwt] + D { - 8:; (7-65)

a8 )
20 (Kirar)] 0 (Ktyar) [0k AL

B, oin: Haff} 0 Ky aﬁ("%—At)]}
AN\———— | | =— +
2[6' (’{t+At)]2 Ok t+AL Oz Jz

The terms on the right hand side of equation 7-65 can easily be calculated and are given
below.

0014 at 021y A _

-1

If the uncertain parameter x is the elastic modulus YOUNG or Poisson’s ratio POISON

then 52 is nonzero, but depends on the element formulation. It is typically not
T

85 (Kt-*-At)

difficult to find. In this case
Ox

is zero.

: . : oD . 00 (k
If the uncertain parameter z is the yield stress YLDVAL then —— is zero and 90 (Kerar)

Oz Oz

1s 1.

. . . oD .
If the uncertain parameter z is the plastic modulus YOUNPL then —— is zero and

95 | ) Oz
o(k )
A S K
Oz
. . . oD 00
o Ifthe uncertain parameter z is not a parameter of this element then 3 and 22 (gHAt)
are zero. :c :c
: . . 0o .
Finally, from equation 7-21 it is clear that | — is YOUNPL.
Ok ] e
delfin

The history-dependent variables are e and . To find an equation for , substitute

Oz
equation 7-52 into equation 7-60:
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[I _ Puouaofia ( LM [65] )} del A,
2[5 (kevad)]’ 5 (rerar) [Om t+At Oz

— [I _ R}m 0't+At o-t+At ( A [@] ):I 85{3

"Ct+At Kt+At Ok N Ox

Pvm a€t+At asf—l—At
A —
+ 20 (/iH—At) [ Oz (EH-At eH_At) + D ( Oz oz

P, oa: [[85} 0 Ky a5(’£t+At)]
A P el R +
200 (kepar))” LLOK] pa, O Oz

(7-66)

P
YN

Oz

Rearranging equation 7-66 to calculate

aeiAt _ [I B I N O'Z:,_At <1 B AN . [35J > A/\Pva]—l
( t+At

Ox 2(c (’%+At)]2 o (Kerae) Ok 26 (Kitat)

{ [ P oiiar ol 4, ( AN [55] )} def
WY Lo (R o YeL
2 [O' (K/t+At)] g (K:t-l'Af) Ok t+At Oz

FP,. oD 0
AN— [ (EHN EHM) D €t+At:|

20 (Rt-i-At) (93; 81'
_ AN Pi}m 0't+At2 H@] 0 K¢ n do (ﬂt+At)]} (7-67)
2 [0' (/‘CH_At)] aK/ t+AL 637 827
P
Once TCirar is found, O kitan can be calculated from
Oz Oz
0 Kyt _ 0 Ky a?—i—At 0 ef—l—At _ Bsf (7-68)
oz Oz 7 (Kirat) Oz Oz

7.3.1.2 Rankine/von Mises

As there are eight possible cases depending on which yield surfaces are active, eight different
derivations should be done. However, as each derivation is similar, only a representative one
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will be done and results for all eight cases will be summarized at the end. As a representative
case, we will assume that all three yield surfaces are active.

Differentiating equations 7-29-7-35 with respect to a general x for this case

doar 0D dene Oel
st~ O fewar — i) + D |25t Dot (7.69)
86851Lm - 8;? + 63/\(1) B gun +im®
‘ ¢ ! \/20';‘r+AtR¢7t+At
_|_ AA(I) R . QBUt+AtU?+AtR (90't+At
3
\/2o'tT+AtBO't+At (20?+AtBat+At)2 Oz
9 AN P, o1
O \/ 20 ;‘P+Athm0' t+At
+ AND B _ ZR)mo't+At0';F+AtPum 00 int
3
\/20?+At P, oy (207 A Pom0ipa1)? Oz
IANG)
+ g (7-70)
8”“52& 8/‘é£i) 9 AN
- =1,2 771
Oz bz T e TL3 (7-71)
_ 1
N . 80’@t+At Fimr, doipar <8U(i)> . 0/<;£+)At
\/2 olabr Toia ) Oz oM ), n, Oz
91 (K'g-lb-)At>
~ e 0 (7-72)
= (2)
o aiPom doiat <36(2)> 8&5_23& B 05 (’it+At) _0 (1)
\/2 U;‘F+Athm T4 At Oz 9k t+At oz oz
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] 3) —(3)( 3)
BT doar (90(3)> . 8“§+At _ da Kt"'m) —0 (7-74)
t+At

oz Ok Oz oz

Rearranging equations 7-72-7-74

B ~(1) () )
8”52& _ (85(1)> ! 0'?+AtP’ +lgOT 0T 1a — 0o <’£t+m (7-75)
dz kM /o ad \/20'3+Atpro't+m ’ Oz Oz
) @) (@
3”%-?@: = (85_(2)> | ‘T;[+Athm ) doira _ 05 (K”At) (7-76)
Oz 0k® ) s \/QU%’:’_M Proun 07 oz
) . ~3) (.3 )
ok, _(85® BT dopar da (E“’At (7-77)
dr  \0k® "y Oz Oz

Substitute equations 7-75-7-77 into equation 7-70

4 EEI—At _ 0 Ef
Oz Oz
_ -1
A olinkr iy d0oiat
afi(l) t-]—At \/2 T P 2 81’
O intbrOtat
= (1)
80'(1) (K«t-i-At) 8[{,§1) B O At +l7r(1)
- 9z | 3
Oz Oz \/2Uf+AtRUt+At
+ AA(I) 'Pr . 2Rat+Ata?+AtR 80t+At
3
\/QO'tT+AtRO't+At (zo'tT+AtPr°'t+At)2 Oz
(a;,(z)) - a"tT+AtRim 001t
Ok(2) t+AL \/2°'tT+Athm0t+At Oz
= (2)
o5 (,QHM) aﬂgz) P, 0oy n
8:6 8517 \/20'?+At -Pumo't-i-At
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n A/\(2 P 2Pvm0't+Ato';F+AtR/m 8 O At

) um _
T 3
\ﬁ”ﬁm P,.o: (20 pnt Pmoiiae)? Oz

~(3)\ ~ ~3) (3 )
<80(3)) 1 77(3)T . aat-}-At B aO’ (KLH-At B aK/£3)
t+At

73
8/9(3) ax 8‘,1: 8.’['
oef
oz
_ -1
+ el P.oia - ol P
Ik - +im -
t+At \/20't+AtR~0't+At \/2‘-7t+AtPr0't+At
T
+iwor | + AXD b B 2P7~;7t+At0't+Atf);
\[‘Zaampro'wm (20, 7 Poiint)?
+ 85'(2) -1 Puma.t-’rAt o.,tI'—{—At Rxm
Ok . T . T
i+t \/2Ut+At R/mo.t—{-At \/éo.t+At B/m O At
+ A)\(?) I)’Um _ 2PUmo-t+Ato.Z1+AtPU7:
\/go-tT+At P,.o (20?+AtR1mUt+At)5
_(3) -1
+ (80_(3)) a3 gB3T ao’t+At
Ok t+At Oz
[ oeon 0 (s) | o)
Ok t+At Oz Oz
. P.oya: im0
\/20'?+AtR'a't+At
_ . , i
- (35(2)>—1 05 (/{,g_l_)At) .\ 6%@52) P
2
] 3/43() t+At al’ 8217 | \/%_I+Atﬂmo.t+At
_ ) , i
0B ), a¢ Ox oz |7 (7-78)
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Substitute equation 7-78 into equation 7-69

aa't+At oD 8st+At _ BEf

Oz T Oz [erae —eiial] + D{ Oz Oz }

' F\ !
_p (80(1)) Poia: i
Ok t+At \/20'31+At'P"a.t+At

oliacP
\/2o'tT+AtPr°'t+At

B B 2P0 a0l AP

\/20';[+Atpro't+At (2‘7';°F+AtPr~¢'1't+m‘)'gl
(85(2)> -1 P, .o n: ”;‘F+Atpum

PYE) ' ' T
t+At 20';‘2_& F,.o i 20t+At Pomoiya

+%7T(I)T

+ AN

+ A)\(?) R.'m _ 2Pvmo't+Ato'z1+AtR;m

T 3
20';‘F+Athm0't+At (20, p Prmoiiat)?

