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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center
of excellence in advanced technology applications that is dedicated to the reduction of earthquake
losses nationwide. Headquartered at the University at Buffalo, State University of New York, the
Center was originally established by the National Science Foundation in 1986, as the National
Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout
the United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and
post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide
program of multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the
State of New York. Significant support is also derived from the Federal Emergency Management
Agency (FEMA), other state governments, academic institutions, foreign governments and
private industry.

The Center’s FHW A-sponsored Highway Project develops retrofit and evaluation methodologies
for existing bridges and other highway structures (including tunnels, retaining structures, slopes,
culverts, and pavements), and improved seismic design criteria and procedures for bridges and
other highway structures. Specifically, tasks are being conducted to:

» assess the vulnerability of highway systems, structures and components;

* develop concepts for retrofitting vulnerable highway structures and components;

* develop improved design and analysis methodologies for bridges, tunnels, and retaining
structures, which include consideration of soil-structure interaction mechanisms and their
influence on structural response;

* review and recommend improved seismic design and performance criteria for new highway
systems and structures.

Highway Projectresearch focuses on twodistinct areas: the development of improved design criteriaand
philosophies for new or future highway construction, and the development of improved analysis and
retrofitting methodologies for existing highway systems and structures. The research discussed in this
reportis aresult of work conducted under the existing highway structures project, and was performed
within Tasks 106-E-2.2 through 106-E-2.5, “Spatial Variation of Ground Motion” of that project as
shown in the flowchart on the following page.

The overall objectives of these tasks were to assess and, to the extent possible, quantify the effect
of spatial variability of ground motion on the seismic response of highway bridges and to provide
guidelines for the seismic analysis and design of highway bridges which account for this effect.
To accomplish these objectives, a methodology was developed to generate spatially varying
ground motion time histories along the length of a long, multi-span bridge at its supports. Spatial
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variability of seismic ground motion can be mainly attributed to the following three mechanisms:
difference in arrival times of seismic waves at different locations, which is commonly known as
the wave passage effect; loss of coherence of seismic waves due to multiple reflections and
refractions as they propagate through the highly inhomogeneous soil medium, referred to as the
incoherence effect; and change in the amplitude and frequency content of seismic ground motion
due to different local soil conditions, known as the local soil effect. The methodology developed
in this study to generate spatially varying seismic ground motion time histories at different
locations reflects all three of these effects.

Representative highway bridges were analyzed using two cases of input ground motions at the
bridge supports. In the first case, the input motions were identical at all supports; in the second
case, different input motions were applied at each pier along the length of the bridge reflecting
the wave passage effect, the incoherence effect, and the local soils effect. This was done to assess
the effect of spatial variability of ground motion when compared to the standard assumption
currently used in practice of identical support ground motion. An extensive sensitivity analysis
was carried out as a function of various parameters controlling the spatial variability of ground
motions. Based on the results from these studies, two guidelines were proposed: one for the
analysis and design of highway bridges that are less than approximately 1,000-to-1,500 feet long
and have all supports on the same local soil conditions, and the second for bridges that are more
than approximately 1,500 feet long or bridges of any length that have supports on different local
soil conditions.
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ABSTRACT

The two basic steps in the design of new bridge structures or the analysis of existing ones for
strong earthquakes are the proper definition and representation of the seismic excitation and the
subsequent computation of the structural response due to this input earthquake ground motion. It
is very common in engineering practice today to determine the structural response by performing
an equivalent linear static or a linear dynamic analysis of the bridge. For the case of a linear
dynamic analysis, it is more common to perform a response spectrum analysis rather than
performing a time history analysis. Furthermore, when deciding to perform a time history
analysis, it is customary to assume that all of the bridge supports experience identical ground
motion time histories, even for multi-span bridges of considerable overall length. It should be
pointed out that the assumption of identical support ground motion is implicitly made also when
performing an equivalent static or a response spectrum analysis.

Past research studies have demonstrated that seismic ground motion can vary significantly over
distances comparable to the length of the majority of highway bridges on multiple supports. As a
result, such bridges are subjected to ground motions at their supports that can differ considerably
in amplitude, phase, as well as frequency content. These spatially varying seismic ground
motions are referred to in the literature as differential or asynchronous support ground motions.
In some cases, these differential motions can induce additional internal forces in the structure
when compared to the case of identical support ground motion. This in turn might have a
potentially detrimental effect on the safety of a bridge during a severe earthquake event. It is
therefore of paramount importance to be able to account for the effect of spatial variability of
earthquake ground motion on the response of highway bridges.

The objectives of this study are therefore to estimate the effect of spatial variability of ground
motion on the seismic response of highway bridges and to provide guidelines for the seismic
analysis and design of such structures to account for this effect. To accomplish the
aforementioned objectives, a methodology is developed to generate spatially varying ground
motion time histories at the different supports of a bridge. Spatial variability of seismic ground
motion can be mainly attributed to the following three mechanisms: 1) difference in arrival times
of seismic waves at different locations, commonly known as the "wave passage effect,” 2) loss of
coherence of seismic waves due to multiple reflections and refractions as they propagate through
the highly inhomogeneous soil medium, referred to as the "incoherence effect," and 3) change in
the amplitude and frequency content of seismic ground motion due to different local soil
conditions, known as the "local soil effect”. The "wave passage effect" is characterized by the
apparent velocity of wave propagation, the "incoherence effect" is characterized by the so-called
coherence function, while the "local soil effect" is characterized by defining different response
(or power) spectra at different locations corresponding to their local soil conditions. The
methodology that is developed in this study to generate spatially varying seismic ground motion
time histories at different locations reflects all three of the aforementioned effects.

A set of representative highway bridges is then selected to be analyzed using identical support
ground motions and differential (asynchronous) support ground motions, in order to estimate the
effect of spatial variability of seismic ground motion. Extensive preliminary as well as rigorous
sensitivity analyses are performed using a large variety of different spatially varying ground
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motions. A Monte Carlo simulation approach is followed throughout. The following general
conclusions are drawn.

1.

The peak ductility demand at the columns can increase substantially when the bridge is
analyzed using differential support ground motion and considering that different supports of
the bridge are on different local soil conditions, compared to the case of identical support
ground motion. Specifically, the ratio of the peak ductility demand at the columns using
differential support ground motion and considering that different supports of the bridge are
on different local soil conditions over the peak ductility demand using identical support
ground motion is of the order of 2.0-2.5 for bridges of intermediate total length, and as high
as 4.0 for longer bridges.

The peak ductility demand at the columns can increase by a smaller amount when the bridge
is analyzed using differential support ground motion and considering that all supports of the
bridge are on the same local soil conditions, compared to the case of identical support ground
motion. Specifically, the ratio of the peak ductility demand at the columns using differential
support ground motion and considering that all supports of the bridge are on the same local
soil conditions over the peak ductility demand using identical support ground motion is of the
order of 1.0-1.5 for bridges of intermediate total length, and as high as 4.0 for longer bridges.

Low apparent velocity of wave propagation might reduce in some cases the peak ductility
demand of some of the columns, for the general case where both the wave propagation and
loss of coherence effects are considered and all supports of the bridge are on the same type of
local soil conditions. Further, a low value of the velocity might change the relative
contribution of the wave passage and the incoherence effects in some of the columns.

The incoherence effect is in general more important than the wave passage effect. The wave
passage effect becomes more important than the incoherence effect only for relatively longer
bridges and for low velocities of wave propagation. But even in cases where the incoherence
effect is more important, the wave passage effect is still substantial and its interaction with
the incoherence effect cannot be predicted a priori. Therefore neglecting either one of these
two effects might produce inaccurate results.

The relative contribution of the wave passage and incoherence effects to the peak ductility
demand of the columns does not seem to be affected to any considerable degree by the
assumption of different versus same local soil conditions at the supports of the bridge.

The identical support ground motion assumption seems to be generally unconservative, but
much more so in the case of different local soil conditions. However, for relatively longer
bridges, the identical support ground motion assumption severely underestimates the peak
ductility demand at the columns by approximately the same amount for both same as well as
different local soil conditions.

Based mainly on the general conclusions of the analyses performed in this study (presented
above), and taking into account the observations and conclusions of other researchers’ work, the
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following guidelines are proposed for the analysis and design of highway bridges to account for
the spatial variation of seismic ground motion.

I.

II.

For Bridges That Are Less Than Approximately 1,000 to 1,500 ft in Total Length,
And Have All Their Supports on the Same Local Soil Conditions:

For such bridges, we believe that the relatively small increases in the peak response values
due to the spatial variability of seismic ground motion can be taken care of by the various
safety margins built in current seismic codes.

It is therefore recommended that such bridges be analyzed and designed using currently
available seismic design practices that do not consider the spatial variability of seismic
ground motion.

For Bridges That Are More Than Approximately 1,000 to 1,500 ft in Total Length,
Or Bridges of Any Length That Have Supports on Different Local Soil Conditions:

For such bridges, we believe that the significant increases in the peak response values due to
the spatial variability of seismic ground motion can not be taken care of by the various safety
margins built in current seismic codes without compromising the overall safety of the
structure.

It is therefore recommended to perform time history dynamic analyses for design purposes,
involving response spectrum compatible asynchronous (differential) support ground motion
time histories reflecting the (potentially) different local soil conditions, wave propagation and
loss of coherence effects.

The generation of such asynchronous support ground motion time histories can be performed
using the methodology presented in this report or analogous methodologies suggested by
other researchers.

It is recommended to consider a minimum of twenty time history analyses of the bridge to
get a reliable estimate of the peak response that will be used for design purposes.

Dynamic analyses of a bridge using asynchronous support ground motion can be done
without undue difficulty today using commercially available finite element codes.
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SECTIONI1
INTRODUCTION

1.1  General Background

The two basic steps in the design of new bridge structures or the analysis of existing
ones for strong earthquakes are the proper definition and representation of the seismic
excitation and the subsequent computation of the structural response due to this input
earthquake ground motion. It is very common in engineering practice today to
determine the structural response by performing an equivalent linear static or a linear
dynamic analysis of the bridge. For the case of a linear dynamic analysis, it 1s more
common to perform a response spectrum analysis rather than performing a time history
analysis. Furthermore, when deciding to perform a time history analysis, it is customary
to assume that all of the bridge supports experience identical ground motion time
histories, even for multi-span bridges of considerable overall length. It should be
pointed out that the assumption of identical support ground motion is implicitly made
also when performing an equivalent static or a response spectrum analysis.

Past research studies have demonstrated that seismic ground motion can vary
significantly over distances comparable to the length of the majority of highway bridges
on multiple supports. As a result, such bridges are subjected to ground motions at their
supports that can differ considerably in amplitude, phase, as well as frequency content.
These spatially varying seismic ground motions are referred to in the literature as
differential or asynchronous support ground motions. In some cases, these differential
motions can induce additional internal forces in the structure when compared to the
case of identical support ground motion. This in turn might have a potentially
detrimental effect on the safety of a bridge during a severe earthquake event. It is
therefore of paramount importance to be able to account for the effect of spatial
variability of earthquake ground motion on the response of highway bridges.

Spatial variability of seismic ground motion can be mainly attributed to the following
three mechanisms: 1) difference in arrival times of seismic waves at different locations,
commonly known as the "wave passage effect," 2) loss of coherence of seismic waves
due to multiple reflections and refractions as they propagate through the highly
inhomogeneous soil medium, referred to as the "incoherence effect,” and 3) change in
the amplitude and frequency content of seismic ground motion due to different local
soil conditions, known as the "local soil effect”. The "wave passage effect" is
characterized by the apparent velocity of wave propagation, the "incoherence effect” is
characterized by the so-called coherence function, while the "local soil effect” is
characterized by defining different response (or power) spectra at different locations
corresponding to their local soil conditions. The apparent velocity of wave propagation
can be estimated from analysis of recorded data and can be considered to be constant or
to vary with frequency (although in most cases it is assumed to be constant). The
coherence function can be estimated from recorded data or from physical models. In
either case it is a decaying function of frequency and separation between observation
points.



Spatial variability of seismic ground motion can be treated deterministically or
stochastically. In a deterministic approach, a recorded, simulated, or synthesized time
history is applied at different structural supports by considering a simple delay in the
arrival of the seismic waves according to the distance between supports and the
apparent velocity of wave propagation. Such a deterministic approach obviously takes
into account only the wave passage effect. In order to consider also the coherence and
local soil effects, a stochastic approach has to be followed. In a stochastic approach,
ground motion time histories at different locations on the ground surface are modeled as
stochastic vector processes with prescribed spectral contents at every location. The
spatial variability of ground motion is described by means of the coherence function
and the apparent velocity of wave propagation that together define the cross-spectral
density characteristics of the vector process.

It is generally acknowledged that it is most challenging to estimate the coherence
function when studying the spatial variability of seismic ground motion. In 1978, the
issue of estimating this spatial variability was addressed during an international
workshop in Hawaii (Iwan 1979), where the deployment of strong ground motion arrays
in seismically active regions such as California, Taiwan and Japan was suggested.
Following this suggestion, the study of spatial variability of seismic ground motion
acquired a new dimension when high-density arrays of accelerometers were installed at
several locations all over the world. One of the most important and influential arrays
was the SMART-1 array in Lotung, Taiwan, whose recorded data from numerous
seismic events have been used to conduct significant research to develop various
models to describe the spatial variability of seismic ground motion. Over the years,
different analytical expressions have been suggested to model the coherence decay
using recorded data from different arrays on different local soil conditions and
numerous seismic events in each array. It has to be mentioned, however, that most of
these expressions for the coherence function were based on recorded accelerograms at
the SMART-1 array.

1.2 Models for the Spatial Variability of Seismic Ground Motion

In one of the early papers dealing with the issue of spatial variability of seismic ground
motion, Bolt et al. (1982) studied seismic wave coherency, local magnitude variation
across the array, and cross correlation of motions between stations. They found the
acceleration waveforms to vary significantly across the array for each event they
studied. Loh (1985) developed a mathematical model for the spatial variation of ground
displacements using the wave number spectrum and the cross-spectral density function
between two spatial locations of the array data. Such a model can be useful for the
random vibration analysis of elongated structures subjected to multi-support excitation.
Luco and Wong (1986) gave an analytical model for the coherence function developed
from the analysis of wave propagation through random media. Harichandran and
Vanmarcke (1986) and Harichandran (1991) did a comprehensive analysis of several
earthquake events recorded at the SMART-1 array, and formulated a model for the
coherence function whose parameters could be determined from the recorded data of
specific events (e.g. they provided values for the model parameters based on events 20
and 24). Loh and Yeh (1988) developed a similar model with parameters being
determined from events 39 and 40. Hao et al. (1989) suggested another model for the



coherence function with parameters established using recorded data from events 24 and
45. Abrahamson (1985) examined the coherence of specific events recorded at the
SMART-1 array. Abrahamson et al. (1991) formulated a spatial coherency model using
data from 15 earthquake events recorded at the SMART-1 array and established an
expression for the coherence function from a non-linear regression analysis of the data.
They found that the results were comparable with the coherencies computed at the EPRI
Parkfield array, indicating that these coherence functions might be applicable to other
regions. Abrahamson (1993) suggested a model for the coherence function based on
recorded data from a number of different seismic arrays located in a variety of soil
conditions.

Schneider et al. (1992) compared the coherencies from ten dense seismic arrays situated
in different soil conditions and coherencies observed were different in different soil
conditions. Essentially all models proposed for the spatial variability of ground motion
included the wave passage and incoherence effects, but did not take into account the
local soil effect (effect of different local soil conditions). Der Kiureghian (1996)
proposed a model for the coherence function using a linear random vibration approach
and included for the first time all three different effects of spatial variability: the wave
passage effect, the incoherence effect, and the local soil effect.

1.3  Effect of Spatial Variability of Seismic Ground Motion on Structural
Response

The study of the effect of spatial variability of seismic ground motion on the response
of a structure can generally be performed with two different approaches: (1) using
random vibration theory (frequency domain analysis), and (2) using a Monte Carlo
simulation approach (time domain analysis). The random vibration approach is
generally computationally more efficient but it assumes stationary input excitation and
linear structural response. On the other hand, the Monte Carlo simulation approach
though computationally less efficient, does not operate on the strict assumptions of
stationarity and linearity.

Many researchers have investigated the response of long span structures to differential
(asynchronous) support excitations. Most of them have used relatively simple models to
describe the structure (e.g. simple or continuous beams). Most of the early studies were
essentially deterministic and focussed only on the wave passage effect on the response
of structures (e.g. Masri 1976, Scanlan 1976, Werner and Lee 1979, Werner et. al.
1979). In these papers comparisons were made with the case of identical support ground
motions (a norm in engineering practice) in order to evaluate the significance of the
wave passage effect on the structural response. Abdel-Ghaffar (1982) examined the
earthquake induced vertical response of suspension bridges subjected to correlated or
uncorrelated multi-support excitation. Existing ground displacements recorded at
locations within distances similar to the span of the suspension bridge were used to
establish the cross-spectral density function of the input ground motion. These bridges
were analyzed in the frequency domain using a random vibration approach. It was
shown that the earthquake response associated with correlated multiple support
excitation was significantly different (the cable tension was lower in this case) from the
uncorrelated case.



Zerva et al. (1986) provided an empirical expression for differential ground motions.
This empirical expression was obtained through least-square error minimization of the
results of an analytical stochastic model developed earlier by the authors. Differential
ground motions obtained using this empirical expression, as well as the analytical
model developed earlier, were used as input motions in the evaluation of the dynamic
response of a two-degree-of-freedom model for a pipeline. The analysis indicated that
the empirical expression described the effect of differential ground motion on the
response of the pipeline with adequate accuracy. In this paper the authors have also
introduced the concept of the differential response spectrum for design purposes. The
results of the analysis performed demonstrated that the assumption of perfectly
correlated motion at the supports is inadequate for the analysis and design of pipelines.
Zerva (1988) used simply supported and continuous beams to model extended
structures. It was concluded that the effect of differential support ground motion was
not significant for single span simply supported bridges and that the identical support
ground motion assumption was a valid approximation for such bridges. However, for
continuous pipelines on multiple supports, partially correlated motions yielded higher
stresses than perfectly correlated motions.

Harichandran et al. (1988) considered both the effects of wave passage and incoherence
in their model to estimate the response of a single span beam using a random vibration
approach. They concluded that by considering only the wave passage effect, the beam
response is underestimated, and that the assumption of identical support ground motion
was overly conservative for the case of a single span beam. In a later paper,
Harichandran and Wang (1990) analyzed a two-span continuous beam modeled using
finite elements. The response was again computed using a linear random vibration
approach, and the relative significance of the incoherence and wave propagation effects
was examined for various span lengths. The results were compared to the case with
identical support ground motion and to the case where only the wave passage effect was
considered. It was found that when these effects were considered, the estimate of the
structural response could become overly conservative for some beam configurations and
unconservative for others. They concluded that it is very important to consider both the
wave passage and incoherence effects, when estimating the response of multiple
supported structures. Another observation was that for cases where the apparent
velocity of wave propagation is large, the incoherence effect becomes more important
than the wave passage effect. Finally, they concluded that the identical support ground
motion assumption yields inaccurate results for such structures. Harichandran and Wang
(1990) investigated also multiple-span continuous beams and observed a similar
behavior.

Abdel-Ghaffar (1991) studied the effect of spatial variation of ground motion on cable
stayed bridges. A non-linear time history analysis using a three-dimensional model of
the bridge was performed. Existing strong motion records were used as representative
input ground motions. The nonlinearity was due to changes in the geometry of the
bridge due to large deformations including changes in the geometry of the cables. A
tangent stiffness iterative procedure was used to capture the non-linear response. The
results indicated that differential support ground motion tends to considerably alter the



structural response when compared to the case of identical support ground motion. In
some cases, it increased the response while in other cases it decreased the response.
Lower values for the apparent velocity of wave propagation generally tend to produce
higher values for the response quantities, and a non-linear analysis seems to be
inevitable for such long span structures with complex geometry. In a later paper, Abdel-
Ghaffar (1992) examined the response of several existing cable-stayed bridges. It was
found that the structural response increased substantially when using differential
support ground motion, especially for more rigid bridges and bridges with supports on
different local soil conditions. The increase of the structural response was found to be
dependent on the specific bridge configuration (e.g. span length rigidity, structural
redundancy etc.)