_ -1
N (‘90(3)> A @O @1 | 0Tmar
0B ), A, Oz

- = (1)
D (86(1)) AR (’%+At> .\ 8&51)

Ox(1) AL Oz Oz

. P.oiia: +imw
\/20'?+At-Pro-t+At

4D -<06(2)>_1 9o (’ig-)m) N 8&%2)— B,

Ok (2) t+At 0z Oz \/Qg-z"_l_AthmO'tJrAt

[ e — 53) (.3 3) ]
953\t 0o (’%+At> k! )
7-79

+D (a,iw))tw gr  ox | T (66)




Rearranging equation 7-79

80’t+At

Oz

aa“))‘l P.o i

- {1+0| (5
a/{(l) t+At \/20-31+AtR‘Ut+At

im0

T
) TN
T

\/QO'H_AtBO'H_At

T
P VP00, 0, P

T

\/QO'tT.FAtR'O't'{-At (QUH—At‘P"aH”At)

_ -1
<80(2)> P, .ot ‘7';[+AtRzm

RO ’ '
t+At 20'31+At P,roiia \/QU'tT+AtR;m0't+At

+imwOT

+ A0

3
2

T
-Pvm ZR/mUt+AtUt+At-P1/m

N T 3
\/éag+AtR/mat+At (26t+AtR/mat+At)2

_ 3) -1 -1
N (‘90(3 > (3BT
k) t+A¢

oD Oe 0ef
{5:5— [eH‘At_eE&-At] + D [ 5;At _ axt jl

p ooy 000 (ss) o)
Ok t1AS Oz t Oz

+ AN

PrU't+At

T
\/20't+At-Pro't+At

D (35(2))_1 9% (“E?At) N 8&5‘2) P
(2)
Ok N oz Oz \/20'?+Atpvmat+At

_e\ -1 05® (x® (3)
I T O 1

+im)

0k3) oz ox

t+At

0 €+ At

oz

Setting to zero on the right hand side of equation 7-80 results in an equation for the
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quantity required

ao’t+At

oz

8Ut+At azt+At _

TR T 0zynr Oz
_ -1
80(1)) Boiia:

Ok
t+At 20'tT+AtR0't+At

I+ D ( +iw®

) ‘TtT+AtR‘
\/20'tT+AtPT‘7t+At
b _ 2P0 100 n P
\/Qa'tTJrAtRo-HAt (207, 5 Poisar)?
(@) B . Pimoira . ol niPom
@ ) Ay \/20f+AtR,m0't+At \/20;‘P+Atpum0’t+m
Rxm QR/mo-t-i-Ato'z;_Athm

N T
\/QUtT-i-Athmo'HAt (20 pc PomO i at)

—(3 -1 -1
N (‘90( )> 73 OT
Ik t+AL

+igryT

+ AN

+ AX2)

W

(7-81)

oD Oef
.{%[ew—egm}w[- e
ol ey 0950 (xar) 9kt
oW J s Oz + 0z
F.oa i)
2
\/ZO-Z;.AtR‘O'H-At
s~ 00 (k) 9 P
+D |53 3 + a’“‘ =i
" t+at v v 20’?+At P, .oin:
_ 3
i | (29 050 (Kar)  onf? )
0kB) ) 4 as Oz + oz | "

The terms on the right hand side of equation 7-81 can easily be calculated from equations 7-
36—7-38 and are given below.

o If the uncertain parameter x is the elastic modulus YOUNG or Poisson’s ratio POISON

then —— is nonzero, but depends on the element formulation. It is typically not

Oz
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951 <’€§2At>

Z

difficult to find. In this case is zero for all z.

. . . oD .
If the uncertain parameter z is the tensile yield stress YLDVAL then —— is zero and

Oz

(7-82)

950 (,ggggm) | h(yLovar) o . g
B a— HARVAL (T4 ’

1 =2

. : . oD .
If the uncertain parameter z is the compressive yield stress YLDCMP then Bg 1 ZeTO
T

and
(7-83)

. . oD
If the uncertain parameter z is the fracture energy HARVAL then — is zero and

ox

90 (,{gigm) h(YLDVAL)® )
— =1,3
Y = 2(HARVAL)? Frran 0= 5 (7-84)
5” 0, i =2

: . . oD .
If the uncertain parameter z is the plastic modulus CMPVAL then —— is zero and

Oz

(4 (2
95 (’“tJZAt) [0, i=1,3
Oz = (1)

Kitat V=2

(7-85)

. . . oD
If the uncertain parameter z is not a parameter of this element then —— and

: Ox
B a— 1 =1,2,3 are zero.
Finally, from equations 7-36-7-38 it is also clear that
. 2
9 _h(YLDVAL)® . _
.0 = 2(HARVAL) (7-86)
R o CMPVAL, i =2
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The history-dependent variables are e¥ and . To find an equation for

P
aeH—At

Oz

, substitute

equation 7-69 into equation 7-78

el
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Ok(1) t+At \/203‘+AtRat+At

—}—é_ﬂ'(l)

T
o nibr
T
\/20t+AtPr0't+At
T
F. 2P0 a0 0 B
T
\/20?+AtR'Ut+At (20t+AtRat+At)

—(2)\ ~1 T
(60( ) ) P, .01 ) O't+AtPum
O0k(2)
t+At 20'31+At13vm Ot1At 20'f+AtPum0't+At

+imOT

+ AN

W

T
R}m 2R1m0't+Ato't+AtR;m

B T 7
\/20'?+At P .o (204 pt PimOiint)?

F®\ ™ -\ [0D b
+ (m) ons 7;-(3)7;-(3) {—8_;[_ [€t+At — €t+At]

D&ty 8sf+m
+D[ 9z Oz

+ AN

95

fos
Ok
o

+%7r(1)

— 1 7
)_1 80(1) <’€1(5+)At) n af@gl) R‘a't+At
t+At Oz Oz \/20',5T+At13r0't+At
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Rearranging equation 7-87
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_ B _ _(1) (1) ) ]
~ (60(1)) 1 0o (Kft-{-At n E)nﬁ” Pro't+At + Lqr(1)
o) o 00 0z | |\ oot s Pous
_ _ 2 T
- (35(2))‘1 95 ("%Qm) 4 8&52) B
] 0k(2) AT Oz Ox \/20'?+AtR,m0't+At
-1 950 (® )
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Ok t+At Oz 0z
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Once __55;At is found, I:;t;rm can be calculated from
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05 (kPa)
_ A (7-91)
oz

The above derivations were for the case with all three yield surfaces active. It can be shown
that the relevant equations for all of the eight cases can be summarized by

00’t+At 00 1:nt OZia , , i
0 |yauz az::A: 5; - = {I +D [LSF)M + L£+)At + L£+)At} }
oD el
. {79; [st"'m - EZ—At] +D [“ a; }
+D |:R7(fj‘)At + jo—)At + Rgi)m] } (7-92)

defiai (1) (@) 3) -
—5;_ = {I + [Lt—i-At + Lt+At + LH—At] D}
Oz

oD de
|5 (e eha £ D752

def (1) @ 3
S Sar-wnniin s [Lt+At + Lt+At + Lt+At]

1 2 3
- Ry~ R~ RO (759

where

(05’(1)>_1 P.oat

a—’fm t+At \/20'?+At-Prat+At
ol n P
\/20f+AtBO't+At
L, e P (7-94)
\/ 207, A PO

T
B QR;’t-q-Ata't-}-AtP;' , f(l) active
[20’t+AtR‘o’t+At]5

_*_%77(1)7"

0z, @ not active
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where 0y, is a square matrix of zeros,

(8_5(_2_)> - ) Rm0t+At
Ok tHAL \/20-;-’"+Athm0't+At
_ ‘7;[+Atpvm
\/20';‘F+Atpvm0't+At
Lﬁ)m = AN Pim
\/20';‘F+Athma't+At

B 2P, 0't+At0';‘r+Athm ) f(z) active

[20'31+Atpvm0't+At]%

0, F® not active

_ (3) -1
(a_"_> 2O ZOT  [6) active
t+At

3 0k
L§+)At = :
0y, @ not active
orN " 050 (k) g
<8"5(1))t+m Oz T e
- _
Rija = . Boa +imo | fO) active
\/20'?+AtR'o't+At
Og, M not active

where Op is a column vector of zeros,

9@\t 953 (ﬁﬁi’w) 9k
(5) !

1AL Jz Oz
Rﬁ)At = Fom
\/20'?+AtR/mo't+At

Og, @ not active

. f® active
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N I ) (,43) ) ®
<—8U( )) A + Ory 77(3), f(3) active
— 6/<;(3) i+ AL 8x 817 (7_99)

Og, f©®) not active

and equations 7-89 if f() is active, 7-90 if f(?) is active, and 7-91 if f®) is active.

7.4 Calculation procedure

7.4.1 Added subroutines

To implement the sensitivity analysis equations from Section 3 and Section 7.3 in DIANA,
a number of the existing subroutines had to be modified. Many new subroutines were also
added. This section is a record of all of the subroutines that were modified or added for
sensitivity analysis. These are the subroutines that must be copied and compiled to add
sensitivity analysis capabilities to an existing version of DIANA.

Subroutines for sensitivity analysis calculations that have to be performed at each time step
are called from existing subroutine DOSTEP, which is a high level subroutine in application
nl40 that controls the analysis at each step. In its original form, DOSTEP calls other sub-
routines to calculate the tangent stiffness, solve for the incremental displacement, calculate
the new restoring force, check equilibrium, and iterate if necessary. This is the first step of
the flowchart of figure 3-1 and as it is part of the original DIANA program it will not be
dealt with here. A command was added in DOSTEP to call new subroutines to perform the
remaining steps of the flowchart. The new subroutines are shown in figures 7-6, 7-7 and 7-8.
The loops have been shown on the flowcharts in these figures as they are sometimes useful.
For example, subroutine FORCE2 contains a loop through all of the elements in the structure.
The subroutines after FORCE2 are thus called once for each element. Similar considerations
apply for the other loops indicated.