Zerva (1991) examined the relative effects of wave passage and incoherence for
lifelines modeled as two and three-span continuous beams. The author concluded that
the loss of coherence effect overshadows the wave passage effect (for realistic values of
the apparent velocity of wave propagation), and in fact the wave propagation effect may
be neglected at sites where ground motion is expected to be incoherent. But as seismic
ground motion becomes more coherent, the wave passage effect may produce higher or
lower response than the one induced by identical support ground motions. For low
values of the apparent velocity of wave propagation, the contribution to the overall
response from the quasi-static term is higher than that of the dynamic term. As the
velocity of wave propagation increases, the contribution of the quasi-static term drops
and that of the dynamic term increases. However, if the frequency of the first mode of
the structure is much higher than the dominant frequencies of the input motion, then the
total response may not increase that much when compared to the case of identical
support ground motion. Zerva (1992) did a study to analyze the relative contribution of
the incoherence and wave passage effects to seismic strains in near source regions. The
ground motions were generated using the spectral representation method and
considering different models for the coherence function available in the literature. It
was shown that the wave propagation assumption for analysis and design of buried
pipelines underestimates their response in near source regions, and there exists a critical
apparent velocity of wave propagation for the seismic ground motions. For apparent
velocities of wave propagation higher than the critical value, seismic strains (response)
are essentially constant and controlled by the incoherence of ground motions. For
apparent velocities of wave propagation lower than the critical value, the strains
gradually increase and eventually become inversely proportional to the propagation
velocity.

Harichandran et. al. (1996) studied the effect of spatial variability of ground motion on
existing long span suspension and arch bridges. They studied stationary and transient
linear stochastic response with ground motions generated using the Harichandran and
Vanmarcke model for the coherence function (1986). These bridges were analyzed
using two-dimensional finite element models. They concluded that the assumption of
identical support ground motion is unacceptable as it underestimates the response in
some cases and it overestimates it in others. The consideration of only the wave passage
effect can significantly underestimate the response when analyzing bridges with long
center spans, and therefore the incoherence effect should always be included.



Zerva (1994) analyzed the effect of spatial variability of seismic ground motion on the
response of lifelines. Two commonly utilized models for the coherence function
(Harichandran and Vanmarcke, and Luco and Wang) were compared to determine their
relative effects on the structural response. The structural response was estimated using
the concept of the differential response spectrum (Zerva 1992). The results suggest that
models for the coherence function with partial correlation at low frequencies and with
slow exponential decay as frequency and separation distance increase will produce
significantly high response in lifelines. It was shown that considering the wave passage
effect alone will underestimate the response, and that at high values of the apparent
velocity of wave propagation the incoherence effect overshadows the wave passage
effect. One of the most important effects of spatial incoherence on the response is the
introduction of high quasi-static internal forces in the structure with the simultaneous
reduction in the dynamic forces. The highest dynamic response is induced by identical
support ground motion.

Der Kiureghian et al. (1997) used the multi support response spectrum (MSRS) method
to analyze bridge response under spatially varying ground motion. They used the
coherency model that Der Kiureghian (1996) has developed that includes the
incoherence, wave passage and local soil effects. Using the MSRS method, the expected
maximum of a generic response quantity is calculated with input support ground
motions specified through a set of displacement response spectra for each of the support
degrees of freedom, and a set of coherence functions for every pair of support degrees
of freedom. The authors concluded that depending on local soil conditions, span lengths
of more than 50 ft. may require differential support ground motion analysis. Such
analysis may be required for even shorter spans if their supports are located on sites
with significantly different local soil conditions. Extensive parametric studies were
performed on two example bridge structures. The results of the analyses of these two
bridges indicated that:

1. The spatial variability of seismic ground motion can amplify or de-amplify the
bridge response by as much as a factor of two or possibly more.

2. For a multi-span bridge with 240-ft. spans, the wave passage effect has the dominant
influence with the local soil effect a close second, while for a multi-span bridge with
120-ft. spans, the local soil effect has the dominant influence.

3. The currently practiced method of using the envelope response spectra uniformly at
all supports of a multi-span bridge is inaccurate and potentially unconservative.

In order to check the accuracy of the MSRS method, the results were compared by
performing Monte Carlo simulations. However the MSRS method is based on the
fundamentals of stationary random vibration theory while actual ground motions are
non stationary in nature. It is further limited to linear structures whereas the bridge
response under peak ground acceleration that can cause damage to the structure is
nonlinear.

Monti et al. (1996) examined the inelastic response of multi-span bridges using a Monte
Carlo simulation approach and the spectral representation method (Shinozuka and



Deodatis 1991) to generate the spatially varying ground motion time histories. They did
a parametric analysis of three bridge models with varying stiffnesses using both
differential and identical support ground motion excitations for comparison purposes.
The Luco and Wang model (1986) for the coherence function was selected. The authors
have considered the incoherence and wave passage effects, but did not include the local
soil effect (different soil conditions at different supports). The ground motion time
histories were generated according to Kanai-Tajimi power spectral density functions for
accelerations. The nonlinear model of the bridge consisted of a Takeda-type plastic
zone at the base of the piers. All structural supports were assumed to be on the same
type of local soil conditions, and the wave passage and incoherence effects were made
to vary between their respective extremes. Three bridge models were selected and the
relative importance of the two spatial variability effects was evaluated by considering a
variety of cases. In almost all cases, a certain amount of incoherence acts toward
reducing the ductility demand for the central piers and increasing it for the piers close
to the two ends of the bridge, compared to the case of identical support ground motion.
Another observation was that the structural response to differential support ground
motion is not significantly influenced by the wave passage effect when high levels of
incoherence are present.

1.4 Some Observations from Past Research Work

Studying the results from past work of other researchers (presented briefly in section
1.3), it becomes very difficult to draw general conclusions concerning the effect of
spatial variability of seismic ground motion on the response of elongated structures on
multiple supports. First, it is quite difficult to make comparisons among the results of
the different studies presented in section 1.3, as different researchers use different
structures, different ways to model their structures, different models for the spatial
variability of seismic ground motion, different approaches to analyze the structures and
different quantities to measure the response of a structure. Therefore some of the
conclusions reached by different researchers might seem contradictory because of
differences in the case studies that they have considered. There isn’t even agreement
about whether the assumption of spatial variability of seismic ground motion is
beneficial or detrimental to the structural response (compared to the case of identical
support ground motion). The only common conclusion that can be deduced is that the
effect of spatial variability of ground motion on the response of the structure is very
complex and depends on various parameters describing the structure and the
characteristics of earthquake ground motion.






SECTION 2
GENERATION OF SPATIALLY VARYING
SEISMIC GROUND MOTION TIME HISTORIES

In this chapter, a methodology is proposed to generate earthquake ground motion time
histories at several specified locations on the ground surface, according to user-supplied
response (or power) spectra. It should be mentioned that different locations can correspond
to different local soil conditions, and consequently different response (or power) spectra
can be assigned to each location. This makes possible the analysis of bridges with supports
on different local soil conditions. In addition, a duration of strong ground motion can be
specified through a modulating (envelope) function, and the generated time histories will
reflect a prescribed apparent velocity of wave propagation and a specified loss of coherence
law through a complex coherence function.

At this point, the following important note has to be made concerning the case of differ-
ential (asynchronous) support ground motion when the bridge supports are on different
local soil conditions. As mentioned earlier, the way to approach such a case is by as-
signing different response (or power) spectra to the various bridge supports according to
the corresponding local soil conditions. Such an approach makes necessary the use of a
coherence function between bridge supports on different local soil conditions that would
account for this change in local soil conditions. Unfortunately, such a coherence function is
not currently available, as every model for the coherence in the literature has been estab-
lished for uniform (homogeneous) soil conditions. Consequently, throughout this report,
coherence functions for uniform (homogeneous) soil conditions are used for the cases in-
volving different local soil conditions. Although this is definitely an approximation, it has
been determined to be a reasonable one, as in such cases the effect from the difference
in amplitude and frequency content is the dominant one (compared to loss of coherence
and wave passage). A similar argument can be made for the apparent velocity of wave
propagation (although in this case it is possible to assign equivalent “average” velocities
between points).

The methodology is now described by considering that the acceleration time histories at
a specified number of locations on the ground surface constitute a multi-variate, non-
stationary, stochastic process (non-stationary stochastic vector process). The remaining
part of this chapter is reprinted from Probabilistic Engineering Mechanics, Vol. 11, No.
3, Deodatis, G., “Non-Stationary Stochastic Vector Processes: Seismic Ground Motion
Applications,” pp. 149-167, Copyright (1996), with permission from Elsevier Science Ltd.

2.1 Introduction

One of the most important parts of the Monte Carlo simulation methodology is the genera-
tion of sample functions of the stochastic processes, fields or waves involved in the problem.
The generated sample functions must accurately describe the probabilistic characteristics
of the corresponding stochastic processes, fields or waves that may be either stationary or
non-stationary, homogeneous or non-homogeneous, one-dimensional or multi-dimensional,
uni-variate or multi-variate, Gaussian or non-Gaussian. Among the various methods that



have been developed to generate such sample functions (for a review of these methods,
the reader is referred to Elishakoff 1983, Kozin 1988, Soong and Grigoriu 1993, Grigoriu
1995, and Deodatis 1996a), the spectral representation method is one of the most widely
used today. Although the concept of the method existed for some time (Rice 1954), it was
Shinozuka (Shinozuka and Jan 1972, Shinozuka 1972) who first applied it for simulation
purposes including multi-dimensional, multi-variate and non-stationary cases. Yang (1972,
1973) showed that the Fast Fourier Transform (FFT) technique can be used to dramat-
ically improve the computational efficiency of the spectral representation algorithm, and
proposed a formula to simulate random envelope processes. Shinozuka (1974) extended
the application of the FFT technique to multi-dimensional cases. Recently, Deodatis and
Shinozuka (1989) further extended the spectral representation method to simulate stochas-
tic waves, Yamazaki and Shinozuka (1988) developed an iterative procedure to simulate
non-Gaussian stochastic fields, and Grigoriu (1993) compared two different spectral rep-
resentation models. Four recent review papers on the subject of simulation using the
spectral representation method were written by Shinozuka (1987) and Shinozuka and De-
odatis (1988, 1991, 1996).

A spectral-representation-based algorithm (Shinozuka and Jan 1972, Shinozuka 1987, Shi-
nozuka and Deodatis 1988, Li and Kareem 1991) is used in this chapter to simulate non-
stationary stochastic vector processes with evolutionary power. If the components of the
vector process correspond to different locations in space (as in the seismic ground motion
examples provided later in this chapter), then the process can also be non-homogeneous
in space (in addition to being non-stationary in time). The simulation algorithm is simple
and straightforward and generates sample functions of the vector process according to a
prescribed non-stationary cross-spectral density matrix.

For the important application of earthquake ground motion simulation which is the main
objective of this report, acceleration, velocity, or displacement time histories can be gener-
ated at several locations on the ground surface according to a target cross-spectral density
matrix. The only drawback in this approach is that it is often preferable to work with time
histories that are compatible with prescribed response spectra, rather than with prescribed
power spectral density functions (cross-spectral density matrix). In order to address this
issue, an iterative scheme is proposed in this chapter, based on the suggested simulation al-
gorithm, to generate seismic ground motion time histories at several points on the ground
surface that are compatible with prescribed response spectra, are correlated according
to a given coherence function, include the wave propagation effect, and have a specified
duration of strong ground motion.

Finally, from the rich bibliography related to the various methods currently available to
generate sample functions of stochastic processes, fields and waves, the following repre-
sentative publications dealing with simulation of multi-variate stochastic processes are
mentioned here: Shinozuka and Jan 1972 (simulation of multi-variate processes by spec-
tral representation), Gersch and Yonemoto 1977 (multi-variate ARMA model), Mignolet
and Spanos 1987a, 1987b (stability and invertibility aspects of AR to ARMA procedures
for multi-variate random processes), Li and Kareem 1991 (simulation of non-stationary
vector processes using an FFT-based approach), Li and Kareem 1993 (simulation of multi-
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variate processes using a hybrid discrete Fourier transform and digital filtering approach),
Ramadan and Novak 1993 (asymptotic and approximate spectral techniques to simulate
multi-dimensional and multi-variate processes and fields), and Deodatis 1996b (simulation
of ergodic multi-variate stochastic processes). From this list, the Li and Kareem 1991
and Ramadan and Novak 1993 papers considered non-stationary vector processes. At this
juncture it should be mentioned that a very promising development with potential ap-
plications to simulation of non-stationary multi-variate stochastic processes is the use of
wavelets (e.g. Gurley and Kareem 1995, and Spanos and Zeldin 1995).

In the following, the theory, the simulation algorithm, and the iterative scheme are pre-
sented for tri-variate non-stationary stochastic vector processes (dimension of vector pro-
cess is three). This is done for the sake of simplicity in the notation. The simulation
algorithm and the iterative scheme can be extended in a straightforward fashion to any
other dimension of the vector process.

2.2 Tri-Variate Non-Stationary Stochastic Processes
Consider a 1D-3V (one-dimensional, tri-variate) non-stationary stochastic vector process
with components f2(¢), f2(¢) and f9(¢), having mean value equal to zero:

EffWI=0 ; j=1,2,3 (2-1)
cross-correlation matrix given by:
Ry (t,t+7) RY(t,t+7) Ris(t,t+7)
RO(t,t+7)= | RSy (t,t +7) R, (t,t+7) R (t,t+T) (2 —2)
Ry, (t,t+7) Ry,(t,t+7) R3s(t,t+7)
and cross-spectral density matrix given by:
Sth(w,t)  Sa(wt) Sia(w,t)
S%w,t) = | Sqi(w,t)  Sa(w,t)  S(w,t) (2-3)
Sgi(w,t)  Sh(w,t)  SHa(w,t)

Note that because of the non-stationarity of the vector process, the cross-correlation matrix
is a function of two time instants: ¢t and t+ 7 (¢ = time and 7 = time lag), while the cross-
spectral density matrix is a function of both frequency w and time ¢.

Adopting the theory of evolutionary power spectra for non-stationary stochastic processes
(Priestley 1965 and 1988), the elements of the cross-spectral density matrix are defined as:

Sii (w,t) = [4;(w, ) Sj(w) ;5 j=1,2,3 (2 —4)

S?k (w,t) = Aj(w, t)Ag(w, t) 4/S;(wW)Sk(w) Ti(w) 5 J,k=1,2,3; j#k (2-5)
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where A;(w,t); j = 1,2,3 are the modulating functions of f2(¢), f2(t) and f3(t), respec-
tively, Sj(w); j = 1,2,3 are the (stationary) power spectral density functions of f{(t),
f2(t) and f9(¢), respectively, and Ty (w); 7,k = 1,2,3; j # k are the complex coherence
functions between f?(t) and f9(t).

It should be pointed out that Egs. (2-4) and (2-5) imply that the modulating function
Aj(w,t) represents the change in the evolutionary power spectrum, relative to the (sta-
tionary) power spectral density function S;(w).

Consequently, for any time instant ¢, the diagonal elements of the cross-spectral density
matrix are real and non-negative functions of w satisfying:

0 _ a0 L
S5 (w,t) = Sjj (—w,t) ; j=1,2,3 and for every t (2 —6)

while the off-diagonal elements are generally complex functions of w satisfying:
9 (w,t) = 8% (—w,t) ; jk=1,2,3; j#k and for every ¢ 2-7)

S?k(w,t) ——-Sg;(w,t) ; J,k=1,2,3; j#k and for every t (2 -38)
where the asterisk denotes the complex conjugate. Equation (2-8) indicates that the cross-
spectral density matrix S°(w, t) is Hermitian for any value of ¢.

The elements of the cross-correlation matrix are related to the corresponding elements of
the cross-spectral density matrix through
the following transformations:

Rytt+n) = [ Awdbwt+n) e Swdv i j=123  (2-9)

R?k (t,t+71)= /_OO Aj(w, t)Ag(w, t +7) e v/ Sj(W)Sk(w) Tk (w) dw

2.2.1 Special Case: Uniformly Modulated Non-Stationary Stochastic

Vector Process
For the special case of a uniformly modulated non-stationary stochastic vector process,
the modulating functions 4;(w,t); j = 1,2, 3 are independent of the frequency w:

Aj(w,t) =A;(t) 5 7=1,2,3 (2-11)

and Egs. (2-9) and (2-10) reduce to:

jo (t,t4+71)=A;(t)A;(t +T)/ Si(w)e“ " dw ; j=1,2,3 (2 -12)

— 00
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Rt +7) = A4 (0Ax(+7) [ /5,0500) T () 7 o

In such a case, the three components of the non-stationary stochastic vector process are
expressed as:

£ =404t ; j=123 (2-14)

where g? (t); 7 =1,2,3 are the three components of a stationary stochastic vector process,
having mean value equal to zero:

M) =0 ; j=1,23 (2 - 15)
and cross-spectral density matrix given by:
$1(w) VS @S2 @ Tia(w)  +/51(@)S5(@) T1a(w)
8w = | VS2(w)S1(w) Tzr(w) Sa(w) V/52(w)S3(w) T23(w)
VS3(w)S1(W)Ta1(w)  /83(w)S2(w) Ta2(w) S3(w) 516

Note that the elements of matrix S®(w) shown in Eq. (2-16) consist of terms that have
been defined in Egs. (2-4) and (2-5).

2.3 Simulation Formula

In the following, distinction will be made between the non-stationary stochastic vector
process fg(-’(t); j =1,2,3 and its simulation f;(¢); j =1,2,3.

In order to simulate the 1D-3V non-stationary stochastic process fjo (t); j = 1,2,3, its
cross-spectral density matrix S°(w,t) must be decomposed at every time instant ¢ under
consideration, into the following product:

S%(w,t) = H(w,t) HT* (w, 1) for every ¢ under consideration (2-17)

where superscript 7 denotes the transpose of a matrix. This decomposition can be per-
formed using Cholesky’s method, in which case H(w, t) is a lower triangular matrix:

Hll(w, t) 0 0
H(w, t) = H21 (w, t) Hzg(w, t) 0 (2 — 18)
H31 (w, t) H32 (w, t) H33 (w, t)

whose diagonal elements are real and non-negative functions of w and whose off-diagonal
elements are generally complex functions of w.
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The following relation is satisfied by the diagonal elements of H(w, t):
Hj; (w,t) = Hj (—w,t) ; j=1,2,3 and for every t (2—-19)
If the off-diagonal elements Hji (w,t) are written in polar form as:
Hyo(w,t) = |Hp (w,t)] P8 5=23 k=12 7>k (2 — 20)
where:
O (w,t) = tan™" (EI;F{—;ZE:)%) (2 —21)

with Im and Re denoting the imaginary and the real part of a complex number, respectively,
then the following relations are satisfied:

Hiyg(wt)|=Hig(—w,t)] 5 7=2,3; k=1,2; 7 >k and for every ¢ 2—22
j j

O (w,t) = =0 (—w,t) 3 7=2,3; k=1,2; j >k andforeveryt (2 —23)

Once matrix S°(w,t) is decomposed according to Egs. (2-17)-(2-18), the non-stationary
stochastic vector process fj(.’ (t); 7 = 1,2,3 can be simulated by the following series as
N —

3 N
=23 > [Hpm(wi,)|VAw coslwr t = Opm (wi,t) + Bmi] 5 §=1,2,3 (2-24)

m=1 (=1

or explicitly

N
A =23 | Hu(wr, )VAG coslwr ¢ — 01 (wi,t) + 2y (2 — 250)

=1

N
f2(t) =2 [Hoy(wi, )|V Aw coslw; t — 021 (wi, 1) + Suil+

=1

N
+22 | Hao(wr, t) |V Aw cos|w; t — Oa3(wy, t) + Poy] (2 — 25b)
=1

N
f3(t) =2 |Hsy(wi,t)|VAw coslw; t — 031 (wi, t) + 1)+

=1

N
+2Z | H3a(wy, )|V Aw cos[w; t — O32(wy, t) + o]+

=1

N
+2Z |Hs3(wi, t)|V Aw cos|w; t — O33(wi, t) + Dy (2 - 25¢)
1=1
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where:

w=IlAw ; 1=1,2,...,N (2 — 26)
Wy
Aw = ~ (2—-27)
o (TlH ()] )
Ojm (wi,t) = tan (Re[Hjm @ D) (2 —28)

In Eq. (2-27), w, represents an upper cut-off frequency beyond which the elements of the
cross-spectral density matrix [Eq. (2-3)] may be assumed to be zero for any time instant ¢.
As such, w, is a fixed value and hence Aw — 0 as N — oo so that NAw = w,. A criterion
to estimate the value of w, can be found in Shinozuka and Deodatis (1991).

The ®1;, ®g, P35 [ = 1,2,..., N appearing in Eqs. (2-24)-(2-25) are three sequences of
independent random phase angles distributed uniformly over the interval [0, 27].