Subroutines to calculate ?i a_ra_z
0|4y 42 020z

method used based on figure 3-2 is similar to that used to calculate restoring force r. The
most sensible procedure was thus to copy the routines used to calculate r, rename them,
and edit them where necessary. The subroutines were renamed by replacing the last letter
of each name with a “2”. The functions of each of the subroutines are summarized below.

are shown in figure 7-6. The element-by-element

or Oroz
e XQELE2: Open FILOS files, allocate arrays; call FORCE2; store — + ————.
dr 0z 0z
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e FORCE2: Convert displacement u to local coordinates for each element; call YNSWI2;

convert element QZ Or Qf to global coordinates and add to global (9_7'_ + Or 0z

gz " 9202 gz "0z 00
e YNSWI2: “Switch” file to call subroutine corresponding to element type.

e YNBEN2: Beam elements only. Convert u to strain € for each integration point; call

IFIP2; convert 6_0' + 8_0'8_2 to 8—T + Q_’I:a_z
dr 0z 0dx Oz O0zO0x
dr  Or 0z

total — + — — for element.

Odr 0z 0z

e YNNI2: Plane stress, plane strain, solid and shell elements. Convert w to strain e

. : . Jdo 0odz Or Or0z
for each integration point; call IFIP2; convert + —— for each

9z V9202 © 92 T 9z 00
or Or 0z

integration point, and add to total — + ——— for element.

oz 0z 0z

for each integration point, and add to

e IFEL2: Read element data such as D and %—Q from FILOS file.
z

e IFIP2: Call subroutine corresponding to material model.
e YLD2: No function, kept for consistency only.

e PLSW2: “Switch” file to call subroutine corresponding to plasticity model.

0

o MIPL2: Calculate —— + 8_0'8_,2 for von Mises plasticity.
Jz 0z Ox

e RAPL2: Calculate 8—0 + 8_0'8_z for Rankine plasticity.
Jr 0z Oz

e RVPL2: Calculate b + 0o 0= for Rankine/von Mises plasticity.
dr 0z Oz

0 or 0
Once ar " 9% Yas been found the next step is to solve for v. Several completely new

_I_ [ —
Or 0z 0z
subroutines were written for this purpose. The routines compile the left and right-hand

sides of equation 3-19 and then use the existing solver in DIANA to solve for the sensitivity

factor. Routines for calculating be are also included in figure 7-7. The functions of each of

Oz

the subroutines are summarized below.

e SENSIT: Open FILOS files, allocate arrays used in calculating v, v and v; call GNSYDA,
SOSYEQ and UPSYDA; and store v.

e GNSYDA: Open FILOS files, allocate arrays used in calculating right-hand side of equa-
tion 3-19; call GNXELM.

e GNXELM: Call FBRD, FBRDA or FBRDB; calculate right-hand side of equation 3-19.

135



DOSTEP

'

XQELE2 |element loop
FORCE2
YNSWI2
|
v v
YNBEN2 YNNIz  |l@verleop
integration point loop
| N
1 Y
IFIP2 fraction loop IFEL2
YLD2
PLSW2
v v
MIPL2 RAPL2 RVPL2
FIGURE 7-6 Subroutines to calculate _(91 + 8_1‘0_z
0|4, 020z
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DOSTEP

'

UPSYDA

SENSIT
v ¥
GNSYDA SOSYEQ
GNXELM
v y
FBRD FBRDA

FBRDB

FIGURE 7-7 Subroutines to calculate B_c and v

dc .
e FBRD: Calculate —wu for general z.
x

0

C. . . .. .
e FBRDA: Calculate —u where x is the coefficient of the mass matrix in Rayleigh damp-

) x
ng.

dc . : . L . o
e FBRDB: Calculate —t where z is the coefficient of the initial stiffness matrix in

. . Oz
Rayleigh damping.

e SOSYEQR: Solve for Aw.

e UPSYDA: Update v, v and v.

Subroutines for calculating g_z (figure 7-8) are obtained in the same manner as those for
x

.0 . : : :
calculating 97 The subroutines for calculating = are copied, renamed by replacing the last

: x
letter of each name with a “3”, and edited where necessary. The functions of each of the
subroutines are summarized below.

e XQELE3: Open FILOS files, allocate arrays.
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FORCE3: Convert sensitivity factor v to local coordinates for each element.
YNSWI3: “Switch” file to call subroutine corresponding to element type.
Oe . . .
YNBEN3: Beam elements only. Convert v to 92 for each integration point.
x

. . Oe
YNNI3: Plane stress, plane strain, solid and shell elements. Convert v to 3 for each
x

integration point.
IFIP3: Call subroutine corresponding to material type.
YLD3: No function, kept for consistency only.

PLSW3: “Switch” file to call subroutine corresponding to plasticity model.

0z . ..
MIPL3: Calculate and store Iz for von Mises plasticity.
x

0z . .
RAPL3: Calculate and store — for Rankine plasticity.
x

9z

RVPL3: Calculate and store 3
z

for Rankine/von Mises plasticity.

Several calculations need only be performed once during an analysis, so subroutines to per-

form

these calculations were added to the linear static analysis application 1s40 and are

called only at the start. The linear stress—strain matrices D of each integration point are
calculated and stored at this stage, and read again during the dynamic analysis. The deriva-

tives of these matrices, —, are needed to calculate the sensitivity factors, and it is sensible

to calculate these derivatives directly after calculating D. The subroutines used were copied
from those used to find D, renamed and edited where necessary (figure 7-9). Subroutine
ELDATA in 1s40 calls the subroutines for the calculation of D, so commands were added to

it to call the new subroutines to calculate —.

Z

DLSWI2: “Switch” file to call subroutine corresponding to element type.

DLBEN2, DLCLB2, DLME2, DLSH2, DLSHF2: No function, kept for consistency only.

0D
DLPEA2, DLS02, ISBEN2, ISCLB2, ISME2, ISSH2, ISSHF2: Store e
z

oD . e
MATAX2, MATS02, MATSL2, MATSF2: Call CSOL2, assemble 5a matrix from individ-
T
ual elements.

MATME2: No function, kept for consistency only.
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DOSTEP

'

XQELE3 |element loop

1

FORCE3
YNSWI3
|
Y Y
YNBEN3 ynnig  |laverlooe
integration point loop
| A
Y A
IFIP3 fraction loop IFEL2
YLD3
PLSW3
v Y v
MIPL3 RAPL3 RVPL3

FIGURE 7-8 Subroutines to calculate %—z—
z
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oD
e CSOL2, CSHL2: Calculate elements of B
T

oD
e MATCL2, SEME2: Calculate e
T

As DIANA uses Rayleigh damping, the damping is in general a function of the stiffness. If
the unknown parameter z is a stiffness parameter the damping becomes a function of z so it

) Jdc . )
is necessary to calculate —. The subroutines used for this were adapted from those used to

T

calculate ¢ and are shown in figure 7-10. They are called at the beginning of the analysis in
application 1s40 by subroutine XQELMA, which calls subroutines to calculate element mass,
damping and stiffness matrices.

e 0VSTM2: Open FILOS files, allocate arrays.

e ELSTI2: Convert derivative of element stiffness matrix to local coordinates; store.
o KLSWI2: “Switch” file to call subroutine corresponding to element type.

e KLBEN2: Beam elements only. Calculate derivative of element stiffness matrix.

e KLNI2: Plane stress, plane strain, solid and shell elements. Calculate derivative of
element stiffness matrix.

e OVELD2: Open FILOS files, allocate arrays.
e ELDAM2: Convert derivative of element damping matrix to local coordinates; store.
e DASWI2: “Switch” file to call subroutine corresponding to element type.

e DAME2: Plane stress, plane strain and solid elements. Calculate derivative of element
damping matrix.

e DAZOL2: Beam and shell elements. Calculate derivative of element damping matrix.

7.4.2 Special procedures for beam, plane stress and shell elements

Some types of finite elements have, by definition, zero normal stress in certain directions.
For example, plane stress and shell elements have zero stress perpendicular to the plane of
the element, while beam elements have zero stress in the two directions perpendicular to the
axis of the element. This can be accomplished computationally by omitting the zero stress
components from the stress vector. However, this approach has two disadvantages. Firstly,
different stress computation subroutines are needed for each element type. Secondly, the
material modeling approach known as the fraction model [7] cannot be used. The fraction
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SEME2

MATCL2 MATME2
| | ?
ISBEN2 ISCLB2 ISME2
DLBEN2 DLCLB2 DLME2
} \ \
beam curyed plane ptress
beam
ELDATA — DLSWI2
element loop
plane ptrain solid shell flat ghell
Y Y v Y
DLPEA2 DLSO2 DLSH2 DLSHF2
f v i Y
MATAX2 MATSO2 ISSH2 ISSHF2
I | l i
CSOL2 MATSL2 MATSF2
L |
CSHL2
oD

FIGURE 7-9 Subroutines to calculate —
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XQELMA

v v

OVSTM2 OVELD2
ELSTI2 |element loop ELDAM2 |element loop
KLSWI2 DASWI2

| l
v v v Y

KLBEN2 KLNI2 DAME2 DAZOL2

FIGURE 7-10 Subroutines to calculate g—;

model allows the use of several different material models in parallel in an element. Each
material model has the same displacement, but the restoring force from each is weighted
such that the sum of the weights is unity. The weighted sum of the restoring forces is used
as the restoring force for the element. The fraction model requires only that the weighted
sum of the normal stress components of the various models in an element are zero, not that
each individual model component is zero.