It should be noted that the simulated non-stationary stochastic vector process f;(t); j =
1,2,3 is asymptotically Gaussian as N — 0o because of the central limit theorem (Shi-
nozuka and Deodatis 1991).

A sample function f;i)(t); j = 1,2,3 of the simulated non-stationary stochastic vector

process fj(t); j = 1,2,3 can be obtained by replacing the three sequences of random

phase angles ®;, ®9;, $3; 1 = 1,2,..., N with their respective i-th realizations qb%), gl),

oD 1=1,2,... N:

3 N
0 =235 [Him (0, )| VAW cosfwr t — Ojm (Wi t) + ¢4 3 5=1,2,3 (2—29)

m=1 (=1

The generated values of f;i)(t) according to Eq. (2-29) are bounded as follows:

3 N
f(z) 222 ,Hjm C(Jl, IV ) .7:1;273 (2—30)

m=1[=1

For a given form of the cross-spectral density matrix, the above bound is large enough
for all practical applications, even for relatively small values of N (Deodatis 1996b). It is
obvious that this bound can be easily calculated for any form of the cross-spectral density
matrix to be used.

It will be shown now that the ensemble expected value £[f;(¢)]; j = 1,2, 3 and the ensemble
auto- /cross-correlation function R, (t,t+7); 5,k =1,2,3 of the sunulated non-stationary
stochastic vector process f;(t) are identical to the correspondmg targets, &| fjo t))=0; 5=
1,2,3 and R? (t,t+71); j, k=1,2,3, respectively.
(1) Show that: Elf;M] =€) =0, j=1,2,3

Proof:
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This proof is trivial and similar to the corresponding one for 1D-1V processes (Shinozuka
and Deodatis 1991).

(2) Show that: R (t,t+7) = ng (t,t+71); 7,k=1,2,3
Proof:

Utilizing the property that the operations of mathematical expectation and summation
are commutative, the ensemble auto-/cross-correlation function of the simulated non-
stationary stochastic vector process f;(t); 7 = 1,2,3 can be written as:

Ry (t,t+71)=E[f; &) fu(t +71)] =
3 3 N N
=43 YN > Hym, (Wi, )] [ Himg (w11t +7)| Aw

-E3coswy, t— Om, (Wi, t) + Py ] cOs [wi, (8 + T) — Ok, (wiy, t+7) + @mzlz]} =

3 3 N N
=2 Z Z Z Z 'Hjml (wlut)‘ lHkmz(wlwt_‘_T)‘ Aw

’ 5{COS [(wh + wlz)t T Wi, T— ejml (wlut) - ekmz (wl27t+ 7—) + q)mlh + (I)mzb] +

Wi, — wl1>t tw, T+ gjml (wh?t) - ekmz (wlwt + T) - (I)mlll + q)mzlz]}
(2 — 31)

+ cos |

~

Since the ®’s are independent random variables distributed uniformly over the interval
[0, 27}, the expected value appearing in Eq. (2-31) is different from zero only when:

m; =Moo =m and l1:l2:l (2—32)

Under the conditions of Eq. (2-32), Eq. (2-31) can be written as:

3 N
Rjk t t‘f‘T =2 z ZlHjm wy, t | IHkm(wl’t_’_T)‘ Aw

m=1[=1

~cos [wi T+ O (Wi, t) — Okm(wi, t + 7)) (2-33)

Taking into account Egs. (2-19), (2-22) and (2-23), the expression for R (t,t + 7) in Eq.
(2-33) can be written in the limit as Aw — 0 and N — oo (while keeping in mind that
wy, = NAw is constant and that the elements of the cross-spectral density matrix S°(w, t)
are zero for |w| > w, at any time instant t) in the following way:

oo 3

Ry (t,t4+7) = / > Hjom (w,8)] [Hpgn (w, t+7)| 17 H0m@D=0km (471 gy (2 34)

% m=1
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Using now the polar form representation of the elements of the H(w, t) matrix [Eq. (2-20)],
Eq. (2-34) is written as:

w 3
Ry (t,t+7) = / S Hy (@) Hfp(w,t+7) €7 d (2 — 35)
—00

m=1

Then, using the decomposition shown in Eq. (2-17) in conjunction with Egs. (2-4) and
(2-5), it is straightforward to show that:

Rjj(t,t+7):/ Aj(w,t)Aj(w,t+7) Sj(w) e dw ; j=1,2,3 (2~ 36)

oo

Ry (t,t+71) = / Aj(w, ) Ag(w,t +7) 1/S;(w)Sk(w) T (w) ™7 dw ;

— 00

Comparing finally Egs. (2-9) and (2-10) to Egs. (2-36) and (2-37), it is evident that:

Ry(t,t+7)=R% (t,t+7) ; j,k=1,2,3 238
J ik

2.3.1 Special Case: Uniformly Modulated Non-Stationary Stochastic

Vector Process
For the special case of a uniformly modulated non-stationary stochastic vector process,
simulation can be performed on the basis of Eq. (2-14), instead of using Eq. (2-24). The
simulation formula corresponding to Eq. (2-14) is:

i) =A;(t) g;(t) ; 7=1,2,3 (2 —39)

where g;(t) is the simulation of the stationary stochastic vector process g‘; (t) having mean
value equal to zero and cross-spectral density matrix shown in Eq. (2-16). It should be
mentioned that the simulation of stationary and ergodic stochastic vector processes can
be performed with great computational efficiency using the Fast Fourier Transform (FFT)
technique, as described by Deodatis (1996b).

2.3.2 Comments on Computational Efficiency

At this juncture, it should be pointed out that it is not possible to take advantage of the
FFT technique when using the (non-stationary) simulation formula shown in Eq. (2-24),
in contrast to the corresponding formula for simulation of stationary stochastic vector
processes (Deodatis 1996b). This is due to the fact that the coefficients |Hjm, (wi, )|V Aw
in the double summation of Eq. (2-24) are now functions of both frequency and time.
However, this shouldn’t be of any great concern computationally, since in most cases of
practical interest the non-stationary stochastic vector process f]Q (t); 7 =1,2,3 is limited
to relatively short durations by the modulating functions 4;(w,t); j =1,2,3 (e.g. ground
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motion acceleration time histories). A case of non-stationary stochastic vector processes
where the FFT technique can be used in the simulation formula is that of uniformly
modulated processes [Eq. (2-39)]. At this juncture, it should be noted that Li and Kareem
(1991) have proposed a methodology to simulate non-stationary vector processes taking
advantage of FFT.

2.4 Simulation of Seismic Ground Motion Compatible With Prescribed
Response Spectra

The simulation algorithm presented earlier in this chapter can generate sample functions
of a general non-stationary stochastic vector process with evolutionary power, according to
a prescribed non-stationary cross-spectral density matrix. A very important application
is simulation of earthquake ground motion time histories. In such a case, acceleration,
velocity, or displacement time histories can be generated at several locations on the ground
surface according to a target cross-spectral density matrix. This will be demonstrated in
the first two numerical examples presented later in this chapter. The only drawback in this
approach is that it is often preferable to work with time histories that are compatible with
prescribed response spectra, rather than with prescribed power spectral density functions
(cross-spectral density matrix). An obvious reason for this preference is that it is much
easier and more reliable to find a response spectrum specified for a given location, rather
than a power spectral density function. For example, design codes usually provide response
spectra as a function of local site conditions.

In order to address this issue, a methodology is proposed now to simulate seismic ground
motion compatible with the following three prescribed quantities: (1) response spectra,
(2) complex coherence functions, and (3) modulating functions. Although the method-
ology is presented in the following for accelerations, it is straightforward to modify it to
accommodate velocities or displacements. The choice of accelerations is done solely for
demonstration purposes.

According to the proposed methodology, the acceleration time histories at three points on
the ground surface are considered to be a uniformly modulated, tri-variate, non-stationary
stochastic vector process. In general, the three points correspond to different local soil
conditions. Consequently, a different target acceleration response spectrum RSA;(w); j =
1,2, 3 is assigned to each one of the three points. In addition, complex coherence functions
Fj(w); g,k = 1,2,3; j # k are prescribed between pairs of points, and modulating
functions A;(t); 7 =1,2,3 are assigned at each point. The simulation of the acceleration
time histories is then performed according to the iterative scheme shown in Table 2-1. This
scheme is not expected to perfectly converge at all frequencies as the number of iterations

. . RSA,(w* ,
increases (perfect convergence at frequency w = w* is expressed as: —oatl® ) — 1, j=
P & Y p RSATS) (")

1,2,3, where RSAU5)(w) is defined in Table 2-1). This is why no convergence criterion is
included in the flowchart of Table 2-1. As will be shown in the third numerical example
that is presented later in this chapter, only a small number of iterations is usually needed
(in most cases less than ten) for a sufficiently accurate convergence at every frequency.

At this point it should be mentioned that the idea for upgrading the individual power
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Read input data:

b target acceleration response spectra: RSA;(w); j=1,2,3
> complex coherence functions: T'ji(w); 7,k =1,2,3; j #k
> modulating functions: 4;(t); j =1,2,3

v

Initialize power spectral density functions S;(w), S2(w), S3(w)
by setting them equal to a (non-zero) constant value
over the entire frequency range

v

Generate ¢;(t), g2(t), 93(t) as a stationary, tri-variate, stochastic vector process
with cross-spectral density matrix shown in Eq. (16). Refer to Eq. (39).

v

Compute acceleration time histories as: f1(t) = A1(2)g1(t), f2(t) = A2(t)g2(2),
and f3(t) = A3(t)gs(t). Refer to Eq. (39).

v

Compute acceleration response spectra RSAUV(w), RSAU) (w), RSAU) (W),
corresponding to f1(t), f2(t), fs(t), respectively.

e

P

Iterations
Finished?

Upgrade power spectral density functions as:

[ RSA;(w) 1°
| RSAUM)(w) |
[ RSA;(w) 17
| RSA(2)(w) ]
[ RSA3(w) 1?
| RSAUD)(w) ]

Sl(w) — Sl(w)

Sz(w) g Sz(w)

S3(w) — 53(&))

TABLE 2-1 Iterative Scheme to Simulate Response Spectrum Compatible Acceleration Time
Histories at Three Points On the Ground Surface.
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spectral density functions depicted in Table 2-1 has been suggested by Gasparini and
Vanmarcke (1976) for one-dimensional and uni-variate stochastic processes.

Two alternative methodologies to generate ground motion time histories compatible with
prescribed response spectra, coherence function, velocity of wave propagation, and duration
of strong ground motion, have been suggested by Hao et al. (1989) and by Abrahamson
(1993). The Hao et al. methodology and the methodology proposed in this report in Table
2-1 are conceptually similar, while the Abrahamson (1993) approach is a conceptually
different time-domain-based methodology.

According to Hao et al. (1989), a spectral-representation-based simulation algorithm (Shi-
nozuka and Jan 1972) is first used to generate stationary time histories that are compatible
with a coherence function and a velocity of wave propagation, but not with the prescribed
response spectrum. After multiplying these stationary time histories by an appropriate
envelope function to introduce non-stationarity, Hao et al. are then adjusting each non-
stationary time history independently to make it compatible with the prescribed response
spectrum. This adjustment is performed by Fourier transforming each non-stationary time
history to the frequency domain, multiplying its frequency domain Fourier transform by
the ratio of the prescribed response spectrum over the computed response spectrum of the
non-stationary time history, and then inverse transforming the product back to the time
domain. This adjustment procedure is usually repeated a few times.

On the other hand, the methodology proposed in this report in Table 2-1 is starting by using
a different spectral-representation-based simulation algorithm (Deodatis 1996b) to gener-
ate ergodic, stationary time histories (the Shinozuka and Jan 1972 algorithm is generating
time histories that are not ergodic) that are again compatible with a coherence function
and a velocity of wave propagation, but not with the prescribed response spectrum. After
multiplying these stationary time histories by an appropriate envelope function to intro-
duce non-stationarity, the methodology proposed in this report is upgrading the power
spectral density functions of the components of the vector process as indicated in Table 2-
1, generates new stationary time histories according to the upgraded cross-spectral density
matrix, and multiplies them again by the envelope function to introduce non-stationarity.
This upgrading procedure is repeated a few times to make the time histories response
spectrum compatible to the desired degree.

2.5 Numerical Examples

In order to demonstrate the capabilities of the proposed algorithms to simulate non-
stationary stochastic vector processes, three examples involving simulation of earthquake
ground motion are selected. In the first example, ground motion time histories are modeled
as a uniformly modulated non-stationary stochastic vector process, and sample functions
are generated according to a target cross-spectral density matrix. In the second example,
ground motion time histories are modeled as a non-stationary stochastic vector process
with amplitude and frequency modulation, and sample functions are again generated ac-
cording to a target cross-spectral density matrix. Finally, in the third example, ground
motion time histories are modeled as a uniformly modulated non-stationary stochastic vec-
tor process, but unlike the first example, sample functions are generated to be compatible
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with prescribed response spectra.

2.5.1 Example 1

In this numerical example, ground motion time histories are modeled as a uniformly mod-
ulated non-stationary stochastic vector process, and sample functions will be generated
according to a target cross-spectral density matrix. Specifically, the acceleration time his-
tories at three points on the ground surface along the line of main wave propagation are
considered to be a tri-variate non-stationary stochastic vector process. The configuration
of the three points is shown in Fig. 2-1 where the arrow indicates the direction of wave
propagation. The simulated earthquake ground motion at points 1, 2 and 3 will have the
following characteristics:

(1) Points 1, 2 and 3 correspond to different local soil conditions. Specifically, point 1 is
characterized by stiff soil conditions, point 2 by intermediate soil conditions and point
3 by soft soil conditions. This is a very desirable capability of the method, being
able to simulate ground motion at neighboring points on the ground surface with
different local soil conditions and consequently different frequency contents. Such a
case is encountered, for example, at the supports of intermediate to long-span bridges
located in areas with abrupt changes in soil conditions along the axis of the bridge.

(2) In addition to different frequency contents at points 1, 2 and 3, the acceleration
time histories at these three points will also be correlated according to a specified
coherence function and they will reflect the wave propagation effect according to a
specified velocity of wave propagation. The method is therefore capable to simulate
ground motion time histories that, at the same time, are spatially correlated, include
the wave propagation effect and correspond to different local soil conditions.

(3) Finally, the acceleration time histories at points 1, 2 and 3 will reflect the non-
stationary characteristics of ground motion according to specified modulating func-
tions A;(w,t); 7 =1,2,3.

The three components of the tri-variate non-stationary stochastic vector process describing
the acceleration time histories at points 1, 2 and 3 (see Fig. 2-1) are denoted by f(#),
f9(t) and fJ(t), respectively. The mean value of the process is equal to zero [see Eq. (2-1)],
while the elements of its cross-spectral density matrix [see Eq. (2-3)] are defined as follows:

S% (w t) = [Aj(w, ) Sj(w) 5 j=1,2,3 (2 - 40)

55 (8) = 4y (1) A (,2) /5, ()54 ) 3 () exp[ 2]

v

where v, (w) are the (stationary) coherence functions between f7(t) and f(t), and
exp [—z“’—fﬂi} is the wave propagation term, with £;; being the distance between points j

and k and v being the velocity of wave propagation.

21



<

Point 1e T
on
S
B
x
1
on
S
B
‘L v

Point 3 e

Point 2¢

FIGURE 2-1 Configuration of points 1, 2 and 3 on the ground surface along the
line of main wave propagation, for Example 1. Point 1 corresponds to
rock or stiff soil conditions, point 2 corresponds to deep cohesionless
soils and point 3 corresponds to soft to medium clays and sands.
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At this juncture, it should be pointed out that the expressions shown in Egs. (2-40)
and (2-41) describe earthquake ground motion that is non-homogeneous in space (since
S1(w) # Sz(w) # S3(w)) and non-stationary in time.

The Clough-Penzien acceleration spectrum (Clough and Penzien 1975) is selected to model
the (stationary) power spectral density functions S;(w); j = 1,2, 3 of the acceleration time
histories fjo(t); j =1,2,3, respectively:

1+4¢2, [L]z [Lr
Sj(w): y . . Wgj - . 2wf2J 5 3
(e R o ey
=1,2,3 (2-42)

where Sp; is a constant determining the intensity of acceleration at point j, wy; and (g4
can be thought of as some characteristic frequency and damping ratio of the ground at
point j, and wy; and (y; are filtering parameters for point j.

The Harichandran-Vanmarcke model (Harichandran and Vanmarcke 1986) is chosen to
describe the (stationary) coherence functions vy (w); j, k = 1,2,3; j # k between f2(t)
and fP(t):

28k
a B(w)

(1—A+OzA)}+(1—A) exp [—%(I—A-f—afl) ;

Yy (@) = A exp |~

where {;; is the distance between points j and k, §(w) is the frequency-dependent corre-

lation distance:
~1/2

1+ (wio)b} (2-44)

and A, «a, k, wg and b are model parameters.

Ow) =k

Since the acceleration time histories fJQ (t); 7 = 1,2, 3 are modeled as a uniformly modulated
non-stationary stochastic vector process, the modulating functions A;(w,t); j = 1,2, 3 will
be functions of time only. The Bogdanoff-Goldberg-Bernard model (Bogdanoff, Goldberg
and Bernard 1961) is used for this purpose:

Ay(w,t) = A1(t) = ay t exp(—az t) fort >0 (2 — 45a)
a1 (t - %) exp [—ag (t - %)} for t > %—1
Az(w, t) = Az (t) = (2 e 45b)
0 for 0 <t < %l

Aar) = Aa(t) = a1 (t - %) exp {—ag (t — %—1)} for t > % (2 - 450)
0 for 0 <t < %—1
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where a1 and ay are model parameters depending on such factors as earthquake magnitude
and epicentral distance. It should be noted that Eq. (2-45) includes the wave propagation
effect.

At this juncture, it should be pointed out that the models used for S;(w), v, (w) and
Aj(w,t) in Egs. (2-42), (2-43) and (2-45), respectively, were selected for demonstration
purposes only. There are several other models in the literature that can be used for
S;(w), vjk(w) and A;(w,t). At this point, the reader is referred to an important note
concerning the case of differential (asynchronous) support ground motion when the bridge
supports are on different local soil conditions found in the second paragraph of Chapter 2
“Generation of Spatially Varying Seismic Ground Motion Time Histories” (this is before
the “Introduction” section of Chapter 2).

The next step is to select numerical values for the parameters appearing in Eqgs. (2-42)-(2-
45). Starting from wg; and (g45; j = 1,2, 3 appearing in Eq. (2-42), the values suggested
by Ellingwood and Batts (1982) for three different soil conditions are used in this study:

Point 1: Rock or stiff soil conditions: wy; = 87 rad/sec, {51 = 0.60 (2-46a)
Point 2: Deep cohesionless soils: wgo = 57 rad/sec, (42 = 0.60 (2-46D)
Point 3: Soft to medium clays and sands: wgs = 2.47 rad/sec, (43 = 0.85 (2-46¢)

The filtering parameter wy; [Eq. (2-42)] is set equal to 0.10 of the corresponding wgy; value,
while the other filtering parameter (f; [Eq. (2-42)] is set equal to the corresponding (g,
value, following the recommendation by Hindy and Novak (1980):

Point 1: Rock or stiff soil conditions: wy; = 0.87 rad/sec, (¢ = 0.60 (2-47a)
Point 2: Deep cohesionless soils: wgo = 0.57 rad/sec, (2 = 0.60 (2-47b)
Point 3: Soft to medium clays and sands: wys = 0.247 rad/sec, {53 = 0.85 (2-47c)

Finally, the last parameter appearing in Eq. (2-42), So;; j = 1,2,3, is computed so that
the standard deviation of the Kanai-Tajimi part of the (stationary) power spectral density
function is equal to 100 cm/sec? for all three points 1, 2 and 3:

So1 = 62.3 cm?/sec® , Spp = 99.7 cm?/sec® ,  Sp3 = 184.5 cm?/sec® (2 — 48)

For the various parameters appearing in Eqgs. (2-43) and (2-44), the values estimated by
Harichandran and Wang (1990) by analyzing data from the SMART-1 seismograph array
will be used in this study for demonstration purposes:

A=0.626, a=0.022, k£k=19,700 m, wo=12.692rad/sec, b=347 (2—-49)

Parameters a; and as appearing in the expressions for the modulating functions [Eq. (2-
45)] are set equal to:
a; = 0.906 and az; =1/3 (2 — 50)

so that the maximum value of A;(t); j = 1,2, 3 occurs at time t = <3 + %Ll) sec; 7 =1,2,3

and is equal to unity (from Fig. 2-1 it is obvious that &7 = 0, 21 = 50 m, €37 = 100 m).
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Finally, the velocity of wave propagation v is set equal to (Harichandran and Wang 1990):
v = 1,000 m/sec (2-51)

Based on the numerical values given in Eqs. (2-46)-(2-51), the (stationary) power spectral
density functions S;(w); j = 1,2,3 are plotted in Fig. 2-2, the (stationary) coherence
functions v, (w); 7,k =1,2,3; j # k are plotted in Fig. 2-3 and the modulating functions
A;(t); 7 =1,2,3 are plotted in Fig. 2-4.