In DIANA a different approach is used to ensure that the normal stresses are zero. The
approach considers both an ezpanded stress space in which only the zero shear stresses are
omitted, and a condensed stress space in which all of the zero stress components are omitted.
An algorithm is used to expand strains and compress stresses in such a way that the zero
normal stress criterion is enforced [16]. The dimensions of the expanded and condensed
stress spaces are 3 and 1 respectively for beams, 4 and 3 for plane stress elements, and 6 and
5 for shell elements.

The concept may be clearer after considering the calculation of the restoring force from
the displacement at a typical iteration, shown in figure 7-11(a). A superscript C' is used
to indicate the condensed form of a quantity. First, the displacement is used to calculate
the strain in the condensed space, etc+ Az, from the strain-displacement relationship for the
element. The strain is then expanded to €;4a; and the relevant material model applied to
find the stress o;4a:. This stress is then condensed to O'tc_l_ a; and used to find the restoring
force r by equation 7-2.
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Element level l Integration point level

>

condensed space i expanded space
le >
1

displacement u —| » straine® —»| expand | straine

| l

apply
material
model

:

forcer <«————— stress O'C -« condense |<e— stresso

L L

(a)

&, €F, ¢, 0gf /ox
from FILOS file

apply
equation

¢

0o 07

u,i,z az ox

oo
~ | condense | —
oz 0Ox Ox

apply
—»{ updated
equation

¢

P

€
save —— on
Ox

FILOS file

- -t = -

(c)

FIGURE 7-11 Calculation procedure
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All material model calculations are done in the expanded space, and variables such as the

plastic strain ef are stored in the expanded form. It is thus easier to apply the equations to

calculate derivatives in the expanded space. Two different derivative quantities must be cal-
ar

_|_

culated at each time step. The first quantity, calculated in step 2 of figure 3-1, is 32l
u,U,z

or 0 :
T 2% and is calculated using equations 7-65 or 7-92, and 7-40. The procedure is shown in

0z Oz
P

figure 7-11(b). The vectors o1 a¢, €141, eﬁrm and % are read from the FILOS file and the

aO'H_At 00’t+At azt+At

Oz

relevant equation is applied to calculate . The condensation

u,u,z 8zt+At Oz

C C
do ar L LINR LTSN

Oz

algorithm is then applied to calculate the condensed form

uu,z BZH.At Oz
art+At a'rt+At azt+At

Oz

which is then converted to by equation 7-40. The only point to

u,U,z 8Zt+At Oz
0014 At
oz wiz 0zipnr Oz
must be the same as those used in condensing o;1a;. This presents no problem as the para-

meters can be saved on the FILOS file and reused.

. . . 004 nt 02
note here is that the algorithm parameters used in condensing e e e o

The second derivative quantity calculated at each time step presents a greater challenge. It is
0z o : .
——, the derivative of the history-dependent parameters, calculated in step 4 of figure 3-1. For

dz

the material models in Section 7.2, the history-dependent parameters are e and  for the
von Mises model, or e” and k()i = 1,2, 3 for the Rankine/von Mises model. The derivatives
are calculated using equations 7-67 and 7-68, or 7-93, 7-89, 7-90 and 7-91 for the von Mises
and Rankine/von Mises models respectively. A problem arises as the equations contain the
€14+ At

oz

derivative of the displacement v;y ;. However, for beam, plane stress and shell elements,
c

derivative of the total strain, . For most elements, this is calculated directly from the

aet+At
ox

, which is what we are trying to calculate. It is thus not possible to apply

only the condensed form can be obtained directly from v;ya;. The expanded form

P
a€t+At

depends on

x
equations 7-67 and 7-93 directly. The problem can be overcome by expressing the expanded
total strain in terms of the condensed total strain and the expanded plastic strain

EttAt = Icetc;_At + IPBf{-At (7‘100)

where I¢ and I” are matrices that depend on the element type. They are given at the end
of this section. Differentiating equation 7-100 with respect to x gives

e, orr
oe T or et
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Oz

Oe oI¢
t+At _ stC+At +IC

Oz Oz
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which can be substituted into equations 7-67 and 7-93. The equations are then rearranged
to give

asﬁm . [I— Poiia ‘7'?+At <1 B AN ‘ [@] >
Oz 2[5 (Kepar)]” 7 (Ketrat) t+ A

ANPD -1
AAPD o gp ]
20 (/‘CH.At) ( )

(P
200 (Kerar))” o (kirar) LOk]a/] Ox

P 0D p
+ A)\Q& (Kisat) { ox (EHN B €t+At>

orI° 0e¢, orr
+D (Gpefusc+ 1052 1 e )|

P o Ha&] Ok; 0c (’it+At)} }
—AN—H2 + (7-102)
2[c (/‘it+At)]2 oK N Oz dz

which is used instead of equation 7-67, and

el .
%At - {I + [Lgr)m + Lia + Lﬁ)m] DI~ IP]}

def (1) ) 3)
’ + [Lt+At + Lt+At + Lt+At]

Jx
|52 (eura—eha)
- RSr)At - Rﬁ)m - Rﬁ)m} (7-103)

which is used instead of equation 7-93. This procedure omits the expansion algorithm and
is shown in figure 7-11(c).

The I¢ and I¥ matrices are

1
Iy, = | —poIson (7-104)
—POISON

145



0 0 0
If,. =~ = | POISON 1 0 (7-105)
| POISON 0 1
[ 1 0 0
0 1 0
I glane stress —POISON.__POLSO () (7-106)
0 0 1
[0 0 0 0
0 0 00
Iglane stress phson igﬁgm 1 0 (7-107)
.0 0 0 0
[ 1 0 00 0]
0 1 000
c 1_—PPUUIISSD:N 1_—PPODIISSUUNN 000
Tshen = 0 0 100 (7-108)
0 0 010
0 0 00 1|
[0 0 000 0]
0 0 0000
POISON POISON 1 0 0 0
P _ 1—POISOF 1-POISON :
Tihen = 0 00 0 (7-109)
0 0 0000
L0 0 000 0

7.5 Example

The steel portal frame at the University at Buffalo, used in Section 6.5 to illustrate the
MATLAB program, will also be used here to illustrate the use of DIANA. However, as
DIANA is an existing program, the emphasis here will be entirely on the additional input
data required for calculating the sensitivity factors. Details of selecting and generating the
data for the structural model itself can be found elsewhere [17]. This section will thus be
most useful to users who already have some knowledge of DIANA; however, it will also give
other users an impression of the capabilities of the program for sensitivity analysis.

Using DIANA, a more detailed model of the Buffalo frame than than the MATLAB model of
Section 6.5 can be constructed. The frame will be modeled using shell elements to represent
the flanges and webs of the beam and columns (figure 7-12). The elements are the four-noded
curved shell elements labeled Q20SH in DIANA. The columns will be assumed to be fixed to
the shake table to avoid additional complexity; however, spring elements could be used for
a more detailed analysis.
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MATERI

/ 1-1816 / 1
DATA

/ 1-1816 / 1

’DATA’
1 SENVAR  YOUNG

FIGURE 7-13 Additional input in .dat file

The first additional input data required for the sensitivity analysis is the five or six letter
name of the uncertain parameter, which must be specified in the model data (.dat) file
(figure 7-13). The parameter is specified in the DATA table under property SENVAR. If the
uncertain parameter is a material parameter it is assumed to apply to material 1, while if the
uncertain parameter is a damping parameter it applies to all of the materials. The different
parameters that can be considered uncertain are detailed for the different material models
in Section 7.2. For this example of the Buffalo frame, the Young’s modulus is uncertain so
YOUNG is entered.

Once the uncertain parameter is specified, several new commands must be added to the
analysis command (.com) file (figure 7-14). First, commands must be added to call the
special sensitivity analysis applications (1s40mc, ci33mc, n140mc and wr30mc) rather than
the standard DIANA applications. These commands take different forms for the different
applications and are illustrated in figure 7-14. Next, a command must be added to actually
perform the sensitivity analysis. This is done by inserting option sensit in the initia
command block of module *NONLIN. If this line is removed, a normal analysis without cal-
culation of sensitivity factors will be performed. Finally, commands specifying the type of
output required must be added to the *NONLIN and/or *POST modules. The calculated sen-
sitivity factors can be written to a text file by the output tabula command, or to a file for
the graphical postprocessor FEMVIEW by the output femvie command. In either case,
the output can be manipulated like regular displacement output by using select and other
commands.

The DIANA analysis was then run using the standard diana command. The input motion
was scaled up to ensure nonlinear behavior. The resulting horizontal displacement of a node
at the intersection of the beam and column is plotted in figure 7-15. Sensitivity factors
were calculated with respect to the Young’s modulus YOUNG (figure 7-16) and the yield stress
YLDVAL (figure 7-17) of the elements. The sensitivity factor with respect to the yield stress
is zero while the elements remain elastic.

The accuracy of the calculated sensitivity factors were then checked by the finite difference
method. Results are shown in figures 7-18 and 7-19. As the size of the finite difference is
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*LINSTA
!'segmen 1s40mc

*NONLIN/ci33mc
segmen *applic nonlin/nl40mc
initia
analys physic dynami
use
newmar
end use
option sensit
end initia

output tabula sensit file="sensit"
displa sensit
end output

*P0OST/ci30mc

segmen write/wr30mc

output femvie sensit binary file="sensit"
displa sensit

end output

FIGURE 7-14 Additional input in .con file
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FIGURE 7-16 Sensitivity factor with respect to Young’s modulus
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FIGURE 7-17 Sensitivity factor with respect to yield stress

reduced, the calculated and finite difference curves become closer. For a finite difference of
1000 or less in figure 7-18, and 1 or less in figure 7-19, the curves are indistinguishable. This
confirms the accuracy of the sensitivity factors calculated by DIANA. Further details of the
use of these sensitivity factors for calibration and optimization will be found in Section 9.

For some applications it is useful to plot the sensitivity factors on the structure in the same

manner as stresses or strains. This can be done using the FEMVIEW program. Figure 7-20
shows an example of the sensitivity factors for the entire structure at a certain time instant.
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FIGURE 7-18 Sensitivity factor with respect to Young’s modulus
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FIGURE 7-19 Sensitivity factor with respect to yield stress
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SECTION 8
COMPARISON OF MATLAB AND DIANA OUTPUTS

After consideration of the MATLAB and DIANA programs to calculate sensitivity factors
described in Sections 6 and 7, the following question naturally arises: is it meaningful or
even possible to compare the outputs from the two programs for the same problem?

In general, due to differences in the material model formulation, element formulation, tol-
erance calculation, and many other factors, it is difficult to compare the results calculated
by two different computer programs for a nonlinear problem. For example, it should not be
expected that the two programs will necessarily give very similar displacement results. The
MATLAB and DIANA programs are good examples of two programs with different mod-
eling approaches, material models and element types and will probably not give identical
results. Consider, for example, the simple nonlinear elastic-plastic oscillator of Section 3.4.
The oscillator was analyzed for 10 seconds of the Taft ground motion (figure 8-1) using
both MATLAB (SABER-2D) and DIANA. In MATLAB, the oscillator was modeled by the
nonlinear truss element of Section 6.2.2 (figure 8-2). In DIANA, a two-dimensional beam
element with von Mises plasticity and a stress—strain curve selected to match figure 3-3 was
used (figure 8-3). The calculated displacements are shown in figure 8-4. Due to the differ-
ences mentioned before, the displacements are different. If the displacements are different,
the sensitivity factors will also be different. The sensitivity factors with respect to the yield
strength f, calculated by the two programs are shown in figure 8-5. As expected, the sen-
sitivity factors are of a similar order of magnitude but are not identical. Sensitivity factors
with respect to other parameters show the same trend.

It must be emphasized that it is not the case that one program has given “correct” results
and the other “incorrect” results. The sensitivity factors calculated by each program were
checked by finite differences, and each one is correct for its corresponding displacement.
The displacements are different due to the different formulation of the models used. Each
program could be calibrated against experimental results to improve its accuracy. There is
no reason for the displacements and sensitivity factors to be identical.

The only problems for which identical displacements and sensitivity factors should be ex-
pected are simple linear problems. To illustrate this, the plastic behavior of the oscillator
was dropped and the resulting linear elastic oscillator analyzed under the same Taft ground
motion as before. The resulting displacements and sensitivity factors are identical for both
programs, as shown in figures 8-6 and 8-7.

In conclusion, comparing the results for MATLAB and DIANA is not really meaningful for
nonlinear problems. The sensitivity factors calculated by each are correct, but should not
be expected to be identical. Each program has a different modeling approach, resulting in
different displacements and sensitivity factors. The different modeling approaches were in
fact selected intentionally, to allow different levels of modeling detail in accordance with the
required capabilities listed in Section 5.
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SECTION 9
DEMONSTRATION PROJECT

9.1 Introduction

This section describes a demonstration project to illustrate the use of the sensitivity factors
in the analysis and design of a real building. The example chosen is a hospital in Buffalo.
Both primary and secondary systems in the hospital will be considered: the primary system
is the hospital structure itself, while the secondary system is the piping system that supplies
water for fire suppression. Although both systems are based on real, existing systems,
simplifications and assumptions will be made either where necessary to illustrate the use of
the sensitivity factors without excessive complication, or where insufficient data is available.
The work is not intended to be applied to the real structure, but only as a demonstration
of the use of the sensitivity factors for the identification of critical parameters, selection of
design and retrofit strategies, and generation of approximate fragility curves.

In analysis of secondary systems it is frequently assumed that “cascade” analysis applies.
This assumption is made here. The characteristic of a cascade analysis is that there is
no feedback from the secondary to the primary system. The primary system is analyzed
without considering the secondary system, and the results used as input to the analysis of
the secondary system. The assumption is valid if the primary system is substantially heavier
and more stiff than the secondary system, which is clearly true for a structural frame primary
system and non-structural piping secondary system.

9.2 Ground motion

As insufficient real earthquake records exist for the Buffalo area, artificial motions are used
as the input ground motions to the primary system. The ground motions are realizations of
a Gaussian stochastic process with the amplitude modulated through time by an envelope
function. The power spectral density g(w) of the process is based on the specific barrier
model for simulating earthquake ground motion [51]. The parameters of the model are the
magnitude M and distance r of the earthquake event causing the motion, and the average
soil shear wave velocity to a depth of 30 m at the site, Vag. The values selected are M = 6,
r = 50 km and V3o = 255 m.s~!. This magnitude-distance pair has a return period of 10000
years at the site (based on data in [21]). The average shear wave velocity is for a typical soil.

The resulting power spectral density is shown in figure 9-1. The magnitude, distance and
average shear wave velocity are typically highly uncertain, and are considered in the sensi-
tivity analysis in the following sections. The effects of changes in the parameter values on

the power spectral density are shown in figures 9-2-9-4.

The ground motion is generated from the power spectral density by equation 2-15 multiplied
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by the envelope function
a(t) = w(t) Z vV g(wk, 0)Aw (Ay cos(wit) + By sin(wgt)) (9-1)
k=1

where w(t) is the envelope function, 8 = [M r Vi), w. is a cut-off frequency, Aw = ;
wr = (k — $)Aw; and Ay and By are independent standard Gaussian random variables.

The derivative of a realization of the ground motion with respect to a general parameter
in 0 is

t n /
da(t) - Av 99w 9) (Ag cos(wit) + By sin(wyt)) (9-2)
ax b1 21/g(wk70) 8.1:
where the same realizations of Ay, By, k = 1,2,3,...,n are used in equations 9-1 and 9-2.
da(t) of(t)

is then used to calculate e in the governing equation of the sensitivity factor
x x
(equation 3-4).

For real analysis, design or selection of retrofit strategies, a suite of ground motions should
be considered, each with a different realization of Ay, By, k = 1,2,...,n. For the example in
this section, two ground motion samples are considered (figures 9-5 and 9-6). The samples
are independent and are applied separately at the base of the primary system. Results for
displacement and sensitivity factors are calculated for both samples and compared.
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9.3 Primary system

The primary system is the structural frame of the hospital. It is a 14 story steel frame
structure (figure 9-7). A SAP2000 computer model of the structure was prepared at the
State University of New York at Buffalo. The model was converted to DIANA for the
sensitivity analysis. [t has 10678 elements, 551 different element geometries and 46845
degrees of freedom. The model uses beam elements and the Rayleigh damping parameters
were selected to allow 5% damping in the first two modes. The system remained linear when
subjected to the given ground motions. It is possible to increase the ground motion to cause
nonlinear behavior, but it was decided to keep the linear behavior for the following reasons:

1. The original SAP2000 model of the structure was intended for linear analysis only and
necessary data for nonlinear analysis was not included.

2. An approach that will be used for analysis of the secondary system uses the linear modes
of the primary system to generate the motion of the support points of the secondary
system without performing a time-history analysis of the primary system [45]. The
method assumes that the primary system remains linear.

3. The model is intended to illustrate the concepts of sensitivity analysis, which are the

same for both linear and nonlinear structures. Nonlinear behavior is not essential for
the example.