Since the non-stationary stochastic vector process in this example is a uniformly modulated
one, the generation of its sample functions will be performed using Eq. (2-39). It is
reminded that the simulation of stationary stochastic vector processes involved in Eq. (2-

39) is performed with great computational efficiency using the FFT technique, as described
by Deodatis (1996b).

The upper cut-off frequency w,, and the value of N [see Eq. (2-27)] are set equal to:
w, = 126 rad/sec (20 Hz) and N =126 (2 —52)

The simulation is performed at 3,072 time instants, with a time step At = 6.14-1073
sec, over a length equal to 3,072 -6.14- 1072 = 18.85 sec. One generated sample function
for the acceleration at points 1, 2 and 3 (see Fig. 2-1), denoted by f1(t), f2(t) and f3(¢),
respectively, is displayed in Fig. 2-5.

The most obvious characteristic of the acceleration time histories in Fig. 2-5 is their non-
stationarity which is described by the modulating functions shown in Fig. 2-4. The differ-
ent frequency contents of f1(¢), f2(t) and f3(¢) (making the acceleration non-homogeneous
in space and described by the (stationary) power spectral density functions shown in Fig.
2-2) can also be detected in Fig. 2-5. Specifically, the characteristic frequency of the
ground for fi(t) (wg1 = 8 rad/sec) is higher than that for fo(t) (ws2 = 57 rad/sec),
which is then higher than that for f3(¢) (w3 = 2.47 rad/sec). This characteristic is not as
obvious as the non-stationarity one in Fig. 2-5, because of the relatively large bandwidths
of 1 (w), S2(w) and S3(w), which are controlled by (41, (42 and (g3, respectively.

The wave propagation effect and the correlation among fi(t), f2(t) and f3(¢) cannot be
observed in Fig. 2-5. For this reason, a segment of the acceleration time histories shown
in Fig. 2-5 (specifically from time ¢ = 3.1 sec up to time t = 6.2 sec) is magnified and
displayed in Fig. 2-6. In this figure, the wave propagation effect is easily detected by
following the movement of peak A in fi(t), f2(t) and f3(t), which reflects the v = 1,000
m/sec velocity of wave propagation. The correlation among fi(t), fo(t) and f3(t) is also
easily detected in Fig. 2-6, as major peaks in the three time histories (like peak A) retain
their general shape after some loss of coherence described by the (stationary) coherence
functions shown in Fig. 2-3.

It is therefore obvious from Figs. 2-5 and 2-6 that the proposed algorithm is able to simu-
late non-stationary ground motion time histories that are spatially correlated according to
a given coherence function, include the wave propagation effect and are non-homogeneous
in space (or equivalently they correspond to different frequency contents). At this point,
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FIGURE 2-2 The power spectral density functions at points 1, 2 and 3, for Exam-
ple 1: S;(w) — rock or stiff soil conditions, S2(w) — deep cohesion-
less soils and S3(w) — soft to medium clays and sands.
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FIGURE 2-3 Coherence functions 721 (w), 31(w) and y32(w), for Example 1.
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FIGURE 2-4 Modulating functions A, (t), A2(t) and As(t), for Example 1.
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the reader is referred again to an important note concerning the case of differential (asyn-
chronous) support ground motion when the bridge supports are on different local soil
conditions found in the second paragraph of Chapter 2 “Generation of Spatially Vary-
ing Seismic Ground Motion Time Histories” (this is before the “Introduction” section of
Chapter 2).

Finally, the ensemble auto-/cross-correlation function R (t,¢ +7) is computed from 1,000
sample functions at time instant ¢ = 3.14 sec and plotted as a function of 7 in Fig. 2-7 versus
the target auto-/cross-correlation function ng (t,t + 7). As can be seen in Fig. 2-7, the
agreement between R(J).k (t,t+7) and Ry (t,t+ ) is very good, especially in the vicinity of
the dominant peak of the auto-/cross-correlation functions. Some small differences can be
observed away from this dominant peak in Fig. 2-7. However, these differences disappear
when the ensemble auto- /cross-correlation function Ry, (t,t+ 7) is computed from 100,000
sample functions, as can be seen in Fig. 2-8 where R?k (t,t4+7) and Ry (t,t+ ) practically
coincide.

It should be noted that the agreement between R?k (t,t+7) and Ry (t,t + 7) observed in
Figs. 2-7 and 2-8 for time instant { = 3.14 sec is typical for any time instant from ¢t = 0
up to ¢t = 18.85 sec (the duration of the time histories shown in Fig. 2-5).

2.5.2 Example 2

Unlike the first example where ground motion time histories were modeled as a uniformly
modulated non-stationary stochastic vector process, in this example they are modeled as a
non-stationary stochastic vector process with amplitude and frequency modulation. This
means that both the amplitude and the frequency content of ground motion change as a
function of time (in the first example, it was only the amplitude of ground motion that
was varying with time). As in the previous example, sample functions will be generated
according to a target cross-spectral density matrix.

Figure 2-9 displays an acceleration record from the 1964 Niigata earthquake involving both
amplitude and frequency content variation as a function of time. Specifically, this record
shows an abrupt change of its frequency content between approximately 8 sec and 10
sec. During this 2 sec period, the frequency content is transformed from one containing a
relatively broad band of frequencies to one containing essentially a single low frequency. It
is believed that this phenomenon is due to soil liquefaction. The objective of this example
will be to reproduce the general frequency and amplitude variation characteristics of the
acceleration record shown in Fig. 2-9.

The acceleration time histories at three points on the ground surface are again considered
to be a tri-variate non-stationary stochastic vector process. The configuration of the three
points is shown in Fig. 2-10, indicating that it is not necessary for the points to be on a
straight line, or to be equidistant (compare to previous example). For simplicity, no wave
propagation will be considered in this example. The simulated earthquake ground motion
at points 1, 2 and 3 will have the following characteristics:

(1) Points 1, 2 and 3 correspond to the same local soil conditions.
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FIGURE 2-9 Acceleration record from the 1964 Niigata earthquake.
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FIGURE 2-10 Configuration of points 1, 2 and 3 on the ground surface, for Exam-
ple 2. Points 1, 2 and 3 correspond to the same local soil conditions.
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(2) The frequency content of the acceleration time histories at these three points will
change with time as will be described in the following, in order to capture the unique
characteristics of the record shown in Fig. 2-9.

(3) The acceleration time histories at points 1, 2 and 3 will be correlated according to a
specified coherence function.

(4) Finally, the amplitude variation as a function of time of the acceleration time his-
tories at these three points will be described by prescribed modulating functions
Aj{w,t); 1=1,2,3.

The three components of the tri-variate non-stationary stochastic vector process describing
the acceleration time histories at points 1, 2 and 3 (see Fig. 2-10) are denoted by f9(t),
f3(t) and f9(t), respectively. The mean value of the process is equal to zero [see Eq.
(2-1)], while the elements of its cross-spectral density matrix [see Eq. (2-3)] are given
by the expressions shown in Eqgs. (2-40) and (2-41). It should be pointed out, however,
that since no wave propagation is considered in this example, the wave propagation term

exp{—inéj’“] in Eq. (2-41) should be set equal to unity (v — 00).

The Clough-Penzien acceleration spectrum shown in Eq. (2-42) is selected again to model
the power spectral density functions S;(w); j = 1,2,3 of the acceleration time histories
fjo(t); j = 1,2,3, respectively. However, in order to account for the variation of the
frequency content with time, the characteristic frequency and damping ratio of the ground
are considered now to vary as a function of time as follows:

15.56 rad/sec for 0< ¢t < 4.5 sec
wg;(t) = 27.12tf’, — 40.687ff7 +15.56 for4.5<t<55sec ; j=1,2,3 (2 —53)
2.0 rad/sec for t > 5.5 sec
0.64 for 0< ¢t < 4.5 sec
Coi(t) = { 1.25¢3 — 1.875t2 4+ 0.64 for 4.5<t<55sec ; j=1,2,3 (2 — 54)
0.015 for t > 5.5 sec
where ¢, =t — 4.5 sec and:
wfj (t) = 0'1ng(t) ; ij(t) = ng(t) ; 1=1,2,3 (2 -55)

The expressions for wg;(t) and (y;(t) are taken from Deodatis and Shinozuka (1988) and
describe a sudden drop in the values of the characteristic frequency and damping ratio
during the one-second period from ¢ = 4.5 sec to t = 5.5 sec. The constant determining
the intensity of the acceleration is also going to be a function of time, so that the standard
deviation of the Kanai-Tajimi part of the spectrum is equal to o = 100 cm/sec? at every

time instant:

0.2

Mwg; (t) [QCQJ (t) + m]

The Harichandran-Vanmarcke model shown in Eqgs. (2-43) and (2-44) is chosen again to
describe the coherence functions v, (w); 7,k =1,2,3; j # k between f]Q(t) and f2(t). The

Soj(t) =

36



model parameters A, «, k, wg and b are assigned the values from the previous example
shown in Eq. (2-49).

The Bogdanoff-Goldberg-Bernard model is selected again for the modulating functions:
Aj(wt)=Aj(t)=a1 texp(—az t) ; j=1,2,3 (2 —57)
with model parameters a; and as set equal to:
a; = 0.680 and ap =1/4 (2 — 58)

so that the maximum value of A;(¢); j = 1,2,3 occurs at time ¢ = 4 sec and is equal to
unity.

At this juncture, it should be pointed out that the definitions for S;(w); j = 1,2,3 [see
Egs. (2-42), (2-53), (2-54), (2-55), (2-56)] and A;(w,t) [see Eq. (2-57)] do not imply
anymore that the modulating function A;(w,t) represents the change in the evolutionary
power spectrum, relative to the (stationary) power spectral density function S;{w) (note
that .S;(w) is now a function of both frequency and time since the characteristic frequency
and damping ratio of the ground are functions of time, and A;(w,t) is a function of time
only).

The evolutionary power spectra S% (w,t); § = 1,2,3 [see Eq. (2-4)] are plotted in Fig.
2-11 at three time instants: ¢ = 1 sec, t = 4 sec, and t = 7 sec. As seen in this figure, the
sudden drop in the values of the characteristic frequency and damping ratio of the ground
from 4.5 sec to 5.5 sec causes the formation of a very sharp peak in the evolutionary power
spectra at frequency 2.0 rad/sec [refer to Egs. (2-53) and (2-54)].

Since the non-stationary stochastic vector process in this example is not a uniformly mod-
ulated one, the generation of its sample functions can only be performed using Eq. (2-24).
The upper cut-off frequency w, and the value of N [see Eq. (2-27)| are set equal to:

w, = 128 rad/sec and N =1,024 (2 —59)

The reason for using such a high value for N [compare to the corresponding value in Eq.
(2-52)] is to describe accurately the very sharp peak in the evolutionary power spectra
after time instant 5.5 sec (refer to Fig. 2-11).

The simulation is performed at 2,000 time instants, with a time step At = 0.01 sec, over a
length equal to 2,000 - 0.01 = 20 sec. One generated sample function for the acceleration
at points 1, 2 and 3 (see Fig. 2-10), denoted by f1(t), f2(t) and f3(t), respectively, is
displayed in Fig. 2-12. It is obvious that the general frequency and amplitude variation
characteristics of the acceleration record of the 1964 Niigata earthquake shown in Fig. 2-9
are reproduced very well in the sample function plotted in Fig. 2-12. This is accomplished
by using the time-varying characteristic frequency and damping ratio of the ground shown
in Eqgs. (2-53) and (2-54), and the modulating function shown in Eq. (2-57). In addition,
it is possible to detect the correlation among fi(t), f2(t) and f3(¢) in Fig. 2-12, as major
peaks in the three time histories retain their general shape after some loss of coherence
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FIGURE 2-11 The evolutionary power spectra S?j (w,t); 7 =1,2,3 at three time
instants (Example 2).
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described by the coherence functions v, (w); j,k = 1,2,3; j # k [refer to Eqgs. (2-43),
(2-44) and (2-49)]. Finally, it is possible to show that the ensemble auto-/cross-correlation
function converges to the target auto-/cross-correlation function as the number of sample
functions increases (refer to the first numerical example for a similar demonstration).

2.5.3 Example 3

In the first two numerical examples, sample functions of ground motion time histories were
generated according to a target cross-spectral density matrix. The only drawback in this
approach is that it is often preferable to work with time histories that are compatible with
prescribed response spectra, rather than with prescribed power spectral density functions
(cross-spectral density matrix), as indicated earlier in “Simulation of Seismic Ground Mo-
tion Compatible With Prescribed Response Spectra.” In order to address this issue in this
numerical example, ground motion time histories are modeled as a uniformly modulated
non-stationary stochastic vector process, but unlike the first example, sample functions
will be now generated to be compatible with prescribed response spectra.

The acceleration time histories at three points on the ground surface along the line of
main wave propagation are considered one more time to be a tri-variate non-stationary
stochastic vector process. The configuration of the three points is shown in Fig. 2-13
where the arrow indicates the direction of wave propagation. The simulated earthquake
ground motion at points 1, 2 and 3 will have the following characteristics:

(1) Points 1, 2 and 3 correspond to different local soil conditions. Specifically, point 1
corresponds to the Uniform Building Code’s Soil Type 1 (rock and stiff soils), point 2
to Soil Type 2 (deep cohesionless or stiff clay soils), and point 3 to Soil Type 3 (soft
to medium clays and sands).

(2) The acceleration time histories at these three points will be correlated according to
a prescribed coherence function and they will reflect the wave propagation effect ac-
cording to a specified velocity of wave propagation.

(3) Finally, the amplitude variation as a function of time of the acceleration time his-
tories at these three points will be described by prescribed modulating functions
Aj(w,t); 5=1,2,3.

The three components of the tri-variate non-stationary stochastic vector process describing
the acceleration time histories at points 1, 2 and 3 (see Fig. 2-13) are denoted by f?(t),
f(t) and f2(t), respectively.

The acceleration response spectra specified by the Uniform Building Code (International
Conference of Building Officials 1994) are selected for the three points in Fig. 2-13. For
the purposes of this numerical example, the peak ground acceleration is set equal to 200
cm/sec? and the corresponding Uniform Building Code (UBC) acceleration response spec-
tra RSA;(w); j =1,2,3 are plotted in Fig. 2-14. It is reminded that sample functions of
ground motion time histories will be generated to be compatible with these UBC response
spectra.

The Abrahamson model (Abrahamson 1993) is chosen to describe the (stationary) coher-
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FIGURE 2-13 Configuration of points 1, 2 and 3 on the ground surface along the
line of main wave propagation, for Example 3. Point 1 corresponds
to rock and stiff soils (UBC Type 1), point 2 corresponds to deep co-
hesionless or stiff clay soils (UBC Type 2), and point 3 corresponds
to soft to medium clays and sands (UBC Type 3).
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FIGURE 2-14 Uniform Building Code acceleration response spectra RSA;(w); j = 1,2, 3,
( assigned to points 1, 2 and 3 (see Fig. 13), respectively. Point 1 corresponds
to rock and stiff soils (UBC Type 1), point 2 corresponds to deep cohesion-
less or stiff clay soils (UBC Type 2), and point 3 corresponds to soft to
medium clays and sands (UBC Type 3) (Example 3).
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ence functions vy (w); 7,k = 1,2,3; j # k between f9(t) and fg(t):

1 .
ik () 6 .tanh{l + & (503(fj+k)“’2 cr(m)
w arCa(&ie) + grmer(Ca
1+ [2ﬂc$(€jk)] 2T A

+ [4.80 — c3(&5x)]-

w . .
- exp [Cﬁ(fjk)%] +0.35} ;o 5, k=1,2,3; j £k (2—-60)

where ;. is the distance between points j and &, and:

3.95

cs(€p) = +0.85 exp{~0.00013¢ } (2 - 61)
(1 +0.0077¢;¢ +0.000023¢%, )
04 |1-—~—
)
ca(&w) = 5 3 (2-62)
T G
ce(jk) =3 (exp {—gj—g} - 1) — 0.0018&, (2 - 63)
er(€5) = —0.598 + 0.106 In(&j, + 325) — 0.0151 exp{—0.6&; } (2 — 64)
cs(&) = exp{8.54 — 1.07 In(&;x, +200)} + 100 exp{—&;x } (2 —65)

Abrahamson’s model for the coherence function has the advantage that it can be used for
a broad range of soil conditions (Abrahamson 1993). The v (w); j,k = 1,2,3; j # k
defined in Eqgs. (2-60)-(2-65) are plotted in Fig. 2-15. The velocity of wave propagation v
is set equal to:

v = 2,000 m/sec (2 —66)

so that the complex coherence functions can be expressed as:

L (w) = vk (w) - exp [—i Y fjk

At this point, the reader is referred to an important note concerning the case of differ-
ential (asynchronous) support ground motion when the bridge supports are on different
local soil conditions found in the second paragraph of Chapter 2 “Generation of Spatially
Varying Seismic Ground Motion Time Histories” (this is before the “Introduction” section
of Chapter 2).

Since the acceleration time histories f]Q (t); 7 = 1,2, 3 are modeled as a uniformly modulated
non-stationary stochastic vector process, the modulating functions A;(w,t); j = 1,2, 3 will
be functions of time only. In order to control the duration of strong ground motion, the
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FIGURE 2-15 Coherence functions y2;(w), y31(w) and 732(w), for Example 3
(Abrahamson’s model).



model suggested by Jennings, Housner and Tsai (1968) is selected for the modulating
functions A;(t); j = 1,2,3. Figure 2-16 plots A;(¢) and indicates the numerical values
chosen for all the parameters [A;(t) and A3(t) have the same form as A;(t), but they are
shifted by €21 /v and €33 /v, respectively, to include the wave propagation effect in the same
way as in Eq. (2-45)].

The generation of sample functions of the acceleration time histories at the three points
shown in Fig. 2-13 will be performed using the iterative scheme shown in Table 2-1 (refer to
“Simulation of Seismic Ground Motion Compatible With Prescribed Response Spectra”).
According to Table 2-1, the power spectral density functions S;(w); j = 1,2,3 must be
initialized by setting them equal to a constant value over the entire frequency range. This
value can be selected arbitrarily and in this example is set equal to:

Sj(w) =100 em?/sec® ; j=1,2,3 (2 — 68)
while the upper cut-off frequency w,, and the value of N [see Eq. (2-27)] are set equal to:
w, = 128 rad/sec  and N =128 (2 —69)

The simulation is performed at 6,144 time instants, with a time step At = 3.07 - 102
sec, over a length equal to 6,144 - 3.07 - 1073 = 18.85 sec. One sample function for
the acceleration at points 1, 2 and 3 (see Fig. 2-13), denoted by fi(t), f2(t) and fs(t),
respectively, is generated after 10 iterations and displayed in Fig. 2-17.

As in the previous two examples, it is possible to detect the following characteristics
in the time histories shown in Fig. 2-17: (1) their mutual correlation according to the
coherence functions defined in Egs. (2-60)-(2-65), (2) the wave propagation effect according
to a velocity of wave propagation v = 2,000 m/sec, (3) their amplitude variation as
a function of time according to the modulating function plotted in Fig. 2-16. In this
example, however, the main objective is to generate acceleration time histories that will be
compatible with prescribed response spectra. For this purpose, the acceleration response
spectra RSAU3) (w); j = 1,2, 3 computed using the ground motion time histories shown in
Fig. 2-17 should be compared with the target UBC response spectra RSA;(w); 7 =1,2,3
plotted in Fig. 2-14. This comparison is carried out in Fig. 2-18, where it can be seen that
the 10 iterations performed to obtain the sample function shown in Fig. 2-17 are enough
for an excellent match at every frequency.