When analyzing the structure it is necessary to identify the critical outputs of the analysis,
and the criteria that must be met by the critical outputs. Examples of critical outputs
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Critical node

FIGURE 9-8 Node for critical displacement

are roof displacement, interstory drift and damage indices based on functions of the dis-
placements. One common example of a criterion is that the maximum absolute value, or
peak, output should be less than a specified threshold. For the purposes of this analysis,
the displacement in the X-direction of a node on the roof is selected as the critical output
(figure 9-8). Typical limits for the displacement are 1/400 — 1/600 of the height of the
building [47]. The calculated displacements under the given ground motions are shown in
figure 9-9. They are approximately 1/2000 of the building height, which is satisfactory.

9.3.1 Identification of critical parameters

The first use of the sensitivity factors is the evaluation of the effects of the various input
and system parameters on the output or response. Suppose that we wish to evaluate the
sensitivity of the response to the following parameters: the Young’s modulus E of the steel
sections in the structure, the coefficient b of the global stiffness matrix in the specification
of Rayleigh damping, the earthquake magnitude M, or the soil shear wave velocity Vao. The
evaluation of the sensitivity will be demonstrated using ground motion sample 1 as the input.

The sensitivity factors for the displacement of the roof with respect to each of the parameters
were calculated by DIANA and are shown in figures 9-10-9-13. However, as pointed out in
Section 2.3, two factors must be considered when evaluating the sensitivity: (1) the sensitivity
factors themselves, and (2) the uncertainty in the parameter values. The uncertainty in a
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parameter value is the amount by which the value may reasonably be expected to vary from
the nominal value. This will in general be different for each parameter, as some parameters
are inherently less uncertain than others. For example, the uncertainty in the Young’s
modulus of steel is typically less than the uncertainty in the damping or in the seismic
loading. The uncertainties may also vary from case to case. For example, the uncertainty in
the soil shear wave velocity will be substantially less if it is based on tests at the site than
if it is based solely on the estimated soil conditions.

The assumed uncertainties in the parameter values for the demonstration project are de-
scribed below.

e The Young’s modulus E of the steel is usually known within 3% [44].

e The damping of the structure is less accurately known. An uncertainty of 20% is
assumed [13].

o The average soil shear wave velocity V3 can typically only be estimated within 20%
given the soil conditions at the site.

o The earthquake magnitude M is highly uncertain. However, for illustration an uncer-
tainty of 20% is assumed.

Three methods are suggested to evaluate the sensitivity with respect to the different para-
meters:
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1. One often suggested method of comparison is to multiply the sensitivity factors by
the nominal parameter values (figure 9-14) [68]. This results in a factor that indicates
the sensitivity of the output to changes in the percentage of the parameter values.
For example, if the factor in figure 9-14 with respect to b is larger than that with
respect to £, this indicates that the output is more sensitive to a 1% change in b than
to a 1% change in E. In fact, multiplying the factor by 0.01 gives an estimate of the
difference between the original displacement and the displacement found after changing
the parameter value by 1%. However, this method of comparison is valid only if the
uncertainty in the parameter value is the same percentage of the nominal value for
each parameter. In general, the uncertainties in the parameters are very different so
the method is not valid. For example, the uncertainty in F is 3% while the uncertainty

in b is 20%.

2. A second and possibly more useful way to evaluate the sensitivity is to use the first
order Taylor series approximation to estimate the effect of changes in the parameter
values, as in equation 2-4 which is repeated here

u(t,zo + he;) ~ u(t,xo) + v;(t)h (9-3)

The advantages of this method are (1) the magnitude of the uncertainty h in the
parameter value is explicitly considered; and (2) the original displacement is also taken
into account. The second point is important as, for example, we may be more interested
in the sensitivity at the time of the peak displacement than in the sensitivity when the
displacement is small. This information is not considered in figures 9-10-9-14.

The effects of increasing E by 3%, b by 20%, V3o by 20% and M by 20% are shown
in figure 9-15, and the effects of decreasing the parameters by the same amounts in
figure 9-16. The figures show that the output is more sensitive to the input parameters
V30 and M than to the system parameters E and b.

3. A different approach to identifying the critical parameters is to consider them to be
random and to calculate the contribution of each to the variance of the response. Using
upper case letters for random variables, assume that the parameter vector X € R™
is a random vector and that element X; has variance ¢?,i = 1,2,3,...,m. From the
first-order Taylor approximation (equation 9-3), it can be shown that the variance of
u; can be approximated by

m

Var(u;(t, X)] ~ Y vli(t)o? (9-4)

=1

provided that the nominal parameter vector value at which the sensitivity factors are
calculated is equal to the mean value, E[X]. One possible assumption about the
coefficients of variation of the random parameters is that they are the same as the
uncertainties defined previously, that is, 0.03 for F, 0.2 for b, 0.2 for V3¢ and 0.2 for M.
This assumption is followed here. Figure 9-17 shows the variance of the displacement
of the critical node, calculated by equation 9-4. The total variance is subdivided
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into different bands showing the contribution of each term on the right-hand side of
equation 9-4 to the total. A critical parameter is one which has a large contribution
to the total variance. Inspection of figure 9-17 shows that the earthquake magnitude
M is the most critical parameter. Among the system parameters, it is clear that b is
more critical than F.

Similar conclusions are reached after considering ground motion sample 2. The sensitivity
factors multiplied by the nominal parameter values are shown in figure 9-18, and the vari-
ance of the displacement in figure 9-19. Comparison between figures 9-14 and 9-18, and
figures 9-17 and 9-19 indicates similar relative magnitudes of sensitivity factors, except that
the displacement is even more sensitive to M for this ground motion. As stated earlier, in real
design several ground motions should be considered and conclusions made after considering
all of the results.

The sensitivity factors can also be used to identify the most critical elements of the system.
Consider the line of columns indicated in figure 9-20. It may be useful to identify the column
in that line to which the roof displacement is most sensitive. This information can be used
in selecting columns for retrofit, in improving the design, or just to give insight into the
behavior of the structure. The sensitivity factors with respect to the stiffnesses of four of the
ten columns are plotted in figure 9-21 for ground motion sample 1. Interestingly, the roof
displacement is most sensitive to the stiffness of the top column. It appears to be roughly
equally sensitive to the stiffnesses of the two columns in the middle, and less sensitive to the
bottom column.
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9.3.2 Improvement of design

The sensitivity factors can be used during design to assist in determining parameter values
for which the structure satisfies the design criteria. For illustration, assume that the top floor
houses a sensitive piece of medical equipment and that the design criterion is that the drift
at the roof must be less than 1 inch for all ground motions. From figure 9-9, for sample 1
the peak displacement is 0.088 feet or 1.05 inches at ¢ = 5.40 seconds. For sample 2 the peak
displacement is -0.061 feet or -0.73 inches at ¢ = 5.74 seconds. As the peak displacement
exceeds 1 inch for sample 1, the current design is unsatisfactory. The sensitivity factors
can be used to estimate whether a satisfactory design can be obtained by changing the
parameters of the system.

At the time of the peak displacement for sample 1 the the sensitivity factors are

e 3 x 107° with respect to F

o —0.3 with respect to b
For comparison, for sample 2 the sensitivity factors at the time of the peak displacement are

e —1 x 1072 with respect to E

e 0.1 with respect to b

Factors for both ground motions suggest that to reduce the peak value, £ should be reduced
or b increased. Of course, it is not realistic to reduce E of the steel, but the same effect on
the structure stiffness can be obtained by using steel sections with lower moments of inertia.
The damping can be increased through passive control measures such as hydraulic dampers.
Suppose that it is possible to either reduce the stiffness of the structure by 10% or to increase
the damping coeflicient b by 10%. Both of these strategies should improve the design. The
effects of the changes can be estimated by using equation 9-3. The new displacements are
shown in figures 9-22 and 9-23. The new peak displacements for sample 1 are 0.084 feet if £
is reduced, and 0.079 feet if b is increased. For sample 2, the peak displacements are -0.063
feet if F is reduced and -0.060 feet if b is increased. This indicates that a design that satisfies
the criteria for both ground motions is obtained if the damping is increased by 10%, but
not if the stiffness is reduced by 10%. The same approach can be used to evaluate different
retrofit strategies.

Another potential use of the sensitivity factors is to select the optimum value of a parameter
of a design or retrofit strategy by using an optimization routine as suggested in Section 4.
For example, the optimum slip-load of a friction damper is often difficult to determine [62]
and can be found using the sensitivity information. The procedure will be illustrated in
Section 9.4 for the secondary system.
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9.4 Secondary system

The secondary system considered is the hospital fire suppression piping system. It is a steel
piping system that runs from a tank in the hospital basement to a standpipe on the roof. On
floors 6-14, branches split off from the main riser pipe to supply water to ceiling-mounted
sprinklers in the hospital wards. The riser pipe and connection to the basement tank are
6 inches in diameter, while the branches are 2 inches in diameter reducing to 1 inch at the
ends. To reduce the size of the model, only two of the branches were analyzed: the branch
on the top floor, where the maximum displacement and damage to piping is expected [48],
and the branch at a typical intermediate floor. The system is shown in figure 9-24, where
the axis units are inches. It was modeled in SABER-3D using linear pipe elements for the
straight pipe runs and nonlinear elbow hinge elements for the pipe elbows. The parameters
for the hinge elements were obtained from DIANA shell element analyses of the elbows.

The assumed boundary conditions were (figure 9-25):

e Tank: the pipe was assumed to be fully fixed to the tank on the basement level.

e Pipe clamps: the vertical pipe sections were assumed to be attached to the primary
system at each floor by means of pipe clamps constraining translation of the pipe in
all directions. This was based on evidence obtained from a visit to the site.

e Pipe hangers: the horizontal pipes were assumed to be suspended from pipe hangers
from the floor beams. The pipe hangers provide only vertical support.

The input to the secondary system is the motion of the hospital structure from the primary
system analysis. As the structure does not move as a rigid body, the motion is different
at each support point of the secondary system. There are two methods of determining the
input to the secondary system:

e Perform a time-history analysis of the primary system, and use the motion at the
attachment points as input to the secondary system. If the primary system is nonlinear,
this method must be used.

e If the primary system remains linear, it is possible to determine the motion at the

attachment points without performing a time history analysis of the primary system.
The method is based on modal analysis and is covered in Appendix A.

The corresponding methods of determining the sensitivity of the input to the secondary
system to a parameter of the input to the primary system are:
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e Calculate the sensitivity factors for the time-history analysis of the primary system.
For example, if the acceleration at degree of freedom j, t;(t), is used as the accel-

eration of an attachment point of the secondary system, the sensitivity is 8——u](t) =
x

2* (0
ETeS (é-m—uj(t)> = 9,(t), which is calculated in the sensitivity analysis.

e The modal analysis approach can be used directly with the derivatives of the primary
system input. Details are given in Appendix A.

As displacements and sensitivity factors have been calculated for the primary system, the
first method is generally used here. The second method is used to generate input to the
secondary system for Monte Carlo analysis.

The critical output for the secondary system was assumed to be the relative displacement
between the structure and the pipe where sprinklers are located, that is, the 1 and 2 inch
pipes. This output was selected as sprinkler damage due to relative motion between the
pipe and hard ceilings was found to be a common problem for hospital piping systems in
the Northridge earthquake [5]. The relative displacement in the Y-direction of node 64 was
found to be the most critical and is plotted in figure 9-26. It was assumed that the sprinklers
would be damaged if the displacement exceeded 1 in. The peak displacement in figure 9-26
is 1.52 in for sample 1, which is unsatisfactory.
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9.4.1 Identification of critical parameters

The parameters of the system that can be changed are the thicknesses of the pipes, which
can be increased by selecting a stronger pipe; the strength and stiffness of the elbow and tee
connections; and the mass. It is assumed that the Young’s modulus of the steel is difficult or
impossible to change and that the pipe diameters are fixed by the water flow requirements.
Consider the problem of evaluating the sensitivity of the displacement of node 64 to the
thicknesses of the three sizes of pipes. The sensitivity factors with respect to the three pipe
thicknesses are shown in figures 9-27 and 9-28. As the uncertainty in the thickness is likely
to be a similar percentage of the nominal value for each pipe, the first method described
in Section 9.3.1 can be used to evaluate the sensitivity. The sensitivity factors multiplied
by the nominal parameter values are in figures 9-29 and 9-30. It appears that for a similar
percentage change in pipe thickness, the displacement is more sensitive to the thickness of
the 2 inch pipe than to the 1 inch pipe, and not very sensitive to the thickness of the 6 inch
pipe. This seems reasonable as the Y-displacement of node 64 is governed by the motion of
the support where the 2 inch branch meets the riser, and is transferred to node 64 by axial
and flexural behavior in the 2 inch pipe, and axial behavior in the 1 inch pipe. The flexural
behavior in the 2 inch pipe is probably more critical than the axial behavior, and is affected
by the thickness of that pipe.

For comparison, the sensitivity factor with respect to the soil average shear wave velocity

for sample 1 is plotted in figure 9-31. The sensitivity of the displacement of node 64 to the
different parameters can be compared by equation 9-4. Assuming coeflicients of variation of
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0.1 for the pipe thicknesses and 0.2 for the average shear wave velocity, the variance of the
displacement is shown in figure 9-32. The displacement is substantially more sensitive to the
soil parameter than to the pipe thicknesses.

To improve the behavior of the system it is necessary to reduce the displacement of node 64
to less than 1 inch. We can estimate whether this can be done by increasing any of the pipe
thicknesses by using the sensitivity factors and the linear approximation. The approximate
effects of increasing the thickness of the 1 inch pipe from 0.133 in to 0.179 in, the thickness
of the 2 inch pipe from 0.154 in to 0.218 in, and the thickness of the 6 inch pipe from 0.280
in to 0.432 in are shown in figure 9-33 for ground motion sample 1. The thickness changes
correspond to use of a stronger pipe section [49]. The behavior is not significantly affected.
The peak displacements, to be compared with the original peak displacement of 1.52 in,
are 1.50 in if the thickness of the 1 inch pipe is increased, 1.56 in if the thickness of the
2 inch pipe is increased, and 1.52 in if the thickness of the 6 inch pipe is increased. The
new peak displacements are only approximate, but they do indicate that increasing the pipe
thicknesses will not reduce the peak displacement sufficiently. It is necessary to consider
retrofit strategies.

9.4.2 Retrofit strategies

Consider the often recommended retrofit strategy of installing braces to restrict the horizontal
movement of the pipe [5]. The question of where the braces should be installed can be tackled
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using the sensitivity factors. An initial estimate of the effect of braces on the displacement
can be obtained by adding elements with zero Young’s modulus to the unbraced system
and calculating the sensitivity of the displacement of node 64 with respect to the Young’s
modulus of each of the new elements. This should give an estimate of the relative effects
of adding restraints at different points to the unbraced system. Provided that all of the
degrees of freedom at the supported end of the brace are fixed, the zero modulus will not
cause numerical problems as stiffness in the degrees of freedom at the piping system end of
the brace is provided by the existing system.

Five locations were considered as shown in figure 9-34. The sensitivity factors for ground
motion sample 1 are shown in figure 9-35. The braces on the 1 inch pipe have the greatest
effect on the displacement of node 64, indicating that these are the best locations to install
braces.

At this point it is possible to add stiffness to the braces and reanalyze the system to confirm
that the performance is satisfactory. However, to illustrate another use of the sensitivity
factors, we will investigate another retrofit strategy as well. Consider replacing the rigid
pipe clamp connections between the structure and the riser section of the pipe by snubbers.
Snubbers are hydraulic or mechanical devices used as flexible supports for piping systems.
A snubber can be modeled as a spring and a dashpot in series [11]; however, for simplicity it
is modeled here as a spring [60]. The locations of the snubbers are shown in figure 9-36. The
spring stiffness that minimizes the displacement of node 64 needs to be determined so that a
snubber can be selected. The sensitivity factors can be used for this purpose. The approach
is based on nonlinear optimization as mentioned in Section 4 and is programmed in SABER.
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The optimization routine indicates that the optimum stiffness is 0.0032 kip/inch, which
reduces the peak displacement to 0.62 in. This value is less than 1 inch so the performance
is satisfactory.

The optimization procedure is automated in SABER and it is not strictly necessary to
monitor the progress or provide any further input once the routine has started. However,
it may be useful here to take a more detailed look at the results. Figure 9-37 illustrates
the progress of the optimization. For spring stiffnesses less than 0.0032 kip/inch, the peak
displacement over the whole 10 second range occurs at around 6 seconds. The peak is not
necessarily exactly at 6 sec, but varies continuously from 5.98 seconds to 6.08 seconds as
the stiffness increases from 0.001 to 0.0032 kip/inch. For spring stiffnesses greater than
0.0032 kip/inch, the peak displacement over the 10 second range occurs at around 9 seconds.
Again, the time of the peak actually varies continuously from 9 seconds to 8.54 seconds as the
stiffness varies from 0.0032 to 0.006 kip/inch. The values of the peaks at around 6 seconds
and 9 seconds are shown in figure 9-37. The peak over the entire 10 second range is the larger
of the two. The minimum possible peak displacement is found where the two lines intersect.
At each iteration of the optimization routine, the derivative of the peak displacement with
respect to the spring stiffness is calculated and used to guide the routine. The progress of
the routine is shown in the figure. It satisfactorily converges to the stiffness value which
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minimizes the peak displacement.

9.4.3 Fragility curves

Fragility curves show the probability of failure of a system as a function of a parameter of
the input ground motion. As mentioned in Section 4, the sensitivity factors can be used to
generate fragility curves using the approximate first-order Monte Carlo method. This section
illustrates the generation of fragility curves for the secondary system using traditional Monte
Carlo analysis as well as the approximate method. The failure criterion assumed is a relative
Y-direction displacement of node 64 of 1.75 inches.