The iterative scheme shown in Table 2-1 is therefore capable to simulate seismic ground
motion time histories that: (1) are compatible with prescribed response spectra (that can
be different at different points on the ground surface), (2) are correlated according to a
given coherence function, (3) include the wave propagation effect, and (4) have an ampli-
tude variation as a function of time according to a prescribed modulating function. At
this point, the reader is referred again to an important note concerning the case of differ-
ential (asynchronous) support ground motion when the bridge supports are on different
local soil conditions found in the second paragraph of Chapter 2 “Generation of Spatially
Varying Seismic Ground Motion Time Histories” (this is before the “Introduction” section
of Chapter 2).
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FIGURE 2-16 Modulating function 4;(t), for Example 3 (Jennings, Housner,
Tsai model).
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2.6 Conclusions

A spectral-representation-based simulation algorithm was used to generate sample func-
tions of a non-stationary, multi-variate stochastic process with evolutionary power, ac-
cording to its prescribed non-stationary cross-spectral density matrix. If the components
of the vector process correspond to different locations in space, then the process is also
non-homogeneous in space (in addition to being non-stationary in time). The ensemble
cross-correlation matrix of the generated sample functions is identical to the corresponding
target and the generated sample functions are Gaussian in the limit as the number of terms
in the frequency discretization of the cross-spectral density matrix approaches infinity.

For the important application of earthquake ground motion simulation which is the main
objective of this report, an iterative scheme was introduced to generate seismic ground
motion time histories at several locations on the ground surface that are compatible with
prescribed response spectra, are correlated according to a given coherence function, include
the wave propagation effect, and have a specified duration of strong ground motion.

Three examples involving simulation of earthquake ground motion were presented in order
to demonstrate the capabilities of the proposed methodologies. In all three examples, the
acceleration time histories at three points on the ground surface were considered to be a
tri-variate, non-stationary stochastic vector process. In the first example, the time histo-
ries were modeled as a uniformly modulated non-stationary stochastic vector process, and
sample functions were generated according to a target cross-spectral density matrix. In the
second example, the time histories were modeled as a non-stationary stochastic vector pro-
cess with amplitude and frequency modulation, and sample functions were again generated
according to a target cross-spectral density matrix. Finally, in the third example, ground
motion time histories were modeled as a uniformly modulated non-stationary stochastic
vector process, but unlike the first example, sample functions were generated to be com-
patible with prescribed response spectra. The generated acceleration time histories at
the three points were spatially correlated according to prescribed coherence functions (all
three examples), included the wave propagation effect (examples one and three), and were
non-homogeneous in space, or equivalently corresponded to different local soil conditions
(examples one and three).

At this point, the reader is referred to an important note concerning the case of differ-
ential (asynchronous) support ground motion when the bridge supports are on different
local soil conditions found in the second paragraph of Chapter 2 “Generation of Spatially
Varying Seismic Ground Motion Time Histories” (this is before the “Introduction” section
of Chapter 2).

The generated ground motion time histories can be directly used as input for the dynamic
seismic analysis of elongated structures such as bridges, lifelines, retaining walls, etc., as
will be demonstrated in Chapters 3 and 4.
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SECTION 3
PRELIMINARY ANALYSIS OF A SET OF HIGHWAY BRIDGES
TO ESTIMATE THE EFFECT OF SPATIAL VARIATION
OF SEISMIC GROUND MOTION

3.1 Introduction - Objectives - Approach

The main objective of this chapter is to provide a first estimate of the effect of spatial
variability of seismic ground motion on the response of a large range of different highway
bridges subjected to a variety of input ground motions. Another important objective of this
chapter is to determine which set of bridges and which cases of spatially varying seismic
ground motion require a more detailed study, in order to eventually establish practical
guidelines.

The methodology developed in Chapter 2 to generate spatially varying seismic ground mo-
tion time histories will be used in this chapter to provide the input for the dynamic time
history analysis of a number of typical highway bridges. According to this methodology,
seismic ground motion time histories are modeled as stochastic vector processes. Conse-
quently, a Monte Carlo simulation approach will be followed to estimate the structural
response by performing time history analyses. As the studies in this chapter were decided
to be preliminary, it was attempted to examine a set of representative highway bridges
under a very wide range of different cases of spatially varying seismic ground motion. For
this reason, only a relatively small number of samples was considered along the lines of
the Monte Carlo simulation approach. The objective, therefore, was not to estimate the
statistics of the structural response with high accuracy, but to determine which bridges
and which cases of ground motion necessitated further study.

In order to achieve the aforementioned objectives each one of the selected bridges is sub-
jected to a number of scenario earthquakes. For each scenario earthquake, the bridge under
consideration is analyzed (dynamically) using identical and differential support ground mo-
tion. The following ratio is then computed for each section of the bridge in order to quantify
the effect of the spatial variation of ground motion on the response of the structure:

max of response quantity computed using differential support ground motion

max of same quantity computed using identical support ground motion

(3-1)

The response quantity appearing in the above equation can be the moment at some critical
point of the structure, the ductility demand at a certain location, the opening or closing
of a hinge, etc.

It is obvious that the ratio p indicates the increase (p > 1) or decrease (p < 1) in the
maximum value of the response quantity under consideration caused by differential support
ground motion, compared to the corresponding case of identical support ground motion.

Eight bridges have been selected for a comparative study with total lengths ranging from
111 ft up to 1,584 ft, and with number of spans ranging from 3 up to 10. This selection was
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done in an effort to relate the values of p in Eq. (3-1) to the length of the largest span or
the total length of the bridge. Linear as well as nonlinear dynamic analyses of these eight
bridges were performed using two-dimensional finite element models. All eight bridges in
this group were subjected to the same ground motion cases for comparison purposes. It
was also assumed that all the supports of these eight bridges are on the same local soil
conditions.

In order to estimate the effect of different local soil conditions, one of the above eight bridges
was then analyzed considering that some of its supports are on softer local soil conditions
than the rest. Nonlinear dynamic analyses were performed using again a two-dimensional
finite element model. This same bridge was also analyzed twenty times using twenty
different sets of ground motion time histories reflecting the same scenario earthquake.
This was done in order to examine the variation in the p values (Eq. (3-1)) resulting
from the Monte Carlo simulation procedure that was followed (in most other cases there
were only five different sets of ground motion time histories reflecting the same scenario
earthquake).

Finally, two bridges were modeled linearly in three dimensions in order to study the effect
of different angles of incidence of the seismic waves with respect to the axis of the bridge
and to examine the effect of the vertical component of ground motion. It was assumed that
all the supports of these two bridges were on the same local soil conditions. A detailed
sensitivity analysis with respect to the value of the apparent velocity of wave propagation
was carried out for one of these two bridges (in most other cases there were only three
different apparent velocities of wave propagation that have been considered).

3.2 Comparative Analysis of Eight Bridges

3.2.1 Introduction

Eight bridges were selected for this comparative study representing a wide range of number
of spans and total lengths. The reason for this selection is that an effort will be made to
relate the values of p in Eq. (3-1) to the length of the largest span or the total length of a
bridge. The total lengths of these eight bridges range from 111 ft to 1,584 ft. The number
of spans range from 3 to 10. Linear and nonlinear dynamic analyses of these eight bridges
are performed using two-dimensional finite element models. All eight bridges in this group
are subjected to the same ground motion cases for comparison purposes. It is also assumed
that all the supports of these eight bridges are on the same local soil conditions.

3.2.2 Description of the Eight Bridges

Table 3-1 provides information about the number of spans, largest span, total length, and
number of expansion joints of the eight bridges considered.

The “Text Example Bridge” has three spans and a total length of 111 ft. The plan and the
elevation of the bridge are displayed in Fig. 3-1. Table 3-2 provides information about the
moment of inertia, cross sectional area, mass density, and elastic modulus of the girders
and the columns of the bridge.
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The “Aptos Creek Bridge” has five spans and a total length of 256 ft. The elevation and
section views of the bridge are displayed in Fig. 3-2. Table 3-3 provides information about
the moment of inertia, cross sectional area, mass density, and elastic modulus of the deck
and the columns of the bridge.

The “FHWA No. 2 Bridge” has three spans and a total length of 400 ft. The plan and
elevation of the bridge are displayed in Fig. 3-3. Table 3-4 provides information about the
moment of inertia, cross sectional area, mass density, and elastic modulus of the girders
and the columns of the bridge.

The “T'YOH Example Bridge” has five spans and a total length of 795 ft. The elevation
and section views of the bridge are displayed in Fig. 3-4. Table 3-5 provides information
about the moment of inertia, cross sectional area, mass density, and elastic modulus of the
girders and the columns of the bridge.

The “TY1H Example Bridge” has five spans and a total length of 795 ft. The elevation
and section views of the bridge are displayed in Fig. 3-5. Table 3-6 provides information
about the moment of inertia, cross sectional area, mass density, and elastic modulus of the
girders and the columns of the bridge.

The “TY2H Example Bridge” has five spans and a total length of 795 ft. The elevation
and section views of the bridge are displayed in Fig. 3-6. Table 3-7 provides information
about the moment of inertia, cross sectional area, mass density, and elastic modulus of the
girders and the columns of the bridge.

The “Gavin Canyon Bridge” has five spans and a total length of 741 ft. The elevation
and section views of the bridge are displayed in Fig. 3-7. Table 3-8 provides information
about the moment of inertia, cross sectional area, mass density, and elastic modulus of the
girders and the columns of the bridge.

The “SR14/15 Viaduct” has ten spans and a total length of 1,584 ft. The elevation and
section views of the bridge are displayed in Fig. 3-8. Table 3-9 provides information about
the moment of inertia, cross sectional area, mass density, and elastic modulus of the girders
and the columns of the bridge.

3.2.3 Finite Element Models of the Eight Bridges

The motion of interest in this comparative study is the motion of the center axis of each
bridge. For this reason, each bridge is modeled in two dimensions using frame elements.
The section properties of these elements are chosen to represent the actual cross-sections
of the bridges. Information about the cross-sectional area and moment of inertia of the
different sections of each bridge is provided in Tables 3-2 to 3-9.

The computer code SAP90 beta version is selected to perform the dynamic time history
analyses. Both linear and nonlinear models are created for each bridge and correspond-
ing analyses are carried out. A relatively simple model is used to perform the nonlinear
dynamic analyses. This appears quite appropriate considering the various types of ap-
proximation in modeling the structures, and the uncertainty involved in specifying the
input ground motion. The model used here for the piers of all eight bridges (the only
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FIGURE 3-4 (cont’d) Cross-Section of Piers of TYOH Example Bridge.
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FIGURE 3-5 (cont’d) Cross-Section of Piers of TY1H Example Bridge.
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All reinforcement not shown.

FIGURE 3-6 (cont’d) Cross-Section of Piers of TY2H Example Bridge.
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FIGURE 3-7 (cont’d) Cross-Section and Elevation of Piers
of Gavin Canyon Bridge.
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FIGURE 3-8 (cont’d)  Cross-Section of Piers of SR14/I5 Interchange.
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members considered to exhibit nonlinear behavior in this study) is depicted in Fig. 3-9a.
According to this model, a pier is modeled as an elastic column of length 2H., with a
pair of plastic zones of length L, at each end of the column, as shown in Fig. 3-9a. The
total length H of the pier from the ground to the soffit of the girder is therefore equal to
2(H, + Lp). The plastic zone is then modeled to consist of a nonlinear rotational spring
and a rigid element of length L, as shown in Fig. 3-9b. The typical moment-rotation
relationship used in this study for the nonlinear springs is shown in Fig. 3-9c. Its pa-
rameters are established using the Column Ductility Program COLx (Caltrans 1993). The
specific moment-curvature relationships resulting from the COLx program are displayed
in Figs. 3-10 to 3-14 (it should be mentioned that the Aptos Creek bridge is analyzed
only linearly). For those bridges with expansion joints (the Aptos Creek, TY1H, TY2H,
Gavin Canyon, and SR14/15 bridges), the joints are modeled by allowing the two sections
of the bridge converging to the joint to move independently in the horizontal direction and
to rotate independently, and by constraining them to move by the same amount in the
vertical direction.

3.2.4 Ground Motion

All eight bridges were subjected to response spectrum compatible, spatially varying ground
motions to examine whether differential support ground motion can lead to increased bridge
response, when compared to the case of identical support ground motion. The methodology
described in Chapter 2 of this report is used to generate the ground motion time histories.

A total of 15 scenario earthquakes were examined for each one of the eight bridges by
considering three different apparent velocities of seismic wave propagation v (1,000, 1,500,
and 2,000 m/sec), and five different scenario earthquakes for each value of v by varying
the seed for the random number generator. These 15 cases are described in Table 3-10.

The Uniform Building Code (International Conference of Building Officials 1994) acceler-
ation response spectrum for Type I soil, 5% damping, and 0.5g peak ground acceleration
was selected for all supports of each one of the eight bridges (with the exception of the
FHWA /ABAM-No.2 bridge for which the UBC response spectrum for Type II soil was
used for 5% damping and 0.3g peak ground acceleration). These two response spectra are
shown in Fig. 3-15.

Abrahamson’s coherence law (Abrahamson 1993) was chosen to describe the coherence loss
between pairs of supports. The functional form of this law is provided in Eqgs. (2-60)-(2-
65) and is plotted in Fig. 3-16. Abrahamson’s model for the coherence function has the
advantage that it can be used for a broad range of soil conditions.

Finally, the Jennings et al. envelope (Jennings et al. 1968) was used to define the duration
of strong ground motion with parameters shown in Fig. 2-4. It should be pointed out
that as two-dimensional models of the eight bridges were considered, only the horizontal
component of ground motion parallel to the axis of the bridge has been generated.

For each set of differential (asynchronous) support ground motion time histories, the cor-
responding set of identical support ground motion time histories is obtained by considering
that the acceleration time history at the first support of the bridge is applied at all the
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FIGURE 3-14 Moment-Curvature Relationships for the Piers of the SR14/I5
(Caltrans 1993).
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TABLE 3-10
The 15 Scenario Earthquakes Considered in the
Comparative Study of Eight Bridges

Scenario Velocity v Random
No. (m/sec) Case
1 1,000 1
2 1,000 2
3 1,000 3
4 1,000 4
5 1,000 5
6 1,500 1
7 1,500 2
8 1,500 3
9 1,500 4
10 1,500 5
11 2,000 1
12 2,000 2
13 2,000 3
14 2,000 4
15 2,000 5
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other supports.

3.2.5 Dynamic Analyses and Conclusions

For each of the 15 scenario earthquakes considered (refer to Table 3-10), each one of the
eight bridges in Table 3-1 was analyzed dynamically using differential and the correspond-
ing identical support ground motion. Linear as well as nonlinear dynamic analyses were
carried out for all bridges, with the exception of the Aptos Creek bridge for which only
linear analyses were carried out. The computer code SAP90 beta version was used to
perform these dynamic time history analyses.

The ratio defined in Eq. (3-1) was then computed for each one of the eight bridges and
for each of the 15 scenario earthquakes, for the following response quantities:

Linear Analysis

It is reminded that linear analyses are performed for all eight bridges in this group. Values
of pin Eq. (3-1) are computed for M/M, at each one of the piers of each bridge, and
for the opening and closing of each one of the expansion joints (hinges) of the five bridges
that have at least one hinge (the Aptos Creek, TY1H, TY2H, Gavin Canyon, and SR14/15
bridges). It should be noted that M is the bending moment at a specific cross-section, and
M, is the yield moment of the same cross-section.

Nonlinear Analysis

It is reminded that nonlinear analyses are performed for seven of the eight bridges in this
group (the Aptos Creek bridge is only analyzed linearly). Values of p in Eq. (3-1) are
computed for 6/, at each one of the piers of the seven bridges, and for the opening and
closing of each one of the expansion joints (hinges) of the four bridges that have at least
one hinge (the TY1H, TY2H, Gavin Canyon, and SR14/I5 bridges). It should be noted
that @ is the rotation of the nonlinear spring used to model the plastic zone at each end
of every pier, and 6, is the corresponding rotation at the yield point. The ratio 6/6, is
therefore the ductility demand of the plastic zone.

Conclusions

Text Example Bridge

Statistical analysis of the p values for M /M, for the two piers of the bridge resulting from
linear dynamic analyses provides an overall mean value of 1.007, a standard deviation of
0.0251, and a corresponding coefficient of variation of 2.5%. The maximum value for p is
Pmax = 1.063 observed at Pier 1 for a wave velocity of 1,000 m/sec. The wave velocity
does not have any significant effect on the p values.

Statistical analysis of the p values for /6, for the two piers of the bridge resulting from
nonlinear dynamic analyses provides an overall mean value of 0.997, a standard deviation
of 0.0277, and a corresponding coefficient of variation of 2.8%. The maximum value for p
18 pmax = 1.034 observed at Pier 1 for a wave velocity of 1,000 m/sec. The wave velocity
does not have again any significant effect on the p values.
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There is no considerable difference in the statistics of the p values resulting from linear
(M/M,) and nonlinear (6/6,) analysis as indicated above.

Aptos Creek Bridge

Statistical analysis of the p values for M /M, for the four piers of the bridge resulting from
linear dynamic analyses provides an overall mean value of 1.002, a standard deviation of
0.0330, and a corresponding coefficient of variation of 3.3%. The maximum value for p is
Pmax = 1.078 observed at Pier 3 for a wave velocity of 2,000 m/sec. The wave velocity
does not have any significant effect on the p values. It is reminded that the Aptos Creek
bridge is analyzed only linearly.

Statistical analysis of the p values for the opening and the closing of the single expansion
joint of the bridge resulting from linear dynamic analyses provides an overall mean value of
1.019, a standard deviation of 0.0591, and a corresponding coefficient of variation of 5.8%.
The maximum value for p is pmax = 1.141 observed for the opening of the joint for a wave
velocity of 1,000 m/sec. It should be pointed out that the aforementioned statistics for the
p values of the opening and closing of the expansion joint of the bridge (linear analysis) are
not as important as the corresponding statistics for the p values of M/M,, as the opening
and the closing of an expansion joint can not be used readily for design, and as the model
used for the expansion joint of this bridge is a rather simple one.

FHWA-No.2 Example Bridge

Statistical analysis of the p values for M/M,, for the two piers of the bridge resulting from
linear dynamic analyses provides an overall mean value of 0.987, a standard deviation of
0.0333, and a corresponding coefficient of variation of 3.4%. The maximum value for p is
Pmax = 1.067 observed at Pier 2 for a wave velocity of 2,000 m/sec. It appears that the
wave velocity of v = 2,000 m/sec produces higher p values.

Statistical analysis of the p values for /6, for the two piers of the bridge resulting from
nonlinear dynamic analyses provides an overall mean value of 1.040, a standard deviation
of 0.0727, and a corresponding coefficient of variation of 7.0%. The maximum value for p
is pmax = 1.247 observed at Pier 2 for a wave velocity of 2,000 m/sec. It appears that the
wave velocity of v = 2,000 m/sec produces higher p values.

Although there is no considerable difference in the statistics of the p values resulting from
linear (M/M,) and nonlinear (0/6,) analysis as indicated above, it appears that there is a
slight increase in the overall mean value, standard deviation, coefficient of variation, and
maximum p value for the nonlinear case, when compared to the linear case. Specifically,
the overall mean value increases from 0.987 to 1.040, the standard deviation from 0.0333
to 0.0727, the coefficient of variation from 3.4% to 7.0%, and the maximum p value from
1.067 to 1.247.

TYOH Example Bridge

Statistical analysis of the p values for M/M,, for the four piers of the bridge resulting from
linear dynamic analyses provides an overall mean value of 0.948, a standard deviation of
0.0778, and a corresponding coefficient of variation of 8.2%. The maximum value for p is
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Pmax = 1.116

observed at Pier 1 for a wave velocity of 2,000 m/sec. It appears that the wave velocity
of v = 2,000 m/sec produces higher p values.

Statistical analysis of the p values for §/6, for the four piers of the bridge resulting from
nonlinear dynamic analyses provides an overall mean value of 0.978, a standard deviation
of 0.112, and a corresponding coefficient of variation of 11.5%. The maximum value for p
1S pmax = 1.176 observed at Pier 1 for a wave velocity of 2,000 m/sec. It appears that the
wave velocity of v = 2,000 m/sec produces higher p values.

Although there is no considerable difference in the statistics of the p values resulting from
linear (M/M,) and nonlinear (0/6,) analysis as indicated above, it appears that there is a
slight increase in the overall mean value, standard deviation, coefficient of variation, and
maximum p value for the nonlinear case, when compared to the linear case. Specifically,
the overall mean value increases from 0.948 to 0.978, the standard deviation from 0.0778
to 0.112, the coefficient of variation from 8.2% to 11.5%, and the maximum p value from
1.116 to 1.176.