Fragility curves are often plotted as functions of the peak ground acceleration (PGA) of
the input motion. However, PGA is not an entirely satisfactory index. As described in
Section 9.2, the power spectral density of the motion is a function of the magnitude M and
distance R of the earthquake event causing the motion. A better option than plotting a
fragility curve against PGA may be to plot a fragility surface as a function of both M and
R (figure 9-38). The joint probability density of M and R, obtained from a seismic hazard
analysis of the site, can then be used with the surface to determine a probability of failure
for the system over a predetermined lifetime. However, as this section is only intended as
a demonstration of the methodology for generating fragility curves, it is not necessary to
generate an entire surface. It will be assumed that the distance R is fixed at 50 km and the
fragility curves will be plotted against magnitude M. The resulting fragility curve forms one
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of the lines at fixed r on the fragility surface of figure 9-38.

For a given (m,r) pair the power spectral density from which a ground motion can be
generated is fixed. However, infinitely many realizations are possible for a fixed power
spectral density so the input ground motion used to generate the fragility curves is random.
In the terms of the parametric representation used to generate the motion (equation 9-1),
the variables Ay, B, k = 1,2,3... are random.

System parameters assumed random are the diameter and Young’s modulus of the pipes,
and the damping. The coefficients of variation used are 0.2 for the pipe diameters, 0.06 for

the Young’s modulus and 0.5 for the damping.

One possible procedure for generating the fragility curve is the following, referred to here as

Method A:

1. Select a value of M.

2. Generate a predetermined number N, samples of the input and N; samples of the
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secondary system.
3. Perform a time-history analysis of the primary system using one of the input samples.

4. Perform a time-history analysis of one of the secondary system samples using the results
from the primary system analysis. Determine whether failure occurs in the secondary
system.

5. Repeat steps 2-4 for each of the N, samples.

6. If the number of failures in the N analyses is Ny, the probability of failure at this
value of M is approximately ]1\\[,—2

7. Repeat steps 2-6 for several different values of M.

8. Fit a regression curve through the resulting points. The curve must be monotonically
increasing over the range [0, 1].

However, in this procedure N, time-history analyses of the primary system must be per-
formed at each M-value. This may be a problem if these analyses are time-consuming. A
better procedure may be Method B, in which only one realization of the ground motion at
each M-value is used. The probability of failure is then calculated using the N, secondary
system samples. This probability is conditional on the particular ground motion realization
used. However, a different realization is used at each M-value, so the fitted fragility curve
will reflect the average probability of failure of all of the realizations. Method B is quicker
than Method A, particularly if a time-history analysis of the primary system is substantially
more time-consuming than a time-history analysis of the secondary system.

Corresponding approximate methods in which the sensitivity factors and the procedure of
Section 4 are used instead of traditional Monte Carlo simulation to determine the probability

of failure will be termed Methods A’ and B'.

For the hospital demonstration project, it was found that Methods A and A’ were impractical,
so Methods B and B’ were used to generate the fragility curves. Method A requires several
analyses of the primary system at each M-value, which is extremely time-consuming. Method
A’ requires only one analysis of the primary system at each M-value, but requires that
sensitivity factors be calculated for all of the random variables Ay, By, k = 1,2,3... used in
the input to the primary system. Approximately 650 were used and calculating sensitivity
factors for each one would also be extremely time-consuming.

The fragility curves calculated by Methods B and B’ are shown plotted against M in figure 9-

39 and PGA in figure 9-40. Fragility curves of the following form were fitted by the weighted
least squares method:

y=1—exp (—axb) (9-5)

192



where y is the fragility, z is the ground motion parameter, and a and b are regression
constants.

The following comments can be made about the fragility curves:

1. In both figures 9-39 and 9-40, the curves generated by Methods B and B’ are reasonably
similar and the approximate B’ curves may be accurate enough for most applications.
The advantage of the approximate method is in the time taken. To illustrate the order
of magnitude difference, the total time required for a 256 MHz computer to complete
the calculations was less than one minute for Method B’ compared with two days for

Method B.

2. Comparison of figures 9-39 and 9-40 indicates that magnitude M is a better ground
motion parameter than PGA for the fragility curves. In this context, a good ground
motion parameter is one against which the points on a fragility curve show a clear in-
creasing trend. It appears from inspection of figure 9-39 that higher fragilities coincide
with higher values of M. It is less apparent from figure 9-40 that higher fragilities co-
incide with higher values of PGA, indicating empirically that M is a better parameter.
More precisely, in figure 9-39 the sum of squared residuals for the B and B’ curves are
0.06 and 0.05 respectively, while in figure 9-40 they are 0.14 and 0.12. This indicates
that the data points fit the increasing curves against M better than they fit the curves
against PGA.
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SECTION 10
CONCLUSIONS

There appears to be no limit to the application of the direct differentiation method to calcu-
late sensitivity factors for dynamic systems subjected to seismic loads. The basic framework
and approach has been laid out and implemented in two computer programs: a relatively
simple MATLAB program and a more detailed DIANA finite element analysis program.
The approach works well and no major numerical problems were experienced. If required,
derivatives can be calculated for other material models. Some effort is required to derive the
relevant equations, which can then be used in the existing computer program framework.

An example was presented to illustrate the application of the sensitivity factors to the pri-
mary and secondary systems of a hospital in Buffalo. The sensitivity factors were used
to identify critical parameters, estimate the variance of the response of the systems, select
retrofit strategies and generate approximate fragility curves.

10.1 Future work

The following points can be considered for future work:

e Derivation and implementation of sensitivity equations for other DIANA material mod-
els such as the smeared cracking model.

e Derivation and implementation of sensitivity equations for geometrically nonlinear be-
havior.

e A new type of shell finite element for analysis of pipes. The hybrid shell and beam
model is not entirely satisfactory as it is difficult to generate and enforces a plane
section at the shell/beam interface. The problem with a full shell element analysis
is that at least twenty elements are required around the circumference of the pipe to
ensure accuracy. Current shell elements are required to be approximately square, so
that the longitudinal dimensions of the elements have to be very small relative to the
longitudinal dimensions of typical piping systems. This means that unnecessarily high
numbers of elements have to be used for a full shell analysis. An elongated type of
shell element would thus be useful.
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APPENDIX A
CALCULATION OF RESPONSE OF LINEAR PRIMARY SYSTEM

The input to the primary system is a Gaussian stochastic process with the amplitude mod-
ulated through time by an envelope function w(t). The process is simulated by [63]

a(t) = w(t) Y /g(wr, 0)Aw (A cos(wit) + By sin(wt)) (A-1)

where 8 is a vector of parameters of the power spectral density g(w), w, is a cut-off frequency,
Aw = Lo wp = (k — %)Aw; and Ay and Bj are independent standard Gaussian random
variables.

The displacement at any degree of freedom i of the primary system is [13]
wi(t) =) biqi(t) (A-2)
7=1

where ¢;; is the displacement at degree of freedom ¢ in mode j and g;(t) is the j-th modal
coordinate. It is typically not necessary to consider all of the modes — only the m modes
that have significant contributions need be included. The modal coordinate is governed by

Gi(t) + 2Gw;g;(t) + wig;(t) = Tja(t) (A-3)

where w;, (; and I'; are the frequency, damping ratio and modal participation factor for
mode 7 respectively.

The solution to equation A-3 is

ot
L / e~ =) sin (wgi(t — s)) a(s) ds (A-4)
0

Wdj

where wg; = wj, /1 — Cf

Substituting equations A-1 and A-4 into A-2

q(t) =

ui(t) = quij[‘—j'\/o e=4wi(t=) sin (wgi(t — s)) a(s) ds
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m ot
= quij&/ e~ (=9 sin (W (t — s))
j=1 wdj 0
s) Z V 9(wk, 0)Aw (Ag cos(wks) + By sin(wys)) ds
k=1

3

= g(wi, 0)Aw

k=1

m T. t N .
. [Ak Z <f>¢ju;]j /0 e~$%i(=) sin (wgi (t — 5)) w(s) cos(wys) ds

+Bk2¢” ‘ / ~6wi(t=9) gin (wgi(t — s)) w(s)sin(wks)ds}

3

= vV g(wk, 8)Aw

k=1

I,
Akz% oo +Bkz¢,] ot >} (A5)
The integrals

Li(t) = /0 e~ (=9 gin (wgi (t — s)) w(s) cos(wgs) ds

L(t) = /0 e=4%1(=9) sin (wgi (t — s)) w(s) sin(wgs) ds

can be solved in closed form for certain forms of the envelope function w(s). An often used
function has the form

w(s) = asbe™ (A-6)
However, in this case no closed form exists for I;(t) and I5(t). A better option is to use
w(s) = ¢1e?°sin(cszs) (A-T)

and select the values of ¢;, ¢; and ¢3 to match equation A-6 as closely as possible. In this
case closed form solutions can be found for I;(¢) and I3(¢) [56].

If z is a parameter in @, then the derivative of u;(t) with respect to = is

Ju;(t) - \/_W (99 ; I ¥
ajx :;2 g(w, 0) Wk AkZ@J Il +B’“Z¢’J [2 t) (A-8)
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