TY1H Example Bridge

Statistical analysis of the p values for M /M, for the four piers of the bridge resulting from
linear dynamic analyses provides an overall mean value of 0.971, a standard deviation of
0.0521, and a corresponding coefficient of variation of 5.4%. The maximum value for p is
Pmax = 1.101 observed at Pier 1 for a wave velocity of 1,000 m/sec. The wave velocity
does not have any significant effect on the p values.

Statistical analysis of the p values for §/6, for the four piers of the bridge resulting from
nonlinear dynamic analyses provides an overall mean value of 1.003, a standard deviation
of 0.0710, and a corresponding coefficient of variation of 7.1%. The maximum value for p
iS pmax = 1.160 observed at Pier 3 for a wave velocity of 1,000 m/sec. The wave velocity
does not have again any significant effect on the p values.

Although there is no considerable difference in the statistics of the p values resulting from
linear (M/M,) and nonlinear (6/6,) analysis as indicated above, it appears that there is a
slight increase in the overall mean value, standard deviation, coefficient of variation, and
maximum p value for the nonlinear case, when compared to the linear case. Specifically,
the overall mean value increases from 0.971 to 1.003, the standard deviation from 0.0521
to 0.0710, the coefficient of variation from 5.4% to 7.1%, and the maximum p value from
1.101 to 1.160.

Statistical analysis of the p values for the opening and the closing of the expansion joint
of the bridge resulting from linear dynamic analyses provides an overall mean value of
1.446, a standard deviation of 0.187, and a corresponding coefficient of variation of 12.9%.
The maximum value for p is pmax = 1.894 observed for the closing of the joint for a wave
velocity of 1,000 m/sec.

Statistical analysis of the p values for the opening and the closing of the expansion joint
of the bridge resulting from nonlinear dynamic analyses provides an overall mean value of
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1.562, a standard deviation of 0.251, and a corresponding coefficient of variation of 16.1%.
The maximum value for p is ppax = 2.162 observed for the opening of the joint for a wave
velocity of 1,000 m/sec.

It should be pointed out that the aforementioned statistics for the p values of the opening
and closing of the expansion joint of the bridge (linear and nonlinear analysis) are not
as important as the corresponding statistics for the p values of M /M, and 6/8,, as the
opening and the closing of an expansion joint can not be used readily for design, and as
the model used for the expansion joint of this bridge is a rather simple one.

TY2H Ezxample Bridge

Statistical analysis of the p values for M /M, for the four piers of the bridge resulting from
linear dynamic analyses provides an overall mean value of 1.008, a standard deviation of
0.0443, and a corresponding coefficient of variation of 4.4%. The maximum value for p is
Pmax = 1.097 observed at Pier 2 for a wave velocity of 1,000 m/sec. The wave velocity
does not have any significant effect on the p values.

Statistical analysis of the p values for /6, for the four piers of the bridge resulting from
nonlinear dynamic analyses provides an overall mean value of 0.979, a standard deviation
of 0.0605, and a corresponding coefficient of variation of 6.2%. The maximum value for p
is pmax = 1.204 observed at Pier 2 for a wave velocity of 2,000 m/sec. The wave velocity
does not have again any significant effect on the p values.

Although there is no considerable difference in the statistics of the p values resulting from
linear (M/M,) and nonlinear (0/6,) analysis as indicated above, it appears that there is
a slight increase in the overall standard deviation, coefficient of variation, and maximum
p value for the nonlinear case, when compared to the linear case. Specifically, the overall
standard deviation increases from 0.0443 to 0.0605, the coefficient of variation from 4.4%
to 6.2%, and the maximum p value from 1.097 to 1.204. The overall mean value, however,
decreases from 1.008 to 0.979.

Statistical analysis of the p values for the opening and the closing of the two expansion
joints of the bridge resulting from linear dynamic analyses provides an overall mean value
of 1.044, a standard deviation of 0.169, and a corresponding coefficient of variation of
16.2%. The maximum value for p is pmax = 1.481 observed for the opening of joint 2 for
a wave velocity of 1,500 m/sec.

Statistical analysis of the p values for the opening and the closing of the two expansion
joints of the bridge resulting from nonlinear dynamic analyses provides an overall mean
value of 1.014, a standard deviation of 0.150, and a corresponding coefficient of variation
of 14.8%. The maximum value for p is pmax = 1.380 observed for the opening of joint 2
for a wave velocity of 1,000 m/sec.

It should be pointed out that the aforementioned statistics for the p values of the opening
and closing of the expansion joints of the bridge (linear and nonlinear analysis) are not
as important as the corresponding statistics for the p values of M /M, and 6/6,, as the
opening and the closing of an expansion joint can not be used readily for design, and as
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the model used for the expansion joints of this bridge is a rather simple one.

Gavin Canyon Bridge

Statistical analysis of the p values for M /M, for the four piers of the bridge resulting from
linear dynamic analyses provides an overall mean value of 0.989, a standard deviation of
0.0477, and a corresponding coefficient of variation of 4.8%. The maximum value for p is
Pmax = 1.083 observed at Pier 3 for a wave velocity of 1,500 m/sec. The wave velocity
does not have any significant effect on the p values.

Statistical analysis of the p values for /6, for the four piers of the bridge resulting from
nonlinear dynamic analyses provides an overall mean value of 1.005, a standard deviation
of 0.0634, and a corresponding coefficient of variation of 6.3%. The maximum value for p
1S pmax = 1.198 observed at Pier 2 for a wave velocity of 2,000 m/sec. The wave velocity
does not have again any significant effect on the p values.

Although there is no considerable difference in the statistics of the p values resulting from
linear (M/M,) and nonlinear (6/6,) analysis as indicated above, it appears that there is a
slight increase in the overall mean value, standard deviation, coeflicient of variation, and
maximum p value for the nonlinear case, when compared to the linear case. Specifically,
the overall mean value increases from 0.989 to 1.005, the standard deviation from 0.0477

to 0.0634, the coefficient of variation from 4.8% to 6.3%, and the maximum p value from
1.083 to 1.198.

Statistical analysis of the p values for the opening and the closing of the two expansion
joints of the bridge resulting from linear dynamic analyses provides an overall mean value
of 1.079, a standard deviation of 0.159, and a corresponding coefficient of variation of
14.7%. The maximum value for p is pmax = 1.402 observed for the opening of joint 1 for
a wave velocity of 1,000 m/sec.

Statistical analysis of the p values for the opening and the closing of the two expansion
joints of the bridge resulting from nonlinear dynamic analyses provides an overall mean
value of 1.054, a standard deviation of 0.144, and a corresponding coefficient of variation
of 13.7%. The maximum value for p is pmax = 1.370 observed for the opening of joint 1
for a wave velocity of 1,000 m/sec.

It should be pointed out that the aforementioned statistics for the p values of the opening
and closing of the expansion joints of the bridge (linear and nonlinear analysis) are not
as important as the corresponding statistics for the p values of M/M, and 6/6,, as the
opening and the closing of an expansion joint can not be used readily for design, and as
the model used for the expansion joints of this bridge is a rather simple one.

SR14/15 Bridge

Statistical analysis of the p values for M /M, for the nine piers of the bridge resulting from
linear dynamic analyses provides an overall mean value of 0.974, a standard deviation of
0.147, and a corresponding coefficient of variation of 15.1%. The maximum value for p is
Pmax = 1.413 observed at Pier 9 for a wave velocity of 1,000 m/sec. The wave velocity
does not have any significant effect on the p values.
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Statistical analysis of the p values for /6, for the nine piers of the bridge resulting from
nonlinear dynamic analyses provides an overall mean value of 0.999, a standard deviation
of 0.167, and a corresponding coefficient of variation of 16.8%. The maximum value for p
i8 pmax = 1.551 observed at Pier 7 for a wave velocity of 1,500 m/sec. The wave velocity
does not have again any significant effect on the p values.

Although there is no considerable difference in the statistics of the p values resulting from
linear (M/M,) and nonlinear (6/6,) analysis as indicated above, it appears that there is a
slight increase in the overall mean value, standard deviation, coefficient of variation, and
maximum p value for the nonlinear case, when compared to the linear case. Specifically,
the overall mean value increases from 0.974 to 0.999, the standard deviation from 0.147

to 0.167, the coefficient of variation from 15.1% to 16.8%, and the maximum p value from
1.413 to 1.551.

Statistical analysis of the p values for the opening and the closing of the four expansion
joints of the bridge resulting from linear dynamic analyses provides an overall mean value
of 1.095, a standard deviation of 0.227, and a corresponding coefficient of variation of
20.7%. The maximum value for p is ppax = 2.142 observed for the closing of joint 4 for a
wave velocity of 1,000 m/sec.

Statistical analysis of the p values for the opening and the closing of the four expansion
joints of the bridge resulting from nonlinear dynamic analyses provides an overall mean
value of 1.291, a standard deviation of 0.530, and a corresponding coefficient of variation
of 41.1%. The maximum value for p is pmax = 3.027 observed for the closing of joint 4 for
a wave velocity of 1,000 m/sec.

It should be pointed out that the aforementioned statistics for the p values of the opening
and closing of the expansion joints of the bridge (linear and nonlinear analysis) are not
as important as the corresponding statistics for the p values of M /M, and 6/6,, as the
opening and the closing of an expansion joint can not be used readily for design, and as
the model used for the expansion joints of this bridge is a rather simple one.

General Conclusions from All Eight Bridges

Figure 3-17 plots the maximum p values for M /M, at the piers (linear dynamic analysis)
as a function of the largest span of the bridge, while Fig. 3-18 plots the maximum p
values for M /M, at the piers (linear dynamic analysis) as a function of the total length
of the bridge. Figure 3-19 plots the maximum p values for ductility demand at the piers
(nonlinear dynamic analysis) as a function of the largest span of the bridge, while Fig. 3-20
plots the maximum p values for ductility demand at the piers (nonlinear dynamic analysis)
as a function of the total length of the bridge. It is reminded that ductility demand is the
ratio 6/6,.

Figure 3-18 plots the maximum p values for M/M, at the piers resulting from linear
dynamic analysis, as a function of the total length of the bridge. Figure 3-18 provides
the following indication: it appears that for bridges similar in form and configuration to
the eight bridges considered in this part of the report and having a total length less than
approximately 1,000 ft, the expected maximum p value for M/M, at the piers resulting
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from linear dynamic analysis is going to be close to 1.10. For bridges larger than 1,000
ft, it is difficult to provide a general rule because there is only one data point as can be
seen from Fig. 3-18, but it appears that the expected maximum p value for M /M, can be
much higher than 1.10.

Figure 3-20 plots the maximum p values for 6/6, at the piers resulting from nonlinear
dynamic analysis, as a function of the total length of the bridge. Figure 3-20 provides
the following indication: it appears that for bridges similar in form and configuration to
the eight bridges considered in this part of the report and having a total length less than
approximately 1,000 ft, the expected maximum p value for 8/, at the piers resulting from
nonlinear dynamic analysis is going to be close to 1.20-1.25. For bridges larger than 1,000
ft, it is difficult to provide a general rule because there is only one data point as can be
seen from Fig. 3-20, but it appears that the expected maximum p value for §/6, can be
much higher than 1.20-1.25.

3.3 Effect of Different Local Soil Conditions

3.3.1 Introduction

In the preceding comparative analysis of the set of eight bridges, it has been assumed that
all the supports of each bridge were on the same local soil conditions. In order to examine
the very important case of bridges with supports on different local soil conditions, the
Gavin Canyon bridge from the previous set of eight bridges is chosen for further analysis
in this part of the report. Specifically, it will be assumed that one or two of the supports
of this bridge can be in different (softer) local soil conditions than the rest. Such cases can
be encountered in practice in bridges over small valleys where the abutments and some of
the supports close to the abutments can be in harder soil conditions, while some of the
supports around the center of the bridge can be in softer soil conditions.

3.3.2 Description of the Gavin Canyon Bridge

The description of the Gavin Canyon bridge that is considered in this part of the report
can be found in the “Comparative Analysis of Eight Bridges” section.

3.3.3 Finite Element Model of the Gavin Canyon Bridge

The model developed in the “Comparative Analysis of Eight Bridges” section is used again
here for the Gavin Canyon bridge. The only difference is that now the SAP2000 computer
code is selected to perform the dynamic time history analyses, and only nonlinear dynamic
analyses are considered.

3.3.4 Ground Motion

As mentioned earlier, in this part of the report it is assumed that the Gavin Canyon bridge
has one or two of its four piers on softer soil than the rest of the piers and the abutments.
The methodology presented in Chapter 2 of this report is used again to generate the ground
motion time histories.

The following 40 scenario earthquakes have been considered: five different scenario earth-
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quakes assuming that all four piers of the bridge are on hard soil (denoted by hhhhl —
hhhh5), five different scenario earthquakes assuming that the first pier of the bridge is on
hard soil, the next two on medium soil, and the fourth on hard soil (denoted by hmmh1 -
hmmh5), five different scenario earthquakes assuming that the first pier of the bridge is on
hard soil, the next two on soft soil, and the fourth on hard soil (denoted by hsshl — hssh5),
five different scenario earthquakes assuming that the first pier of the bridge is on medium
soil, the next two on soft soil, and the fourth on medium soil (denoted by mssm1 — mssm5),
and finally twenty different scenario earthquakes assuming that the first two piers of the
bridge are on medium soil, the third one on soft soil, and the fourth one on medium soil
(denoted by mmsm1 — mmsm20). One of the reasons for considering the twenty scenario
earthquakes mmsml — mmsm20 is to examine the variation in the p values (Eq. (3-1))
resulting from the Monte Carlo simulation procedure that was followed.

For all forty of the above scenario earthquakes, the apparent velocity of wave propagation
was set equal to 1,000 m/sec, and the different scenario earthquakes corresponding to the
same set of local soil conditions were obtained by varying the seed for the random number
generator. These 40 cases are described in Table 3-11.

The Uniform Building Code (International Conference of Building Officials 1994) acceler-
ation response spectrum for Type I soil, 5% damping, and 0.5g peak ground acceleration
was selected to describe the ground motion at piers on hard soil, the UBC acceleration
response spectrum for Type II soil, 5% damping, and 0.5g peak ground acceleration to
describe the ground motion at piers on medium soil, and the UBC acceleration response
spectrum for Type III soil, 5% damping, and 0.5g peak ground acceleration to describe the
ground motion at piers on soft soil. These three response spectra are shown in Fig. 3-15.

Abrahamson’s coherence law (Abrahamson 1993) was chosen again to describe the co-
herence loss between pairs of supports. The functional form of this law is provided in
Egs. (2-60)-(2-65) and is plotted in Fig. 3-16. Abrahamson’s model for the coherence
function has the advantage that it can be used for a broad range of soil conditions. This
advantage is especially useful here as different supports of the bridge are on different lo-
cal soil conditions. At this point, the reader is referred to an important note concerning
the case of differential (asynchronous) support ground motion when the bridge supports
are on different local soil conditions found in the second paragraph of Chapter 2 “Gen-
eration of Spatially Varying Seismic Ground Motion Time Histories” (this is before the
“Introduction” section of Chapter 2).

Finally, the Jennings et al. envelope (Jennings et al. 1968) was used again to define the
duration of strong ground motion with parameters shown in Fig. 2-4. It should be pointed
out that as a two-dimensional model of the Gavin Canyon bridge was considered, only
the horizontal component of ground motion parallel to the axis of the bridge has been
generated.

For each set of differential (asynchronous) support ground motion time histories, the cor-
responding set of identical support ground motion time histories is obtained by considering
that the acceleration time history at the first support of the bridge is applied at all the
other supports.
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3.3.5 Dynamic Analyses and Conclusions

For each of the 40 scenario earthquakes considered (refer to Table 3-11), the Gavin Canyon
bridge was analyzed dynamically using differential and the corresponding identical support
ground motion. Only nonlinear dynamic analyses were carried out. The computer code
SAP2000 was used to perform these dynamic time history analyses. Figure 3-21 displays
a set of typical asynchronous displacement time histories at the four piers of the Gavin
Canyon bridge, when Piers 1, 2, and 4 are on medium soil, and Pier 3 is on soft soil.

The ratio p defined in Eq. (3-1) was then computed for each of the forty scenario earth-
quakes, for the following response quantities: /6, at each one of the four piers of the
bridge, and for the opening and closing of each one of the two expansion joints (hinges).
It should be noted that 6 is the rotation of the nonlinear spring used to model the plastic
zone at each end of every pier, and 6, is the corresponding rotation at the yield point. The
ratio 0/, is therefore the ductility demand of the plastic zone.

Conclusions

In order to estimate the effect of different local soil conditions on the p values of the Gavin
Canyon bridge, Table 3-12 displays the statistics of p values for /6, for the 15 scenario
earthquakes considered in the previous part of this report (same local soil conditions - refer
to Table 3-10), and the corresponding statistics for the 20 scenario earthquakes: mmsml-
mmsm?20 considered in this part of the report (different local soil conditions - refer to Table
3-11). Note that Table 3-12 is constructed from results of nonlinear analyses.

The most important conclusion from Table 3-12 is the very significant increase in the mean
value, standard deviation, coeflicient of variation, and maximum value of p for the case
of different local soil conditions, when compared to the case of same local soil conditions,
at Piers 2 and 3. Specifically, at Pier 2, the mean value of p increases from 1.008 to
1.635, the standard deviation of p from 0.086 to 0.236, the coefficient of variation of p from
8.6% to 14.4%, and the maximum p value from 1.20 to 2.27. At Pier 3, the mean value
of p increases from 0.999 to 1.293, the standard deviation of p from 0.057 to 0.203, the
coefficient of variation of p from 5.7% to 15.7%, and the maximum p value from 1.07 to
1.78.

It should be mentioned that Piers 1 and 4 do not show increases in the p values for /6,
as dramatic as Piers 2 and 3 for the case of different local soil conditions, as can be easily
observed in Table 3-12. This different behavior of Piers 1 and 4 can be easily explained from
the model used for the two expansion joints of the Gavin Canyon bridge. It is reminded
that the model used allows the two sections of the bridge converging to the joint to move
independently in the horizontal direction and to rotate independently, and constrains them
to move by the same amount in the vertical direction. Such a model is rather simple and
is the main reason for this different behavior. If a gap-spring-type element was used to
model the expansion joints in the horizontal direction, it is expected that Piers 1 and 4
would behave more similarly to Piers 2 and 3.

The general conclusion of this part of the report is therefore the following: when a bridge
similar in type and configuration as the Gavin Canyon bridge has supports on different
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FIGURE 3-21 Typical Asynchronous Displacement Time Histories in cm at the
Four Piers of the Gavin Canyon Bridge (Pier 1: Medium Soil, Pier
2: Medium Soil, Pier 3: Soft Soil, Pier 4: Medium Soil).
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TABLE 3-12

Statistics of p Values for 6/6,
Gavin Canyon Bridge (Nonlinear Analysis)

Same Local Soil Conditions

Statistics of p Values for 6/, for the
15 Scenario Earthquakes in Table 11

Pier Pier Pier Pier
1 2 3 4
Average of p values 1.013 1.008 0.999 1.002
Standard Deviation of p values 0.015 0.086 0.057 0.077
COV of p values 1.5% 8.6% 5.7% 7.7%
Maximum p value 1.04 1.20 1.07 1.14
Different Local Soil Conditions
Statistics of p Values for /0, for the
20 Scenario Earthquakes: mmsm1l — mmsm20 in Table 65
Pier Pier Pier Pier
1 2 3 4
Average of p values 0.986 1.635 1.293 1.009
Standard Deviation of p values 0.061 0.236 0.203 0.134
COV of p values 6.2% 14.4% 15.7% 13.3%
Maximum p value 1.04 2.27 1.78 1.24
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local soil conditions, the expected maximum values of p for the ductility demand (6/6,) at
the piers can become much larger than unity, and certainly much larger than corresponding
values resulting from all supports being considered on the same local soil conditions.

3.4 Effect of Modeling the Bridge in Three Dimensions

3.4.1 Introduction

In all the analyses considered so far, the finite element models used for the bridges were
two-dimensional, and the only component of ground motion considered was the horizontal
one along the axis of the bridge. In order to study the effect of different angles of incidence
of the seismic waves with respect to the axis of the bridge and to examine the effect
of the vertical component of ground motion, two bridges were modeled linearly in three
dimensions in this part of the report. It was assumed that all the supports of these two
bridges were on the same local soil conditions. In addition, a detailed sensitivity analysis
with respect to the value of the apparent velocity of wave propagation was carried out for
one of these two bridges.

The two bridges modeled in three dimensions in this part of the report are the SR14/I5
Interchange and a typical three-span concrete bridge designed by BERGER/ABAM Engi-
neers Inc. for the Federal Highway Administration.

3.4.2 The SR14/15 Interchange in Three Dimensions

This section of the report is based on the senior thesis of Sanjay Arwade entitled “Analysis
of the Effect of Differential Support Motion on a Typical Reinforced Concrete Highway
Bridge,” presented at Princeton University in 1996.

Description of SR14/15 Viaduct

The southbound SR14/15 separation and overhead structure (that was also analyzed in
two-dimensions in the “Comparative Analysis of Eight Bridges” section) is located at mile
post 24.5 on Route 5 in Los Angeles County approximately 24 miles northwest of downtown
Los Angeles and is generally aligned in the north-south direction. The bridge is a ten-span
structure divided into five frames by four expansion joints. It has seat-type abutments
and single column bents. The total length is 1,582 ft with an overall width of 55 ft. The
structure is curved to a radius of 2,235 ft. Figure 3-22 taken from Buckle (1994) shows
elevation, plan and section views of the viaduct.

The viaduct failed spectacularly on January 17, 1994. The entire frame 1 from abutment
1 to the hinge in span 3-4 collapsed, with total disintegration of the column at pier 2,
and an apparent punching through the superstructure of pier 3. The bridge unseated off
abutment 1, moving about 5 ft north, and also unseated off the hinge adjacent to pier 4,
again ending up in a final position some distance north of its original plan position. The
right exterior shear key at abutment 1 was damaged. However, the left shear key had
little visual damage. The pier 3 bent cap was inclined towards pier 4 and the measured
ground separation from the column at pier 4 was approximately six inches north-south
and four inches east-west. The predominant motion of the structure appeared to be in the
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FIGURE 3-22 Elevation, Plan and Section Views of the Southbound SR14/I5
Separation and Overhead Taken from Buckle (1994).
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north-south direction.

Finite Element Model of the SR14/15 Viaduct

A linear three-dimensional finite element model of the SR14/I5 viaduct was constructed
based on the “as built plans” of the structure. The motion of interest is the motion of the
center axis of the bridge. For this reason, the structure is modeled in three dimensions
using frame elements running along the neutral axis of the superstructure box girder. The
section properties of these elements are chosen to represent the full width and depth of
the box girder. The ANSYS computer code was selected for the dynamic time history
analyses.

Ground Motion

The three-dimensional model of the SR14/15 interchange was subjected to response spec-
trum compatible, spatially varying ground motions to examine whether differential support
ground motion can lead to increased bridge response, when compared to the case of iden-
tical support ground motion. The methodology described in Chapter 2 of this report is
used again to generate the ground motion time histories.

A total of 18 scenario earthquakes were considered by varying the velocity of seismic wave
propagation v, the angle of incidence of seismic waves with respect to the axis of the bridge
6 (6 = 0 when seismic waves propagate parallel to the axis of the bridge, and § = 90° when
seismic waves propagate at an angle of 90° with respect to the axis of the bridge), and by
considering combinations of horizontal and vertical components of ground motion. These
18 cases are described in Table 3-13a.

The Caltrans acceleration design response spectrum for 80-150 ft alluvium, 5% damping,
and 0.5g peak ground acceleration was selected for all supports of the bridge (see Fig.
3-23). Abrahamson’s coherence law (Abrahamson 1993) was chosen again to describe the
coherence loss between pairs of supports. The functional form of this law is provided
in Egs. (2-60)-(2-65) and is plotted in Fig. 3-16. Finally, the Jennings et al. envelope
(Jennings et al. 1968) was used to define the duration of strong ground motion (see Fig.
2-4).

The generated asynchronous displacement time histories at abutments 1 and 11 of the
bridge are plotted in Fig. 3-24 for Case #6 in Table 3-13a, for demonstration purposes.
The corresponding set of identical support ground motion time histories is again obtained
by considering that the acceleration time history at the first support of the bridge is applied
at all the other supports.

Dynamic Analysis and Conclusions

For each of the 18 scenario earthquakes considered (refer to Table 3-13a), the three-
dimensional model of the SR14/I5 interchange was analyzed using differential and the
corresponding identical support ground motion. Only linear dynamic analyses were car-
ried out. The computer code ANSYS was used to perform these dynamic time history
analyses.
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TABLE 3-13a

The 18 Scenario Earthquakes Considered in the
Three-Dimensional Analysis of the SR14/I5 Viaduct

Case Velocity v Angle 6 Ground Motion
# (m/sec) (degrees) Components
1 1,000 0 Horizontal only
2 1,200 0 Horizontal only
3 1,400 0 Horizontal only
4 1,600 0 Horizontal only
5 1,800 0 Horizontal only
6 2,000 0 Horizontal only
7 2,200 0 Horizontal only
8 2,400 0 Horizontal only
9 2,600 0 Horizontal only
10 2,800 0 Horizontal only
11 2,000 10 Horizontal only
12 2,000 20 Horizontal only
13 2,000 30 Horizontal only
14 2,000 40 Horizontal only
15 2,000 60 Horizontal only
16 2,000 90 Horizontal only
17 2,000 0 Horizontal + Vertical
18 2,000 30 Horizontal + Vertical
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FIGURE 3-23  Caltrans Acceleration Design Response Spectrum for 80-150 ft Al-
luvium, 5% Damping, and 0.5g Peak Ground Acceleration.
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FIGURE 3-24 Generated Asynchronous Displacement Time Histories at Abut-

ments 1 (continuous line) and 11 (dotted line) of the SR14/I5
Viaduct, for Case #6 in Table 75.
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The ratio p defined in Eq. (3-1) was then computed for each of the 18 scenario earthquakes,
for the following response quantity: the combined axial and bending stress at each one
of the five segments of the deck. The computed values of p are provided in Table 3-13b
for the five segments of the deck. It should be mentioned at this point that the linear
three-dimensional study of the SR14/15 viaduct presented here is not as detailed as the
analyses performed earlier in this report, as there is only one random case considered for
each combination of velocity v and angle of incidence 8 (refer to Table 3-13a). The results
presented in Table 3-13b for the p values of the combined axial and bending stress at each
one of the five segments of the deck can serve therefore only as an indication of the effect
of the angle of incidence of the seismic waves with respect to the axis of the bridge and
of the vertical component of ground motion. Table 3-13b indicates a maximum p value of
1.18 occurring at segment 1 of the deck for scenario earthquake #1.

3.4.3 A Typical Three-Span Bridge in Three Dimensions

This section of the report is based on the senior thesis of Winnie Kwan entitled “The
Effect of Spatially Differential Seismic Ground Motion on a Typical Three-Span Concrete
Bridge,” presented at Princeton University in 1997.

Description of the Typical Three-Span Bridge

This bridge involves a typical three-span continuous cast-in-place concrete box girder that
was designed by BERGER/ABAM Engineers Inc. for the Federal Highway Administration
(FHWA 1996). The total span of the bridge is 320 ft, with the individual spans being equal
to 100, 120 and 100 ft as indicated in Fig. 3-25, with a skew of 30°. The superstructure
consists of a cast-in-place concrete box girder supported by two piers, each consisting of
two circular cast-in-place concrete columns. For details about the geometry and materials
of the bridge, the reader is referred to FHWA (1996).

Finite Element Model of the Typical Three-Span Bridge

The linear finite element model of the bridge developed by BERGER/ABAM Engineers
(FHWA 1996) was used for the analysis. The computer code SAP2000 was selected to
perform the linear dynamic time history analyses.

Ground Motion

The model of the typical three-span bridge was then subjected to response spectrum com-
patible, spatially varying ground motions to examine whether differential support ground
motion can lead to increased bridge response, when compared to the case of identical sup-
port ground motion. The methodology described in Chapter 2 of this report is used again
to generate the ground motion time histories.

A total of 36 scenario earthquakes were examined by considering four different apparent
velocities of seismic wave propagation v (1,000, 1,500, 2,000, and 2,500 m/sec), three
different angles of incidence of the seismic waves with respect to the axis of the bridge
0 (0°, 45°, and 90°), and by considering three different scenario earthquakes for each of
the aforementioned 4x3=12 cases, by varying the seed for the random number generator.
These 36 cases are described in Table 3-14.
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Three-Dimensional Analysis of the SR14/I5 Viaduct

TABLE 3-13b

The p Values for the Combined Axial and Bending Stress
in the Five Segments of the Deck for the
18 Scenario Earthquakes Considered in the

Case p for seg- p for seg- p for seg- p for seg- p for seg-
# ment 1 ment 2 ment 3 ment 4 ment 5
1 1.18 0.98 0.96 1.05 1.06
2 1.14 0.98 0.97 1.06 1.05
3 1.13 1.00 0.98 1.07 1.03
4 1.13 1.00 0.99 1.07 1.04
5 1.13 1.00 0.99 1.06 1.04
6 1.12 1.01 0.99 1.05 1.04
7 1.12 1.02 1.00 1.05 1.04
8 1.11 1.02 1.00 1.05 1.03
9 1.11 1.02 1.00 1.05 1.03
10 1.12 1.01 0.99 1.05 1.04
11 1.12 1.02 0.99 1.06 1.05
12 1.12 1.02 1.00 1.06 1.05
13 1.10 1.03 1.00 1.06 1.04
14 1.09 1.05 1.00 1.05 1.05
15 1.05 1.06 0.99 0.99 1.03
16 1.00 0.96 0.99 0.99 0.99
17 0.70 1.10 1.04 1.16 0.65
18 1.07 1.07 1.03 1.01 1.09
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The Uniform Building Code (International Conference of Building Officials 1994) acceler-
ation response spectrum for Type II soil, 5% damping, and 0.3g peak ground acceleration
was selected for all supports of the bridge (see Fig. 3-15). Abrahamson’s coherence law
(Abrahamson 1993) was chosen to describe the coherence loss between pairs of supports.
The functional form of this law is provided in Eqgs. (2-60)-(2-65) and is plotted in Fig.
3-16. Finally, the Jennings et al. envelope (Jennings et al. 1968) was used to define the
duration of strong ground motion (see Fig. 2-4).

Typical generated asynchronous displacement time histories at supports 1 and 4 of the
bridge are plotted in Fig. 3-26, for demonstration purposes. The corresponding set of
identical support ground motion time histories is again obtained by considering that the
acceleration time history at the first support of the bridge is applied at all the other
supports.

Dynamic Analysis and Conclusions

For each of the 36 scenario earthquakes considered (refer to Table 3-14), the typical three-
span bridge was analyzed using differential and the corresponding identical support ground
motion. Only linear dynamic analyses were carried out. The computer code SAP2000 was
used to perform these dynamic time history analyses.

The ratio p defined in Eq. (3-1) was then computed for each of the 36 scenario earthquakes,
for the following response quantity: the combined axial and bending stress at the columns
and the deck of the bridge. The computed values of p are provided in Table 3-14. It
should be mentioned at this point that the linear three-dimensional study of the bridge
developed by BERGER/ABAM Engineers presented here is not as detailed as the analyses
performed earlier in this report, as there are only three random cases considered for each
combination of velocity v and angle of incidence 8 (refer to Table 3-14). The results
presented in Table 3-14 for the p values of the combined axial and bending stress at the
deck and the columns of the bridge can serve therefore only as an indication of the effect of
the angle of incidence of the seismic waves with respect to the axis of the bridge and of the
apparent velocity of wave propagation. Table 3-14 indicates a maximum p value of 1.072
for the columns (occurring for scenario earthquake #7) and 1.044 for the deck (occurring
for scenario earthquake #35).

3.5 General Conclusions

There are very interesting conclusions that can be drawn from the case studies considered
in Chapter 3. These conclusions will be used to determine which set of bridges and which
cases of spatially varying ground motion deserve a more detailed study, in order to establish
guidelines for the analysis and design of highway bridges to account for the effect of spatial
variability of ground motion.

Figures 3-18 and 3-20 plot the most important results of the comparative analysis of the
eight bridges. Specifically, Fig. 3-18 plots the maximum p values (defined in Eq. 3-1)
for M/M, (M being the bending moment and M, being the yield moment) at the piers
resulting from linear dynamic analysis, as a function of the total length of the bridge.
Figure 3-18 provides the following indication: it appears that for bridges similar in form
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TABLE 3-14

The 36 Scenario Earthquakes Considered in the Three-Dimensional Analysis
of the Typical Three-Span Continuous Concrete Bridge and the Corresponding

p Values for the Combined Axial and Bending Stress in the Deck and the Columns

Scenario Velocity v Angle 6 Random p for p for
# (m/sec) (degrees) case deck column
1 1,000 0 1 0.963 1.043
2 1,000 0 2 0.966 0.999
3 1,000 0 3 1.005 1.000
4 1,000 45 1 0.931 1.016
5 1,000 45 2 0.997 0.968
6 1,000 45 3 0.974 0.942
7 1,000 90 1 1.012 1.072
8 1,000 90 2 0.921 0.975
9 1,000 90 3 0.940 0.948
10 1,500 0 1 0.952 1.022
11 1,500 0 2 0.966 0.999
12 1,500 0 3 1.001 0.992
13 1,500 45 1 0.919 1.014
14 1,500 45 2 1.038 0.931
15 1,500 45 3 0.978 0.976
16 1,500 90 1 1.009 1.046
17 1,500 90 2 0.910 0.913
18 1,500 a0 3 0.943 0.983
19 2,000 0 1 1.027 0.993
20 2,000 0 2 1.003 0.994
21 2,000 0 3 1.027 0.999
22 2,000 45 1 1.032 0.986
23 2,000 45 2 1.029 0.954
24 2,000 45 3 1.002 0.960
25 2,000 90 1 0.977 0.993
26 2,000 90 2 0.943 0.942
27 2,000 90 3 0.937 1.016
28 2,500 0 1 1.000 1.022
29 2,500 0 2 0.971 0.981
30 2,500 0 3 1.005 0.991
31 2,500 45 1 0.977 1.042
32 2,500 45 2 1.039 0.952
33 2,500 45 3 0.999 0.993
34 2,500 90 1 1.019 1.059
35 2,500 90 2 1.044 0.941
36 2,500 90 3 0.987 1.005
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and configuration to the eight bridges considered in this comparative analysis and having
a total length less than approximately 1,000 ft, the expected maximum p value for M /M,
at the piers resulting from linear dynamic analysis is going to be close to 1.10. For bridges
larger than 1,000 ft, it is difficult to provide a general rule because there is only one
data point as can be seen from Fig. 3-18, but it appears that the expected maximum p
value for M /M, can be much higher than 1.10. Figure 3-20 plots the maximum p values
for /6, (ductility demand) at the piers resulting from nonlinear dynamic analysis, as a
function of the total length of the bridge. Figure 3-20 provides the following indication: it
appears that for bridges similar in form and configuration to the eight bridges considered
in this comparative analysis and having a total length less than approximately 1,000 ft, the
expected maximum p value for §/6, at the piers resulting from nonlinear dynamic analysis
is going to be close to 1.20-1.25. For bridges larger than 1,000 ft, it is difficult to provide
a general rule because there is only one data point as can be seen from Fig. 3-20, but it
appears that the expected maximum p value for /6, can be much higher than 1.20-1.25.

Table 3-12 displays the most important results of the analysis of the Gavin Canyon bridge
when considered to have supports on different local soil conditions. Specifically, Table 3-12
displays the statistics of p values for 8/, (ductility demand) for the 15 scenario earthquakes
considered in Table 3-10 (same local soil conditions), and the corresponding statistics for
the 20 scenario earthquakes: mmsml-mmsm20 considered in Table 3-11 (different local
soil conditions). Note that Table 3-12 is constructed from results of nonlinear analyses.
The most important conclusion from Table 3-12 is the very significant increase in the mean
value, standard deviation, coefficient of variation, and maximum value of p for the case
of different local soil conditions, when compared to the case of same local soil conditions,
at Piers 2 and 3. Specifically, at Pier 2, the mean value of p increases from 1.008 to
1.635, the standard deviation of p from 0.086 to 0.236, the coefficient of variation of p
from 8.6% to 14.4%, and the maximum p value from 1.20 to 2.27. At Pier 3, the mean
value of p increases from 0.999 to 1.293, the standard deviation of p from 0.057 to 0.203,
the coefficient of variation of p from 5.7% to 15.7%, and the maximum p value from 1.07
to 1.78. The reason that Piers 1 and 4 do not show increases in the p values for /6, as
dramatic as Piers 2 and 3 for the case of different local soil conditions is explained in detail
earlier in this report. The general conclusion of Table 3-12 is therefore the following: when
a bridge similar in type and configuration as the Gavin Canyon bridge has supports on
different local soil conditions, the expected maximum values of p for the ductility demand
(6/6,) at the piers can become much larger than unity, and certainly much larger than
corresponding values resulting from all supports being considered on the same local soil
conditions.

The preliminary results obtained in Chapter 3 indicate that relatively longer bridges like
the SR14/15 viaduct (with overall length more than 1000') are expected to show consider-
able increases in their structural response when analyzed using differential support ground
motion, compared to the case of identical support ground motion. On the other hand,
relatively shorter bridges (with overall length less than 1000') appear to show only mi-
nor increases in their structural response when analyzed using differential support ground
motion, compared to the case of identical support ground motion. The aforementioned
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two statements about relatively longer and relatively shorter bridges are valid for bridges
that have all their supports on the same type of local soil conditions. For the case when
different supports of a bridge are on different local soil conditions, even relatively shorter
bridges can show a significant increase in their structural response when analyzed using
differential support ground motion, compared to the case of identical support ground mo-
tion. One of the major objectives of Chapter 4 is going to be, therefore, to verify the
validity of the important preliminary conclusions mentioned above, by performing a more
detailed analysis of a set of bridges. Such an analysis will involve a number of samples
large enough to determine with adequate accuracy the statistics of the structural response
through a Monte Carlo simulation approach.
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SECTION 4
RIGOROUS ANALYSIS OF A SET OF HIGHWAY BRIDGES TO ESTIMATE THE
EFFECT OF SPATIAL VARIATION OF SEISMIC GROUND MOTION

4.1 Introduction

The extensive but preliminary studies conducted in Chapter 3, have clearly indicated that there
are several cases where differential (asynchronous) support ground motion can produce
significantly higher structural response to multi-supported highway bridges, when compared to
the case of identical support ground motion.

The studies performed on the set of bridges in Chapter 3 have followed a Monte Carlo simulation
approach. Specifically, ground motion time histories have been modeled as stochastic vector
processes, and the selected bridges have been analyzed linearly and nonlinearly in the time
domain (time history analysis). The main reason that the Chapter 3 studies were considered
preliminary is the fact that only a small number of time history analyses have been performed for
each case (in the majority of cases less than five). It is believed that this relatively small number
of samples considered is not enough to provide reliable estimates for the statistics of structural
response. The reason that only a relatively small number of samples has been considered in
Chapter 3 is that the main objectives at that stage were to establish whether spatial variability of
ground motion necessitated further study, and if the answer to that question was positive, to
determine which were the specific cases that required further study. The answer to the first
question was positive, while as far as the second question is concerned, it was found that the case
that could potentially pose the greatest risk to highway bridges was the case of multi-supported
structures with supports on different local soil conditions. In addition, relatively longer bridges
were found to be in higher risk than relatively shorter bridges when subjected to differential
support ground motion. It should be noted that another reason that the studies in Chapter 3 were
considered preliminary was the use of an earlier version of the SAP2000 software that presented
some problems when performing dynamic time history analyses using spatially varying seismic
ground motion. In Chapter 4, all analyses were done using the latest version of SAP2000 that has
eliminated these early problems.

A Monte Carlo simulation approach is also followed in Chapter 4. Seismic ground motion time
histories are again modeled as a non-stationary stochastic vector process. Generated ground
motion time histories at the different supports of a bridge are made compatible with prescribed
design response spectra, and reflect a given apparent velocity of wave propagation, coherence
function, and duration of strong ground motion. It has been mentioned earlier that spatial
variability of seismic ground motion can be attributed to the following three mechanisms: 1) the
difference in arrival times of the seismic waves at different locations, commonly known as the
"wave passage effect,” 2) the change in shape of the propagating waveform due to multiple
scatterings of the seismic waves in the highly inhomogeneous soil medium, referred to as the
"incoherence effect,” and 3) the change in amplitude and frequency content of ground motion at
different locations on the ground surface due to different local soil conditions, known as the
"local site effect.” In the methodology developed in Chapter 2 to generate sample functions of
spatially correlated ground motion time histories, the wave passage effect is described by the
apparent velocity of wave propagation, the incoherence effect is described by assigning a
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coherence function, and the local site effect is described by prescribing different response spectra
at locations with different local soil conditions.

4.2  The Seven Bridges Selected

Based on the preliminary studies of the set of bridges in Chapter 3, the following set of seven
representative bridges has been selected to perform a more detailed and rigorous analysis in
Chapter 4: the "Text Example" bridge, the "FHWA-No.2" bridge, the "TYOH" bridge, the
"TY1H" bridge, the "TY2H" bridge, the "Gavin Canyon" bridge, and the "Santa Clara" bridge.
Detailed descriptions of the first six bridges can be found in Chapter 3, while a description of the
twelve-span Santa Clara bridge is provided later in this section. For the first six bridges, plots of
their elevation and cross-sectional information can be found in Figures 3-1 and 3-3 — 3-7, while
Table 3-1 provides information about their total length and number of spans and Tables 3-2 and
3-4 — 3-8 provide information about the moment of inertia, cross-sectional area, mass density,
and elastic modulus of the girders and the columns of each bridge. The seven bridges selected for
this comparative study represent a wide range of number of spans and total lengths. The reason
for this selection is to study the response of bridges in relation to their length. The total lengths
of these seven bridges range from 111 ft to 1,641 ft. The number of spans ranges from 3 to 12.

In Chapter 3, the selected bridges were studied by performing both linear and nonlinear dynamic
analyses. In this chapter, it was decided to carry out exclusively nonlinear dynamic analyses,
because the bridge response under strong ground motion that can cause severe damage to the
structure is nonlinear in most cases of practical interest. Along the lines of a Monte Carlo
simulation approach, a number of samples of spatially varying ground motion time histories are
generated at the structural supports using the methodology developed in Chapter 2. The statistics
of the maximum structural response (mean, standard deviation, and coefficient of variation) for
each one of the seven bridges are then calculated in terms of the ductility demand at the piers
from an ensemble of 20 (twenty) sample time history analyses. The number of twenty samples
was determined after estimating the maximum response statistics in a typical case using ten,
twenty, forty, and eighty samples, and observing that the aforementioned statistics could be
estimated with adequate accuracy using only twenty samples.

Two general types of support ground motions were considered: 1) all structural supports on same
local soil conditions, and 2) different structural supports on different local soil conditions. For
comparison purposes each bridge was also subjected to identical support ground motion. In
addition, the relative significance of the effects of incoherence, wave passage, and variable local
soil conditions at different supports of the bridge were examined for different apparent velocities
of wave propagation. A detailed description of the ground motion cases considered follows in
section 4.3. It should be pointed out that all seven bridges in this group were subjected to the
same cases of ground motion for comparison purposes.

4.2.1 Description of the Santa Clara Bridge

The elevation and sectional views of the Santa Clara bridge are displayed in Figs. 4-1 — 4-2.
Table 4-1 provides information about the moment of inertia, cross-sectional area, mass density,
and elastic modulus of the girders and the columns of the bridge. It is a twelve span reinforced
concrete bridge with interior spans of 143 ft., exterior spans of 105.25 ft., and a total length of
1640.5 ft. The superstructure consists of a 49-ft. wide, 4-cell concrete box-girder, which is
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FIGURE 4-2b Cross — Section of Piers of Santa Clara Bridge.
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FIGURE 4-2¢ Cross — Section of Piers of Santa Clara Bridge.
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supported on single column piers and at the two ends supported on abutments. The columns are
flared at the top, oblong in shape, with typical cross sectional dimensions of 12 ft x 4 ft and a
height of 39.35 ft. The reinforcement details for all piers are displayed in Figs. 4-2a, 4-2b and 4-
2c.

4.2.2 Finite Element Models of the Seven Bridges

One of the important decisions that had to be made in Chapter 4 was to determine the number of
ground motion cases to consider. There were cases of differential (asynchronous) support ground
motion where all the bridge supports were assumed to be on the same type of local soil
conditions, cases where different supports were assumed to be on different types of local soil
conditions, and cases where all supports were subjected to identical support ground motion. In
addition, there were sub-cases where only the wave passage effect was considered, sub-cases
where only the incoherence effect was considered, and sub-cases with different apparent
velocities of wave propagation (all these cases are described in detail in section 4.3). One of the
main concerns was therefore whether to consider seismic waves arriving at some angle with
respect to the axis of the bridge. Preliminary studies in Chapter 3 using an essentially two-
dimensional model of the SR14/I5 viaduct have indicated that when seismic waves arrive at an
angle with respect to the axis of the bridge, it is possible in some cases to have structural
response higher than the corresponding one for longitudinal seismic loading. However, in
Chapter 4, it was decided to consider only the case of longitudinal seismic loading (seismic
waves propagating parallel to the axis of the bridge). There were two reasons for this decision.
The first one was that in order to have a definite answer about the importance of the angle of
incidence, an enormous number of case studies would have to be considered. The second reason
was that the relatively simple two-dimensional models of the bridges using frame elements are
not capable of capturing the complex three-dimensional behavior of the bridges when the seismic
waves arrive at a certain angle with respect to the axis of the structure.

It was decided therefore that the motion of interest in this comparative study of the seven bridges
would be the longitudinal motion of the center axis of each bridge. For this reason, each bridge is
modeled in two dimensions using frame elements. The section properties of these elements are
chosen to represent the actual cross-sections of the bridge and the effective column length is
measured from the mid-point of the deck to the foundation. Information about the cross-sectional
area and moment of inertia of the different sections of each bridge, along with basic information
about the finite element discretization is provided in Tables 3-2, 3-4 — 3-9 and 4-1.

The computer code SAP2000 is selected to perform the nonlinear dynamic time history analyses.
This program has the capability to evaluate the nonlinear dynamic response of a bridge model
subjected to differential (asynchronous) support excitation. A relatively simple model is used to
perform the nonlinear dynamic analyses. This appears quite appropriate considering the various
types of approximation in modeling the bridge structures, and the high level of uncertainty
involved in determining the input seismic ground motion.

The model used to describe the potentially nonlinear behavior of the piers of all seven bridges
(the only members considered to exhibit nonlinear behavior in this study) is depicted in Fig. 3-
9a. According to this model, a pier is modeled as an elastic column of length 2H,, with a pair of
plastic zones of length L, at each end of the column, as shown in Fig. 3-9a. The total length H of
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the pier from the ground to the soffit of the girder is therefore equal to 2(H,+L,). Each plastic
zone is then modeled to consist of a nonlinear rotational spring and a rigid element of length L,
as shown in Fig. 3-9b. The typical moment-rotation relationship used in this study for the
nonlinear springs is the bilinear one shown in Fig. 3-9c. Its parameters are established using the
Column Ductility Program COLx (Caltrans 1993). The specific moment-curvature relationships
resulting from the COLx program are displayed in Figs. 3-10 — 3-13 for the first six bridges in
this study and in Fig. 4-3a — 4-3d for the piers of the Santa Clara bridge. The various parameters
shown in Figs. 3-9 — 3-13 and in Fig. 4-3a — 4-3d are defined as follows:

M, = Yield moment

py = Curvature at yield

My, = Moment at idealized yield point

pyp = Curvature at idealized yield point

M, = Ultimate moment

pu = Maximum curvature

Kefr or K = Elastic or initial stiffness (before yielding)

o = Coefficient that determines the post yield stiffness (i.e. 0K is the stiffness of
the bilinear curve after yielding)

8y = Yield rotation of the nonlinear spring (8, = py, x L, where L, is the length of
the plastic zone)

The resulting curvature values are then multiplied by the length of the plastic zone (given by the
COLx computer program) to obtain the moment-rotation relationship for the nonlinear springs.
The yield point is obtained by approximating the actual curve as a bilinear one.

For those bridges with expansion joints, the joints are modeled by allowing the two sections of
the bridge converging to the joint to move independently in the horizontal direction and to rotate
independently, and by constraining them to move by the same amount in the vertical direction.

4.3  Ground Motion Cases Considered for the Seven Bridges

As mentioned earlier, all seven bridges were subjected to response spectrum compatible,
spatially varying ground motions to determine whether differential support ground motion can
lead to increased bridge response, when compared to the case of identical support ground
motion.

In the remaining part of this chapter, the following definitions are used for the terms:
"Differential Support Ground Motion", "Different Local Soil Conditions", "Same Local Soil
Conditions", and "Identical Support Ground Motion".

Differential Support Ground Motion: For elongated structures on multiple supports, different
supports are considered to experience different ground motion time histories. This is due to the
effect of wave passage, loss of coherence and (possibly) different supports being on different
types of local soil conditions.

Different Local Soil Conditions: This is the case of differential support ground motion where
different supports of the bridge are on different local soil conditions.
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Same Local Soil Conditions: This is the case of differential support ground motion where all the
supports of the bridge are on the same local soil conditions.

Identical Support Ground Motion: For elongated structures on multiple supports, all supports are
assumed to be subjected to identical support ground motion time histories. For the purposes of
this study, the ground motion time history at the first support of the bridge is applied at all the
other supports in order to check the validity of this assumption used in engineering practice when
performing dynamic analysis of multi-span bridges.

The methodology developed in Chapter 2 of this report is used to generate the spatially varying
ground motion time histories that are used as input excitations for the nonlinear dynamic
analyses of the seven bridges. According to this methodology, the generated ground motion time
histories at the different supports of a bridge are made compatible with prescribed design
response spectra, and reflect a given apparent velocity of wave propagation, coherence function,
and duration of strong ground motion.

In order to determine the relative importance of the wave passage and incoherence effects to the
nonlinear dynamic structural response, the following three cases were considered:

CASE I: Both the wave passage and incoherence effects are considered (loss of
coherence and wave propagation considered).

CASE 2: Only the incoherence effect is considered (loss of coherence but no
wave propagation considered).

CASE 3: Only the wave passage effect is considered (wave propagation
considered, but seismic waves are perfectly coherent - no loss
of coherence).

Table 4-2 describes the three cases in more detail indicating that within each case it is possible to
have two sub-cases of differential support ground motion: different local soil conditions and
same local soil conditions. Table 4-2 also indicates the two values considered for the apparent
velocity of wave propagation: 300 m/sec and 1,000 m/sec.

In order to study the very important case of bridges with supports on different local soil
conditions, certain supports of each bridge were assumed to be in different (softer) local soil
conditions than the rest. Such cases can be encountered in practice in bridges over small (or
larger) valleys where the abutments and some of the supports close to the abutments can be in
harder soil conditions, while some of the supports around the center of the bridge can be in softer
local soil conditions. Table 4-3 describes the different local soil conditions assumed for the piers
of each one of the seven bridges.

From the above, it is obvious that there is a very large number of different cases of ground
motions that were considered for each bridge. It has to be pointed out that for each one of these
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cases and for each bridge, there are twenty nonlinear dynamic analyses that are performed in
order to estimate the statistics of the maximum response.

4.3.1 Design Response Spectrum

The acceleration response spectra for Type I, II, and III soils as specified by the Uniform
Building Code (International Conference of Building Officials, 1994) for 5% damping and 0.5g
peak ground acceleration were selected for the different supports of each one of the seven
bridges, depending on the different local soil conditions at each support. Plots of these three
response spectra are displayed in Fig. 4-4.

4.3.2 Coherence Function

Although in Chapter 3 both the Abrahamson (1993) and the Harichandran and Vanmarcke
(1986) models for the coherence function were used, in this chapter it is only the Harichandran
and Vanmarcke model that is used. There are two reasons for this decision. The first one is that
the Harichandran and Vanmarcke model with its larger coherence loss at low frequencies is
considered to provide generally conservative results for the structural response in the majority of
cases. (Zerva (1994), Kareem, Deodatis and Shinozuka (1997) ). The second reason is that the
Abrahamson model sometimes created some numerical difficulties with the Cholesky
decomposition of the cross-spectral density matrix of the stochastic vector process modeling the
ground motion.

The Harichandran and Vanmarcke model for the coherence function % # (@) has the following

form:

285 1 A 265
Zo@y AN [Ha-dex —m(l—A+aA) 4-1)

7 (@)=Aexp| -

where gjk is the distance between points jand k, 8 (w ) is the frequency - dependent

correlation distance :

b -1/2

0(w)=k|1+| -2 4-2)

%o

and A, «, k, w,, and b are model parameters.
For the purpose of this study the model parameters are chosen as follows:

A=0.626,0=0.022, k =19700m, w, =12.692rad/sec,b =3.47

0

The functional forms of the Harichandran-Vanmarcke model for the coherence function are
plotted in Fig. 4-5 as a function of frequency, for different values of the separation distance. It
becomes quite obvious when comparing Fig. 4-5 with Fig. 2-15 depicting the Abrahamson
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model for the coherence function that the Harichandran and Vanmarcke model allows for
imperfect coherence (coherence less than unity) even for frequencies very close to zero.

4.3.3 Apparent Velocity of Wave Propagation
Two values are selected for the apparent velocity of wave propagation as indicated in Table 4-2.
A low value of 300 m/sec, and a higher value of 1,000 m/sec.

4.3.4 Envelope Function

Finally, in order to introduce the non-stationary characteristics of seismic ground motion, the
Jennings et al. envelope (Jennings et al. 1968) was used to define the duration of strong ground
motion with parameters shown in Fig. 2-4.

4.3.5 Generated Ground Motion Time Histories for the Case of Different Local
Soil Conditions

At this point, the following important note has to be made concerning the case of differential
(asynchronous) support ground motion when the bridge supports are on different local soil
conditions. As mentioned earlier, the way to approach such a case is by assigning different
response (or power) spectra to the various bridge supports according to the corresponding local
soil conditions. Such an approach makes necessary the use of a coherence function between
bridge supports on different local soil conditions that would account for this change in local soil
conditions. Unfortunately, such a coherence function is not currently available, as every model
for the coherence in the literature has been established for uniform (homogeneous) soil
conditions. Consequently, throughout this report, coherence functions for uniform
(homogeneous) soil conditions are used for the cases involving different local soil conditions.
Although this is definitely an approximation, it has been determined to be a reasonable one, as in
such cases the effect from the difference in amplitude and frequency content is the dominant one
(compared to loss of coherence and wave passage). A similar argument can be made for the
apparent velocity of wave propagation (although in this case it is possible to assign equivalent
‘‘average” velocities between points).

44  Nonlinear Dynamic Analysis of the Seven Bridges

As mentioned earlier, nonlinear dynamic analyses were performed for the seven bridges selected
using the SAP2000 computer code. A large number of cases of differential support ground
motions have been considered as described in detail in section 4.3. For each one of these cases,
the structural response was measured in terms of the peak ductility demand at each pier of each
of the seven bridges. Statistics of the peak ductility demand (mean value and standard deviation)
were obtained by ensemble averaging from 20 time history analyses for each case.

As mentioned in the previous paragraph, the parameter used to describe the (nonlinear) structural
response is the ductility demand. The ductility demand is defined as follows: denoting by 0 the
rotation of the nonlinear spring used to model the plastic zone at each end of every pier, and by
By the corresponding rotation at the yield point, the ratio 6/8y is defined as the ductility demand
of the plastic zone.
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4.4.1 Presentation of Results of Nonlinear Dynamic Analyses
As mentioned in section 4.3, there is a large number of cases of differential support ground
motion that have been considered. The three basic cases are the following:

CASE I: Both the wave passage and incoherence effects are considered (loss of
coherence and wave propagation considered).

CASE 2: Only the incoherence effect is considered (loss of coherence but no
wave propagation considered).

CASE 3: Only the wave passage effect is considered (wave propagation
considered, but seismic waves are perfectly coherent - no loss
of coherence).

Within each one of the above three cases, there are two sub-cases of differential support ground
motion: different local soil conditions and same local soil conditions. There are also two values
considered for the apparent velocity of wave propagation: 300 m/sec and 1,000 m/sec. In
addition, each bridge was also analyzed using identical support ground motion for comparison
purposes. The aforementioned cases are described in Tables 4-2 and 4-3.

For each of the cases, 20 different nonlinear dynamic time history analyses were performed
along the lines of a Monte Carlo simulation approach, in order to determine the statistics (mean
and standard deviation) of the peak ductility demand at each of the piers.

A series of figures are provided displaying information about the statistics of the peak ductility
demand. These are Figs. 4-6 — 4-61. As there is a similar set of figures provided for each bridge,
the contents of these figures will be described using as an example the complete set of figures for
the FHWA-No.2 bridge (Figs. 4-6 — 4-13).

Figures 4-6 — 4-9 display information about the mean value (denoted by a black square) and the
mean value plus/minus one standard deviation (denoted by a vertical line above and below the
black square) for the peak ductility demand of the two piers of the FHWA-No. 2 bridge
(obtained by ensemble averaging from 20 time history analyses). The 8 graphs in Figs. 4-6 — 4-9
correspond to the following eight cases of differential support ground motion considered:

1. Case 1 (both the wave passage and incoherence effects considered) with same local soil
conditions and apparent velocity of wave propagation equal to 1,000 m/sec (top graph in Fig.
4-6).

2. Case 1 (both the wave passage and incoherence effects considered) with different local soil
conditions and apparent velocity of wave propagation equal to 1,000 m/sec (bottom graph in
Fig. 4-6).

3. Case 2 (only the incoherence effect considered) with same local soil conditions and apparent
velocity of wave propagation approaching infinity. (top graph in Fig. 4-7).
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4. Case 2 (only the incoherence effect considered) with different local soil conditions and
apparent velocity of wave propagation approaching infinity. (bottom graph in Fig. 4-7).

5. Case 3 (only the wave passage effect considered) with same local soil conditions and
apparent velocity of wave propagation equal to 1,000 m/sec (top graph in Fig. 4-8).

6. Case 3 (only the wave passage effect considered) with different local soil conditions and
apparent velocity of wave propagation equal to 1,000 m/sec (bottom graph in Fig. 4-8).

7. Case 1 (both the wave passage and incoherence effects considered) with same local soil
conditions and apparent velocity of wave propagation equal to 300 m/sec (top graph in Fig.
4-9).

8. Case 3 (only the wave passage effect considered) with same local soil conditions and
apparent velocity of wave propagation equal to 300 m/sec (bottom graph in Fig. 4-9).

Figures 4-10a and 4-10b present comparisons of the mean values for the peak ductility demand
at the two piers of the FHWA-No.2 bridge for different cases examined. Results from Cases 1, 2,
and 3 are compared to estimate the relative effect of loss of coherence and wave passage. In
addition, the cases of different and same local soil conditions can be easily compared, and the
effect of different apparent velocities of wave propagation can be assessed, by studying the bar
charts in Figs. 4-10a and 4-10b. It should be mentioned that in these graphs, SAME denotes that
all bridge supports are on the same type of local soil conditions, while DIFF denotes that
different supports are on different local soil conditions.

Figure 4-11 is similar to Figs. 4-6 - 4-9, but in this case the mean value and the standard
deviation for the peak ductility demand at the two piers of the FHWA-No.2 bridge are presented
for the case of identical support ground motion.

Figure 4-12 presents a comparison of the mean values for the peak ductility demand at the two
piers of the FHWA-No.2 bridge for the following three cases: differential support ground motion
and different local soil conditions, differential support ground motion and same local soil
conditions, and identical support ground motion. Note that IDENT denotes the case of identical
support ground motion. The definitions of SAME and DIFF are provided in a previous
paragraph.

Finally, Fig. 4-13 presents the same information as Fig. 4-12 but in the form of ratios rather than
direct values. It should be noted that Figs. 4-12 and 4-13 make it easy to assess the differences in
the mean values for the peak ductility demand between the two cases of differential support
ground motion: different versus same local soil conditions. In addition, direct comparisons can
be done with the reference case of identical support ground motion.

Every other bridge of the remaining six bridges is provided with a similar set of figures (Figs. 4-

14 — 4-61). Based on the information provided in Figs. 4-6 — 4-61, it is possible to establish the
following observations/conclusions for each one of the seven bridges considered.
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4.4.2 Observations/Conclusions for FHWA-No.2 Bridge

L.

Effect of local soil conditions: It was found that the peak ductility demand for every pier
when considering different local soil conditions becomes almost double from the
corresponding value when considering same local soil conditions. This indicates that it is
very important to take into account the local soil effect when studying bridges similar to this
one having supports on different local soil conditions.

Effect of apparent velocity of wave propagation: Comparing corresponding cases with
apparent velocities of wave propagation of 300 m/sec and 1,000 m/sec, it was found that the
velocity has no significant effect on the peak ductility demand of the piers. However, for
Case 3 where there is only wave propagation (and no loss of coherence), it was observed that
the peak ductility demand reduces at Pier 2 for velocity of 300 m/sec (when compared to the
case of 1,000 m/sec).

Relative effect of coherence and wave passage:

For same local soil conditions:

For pier 1, the incoherence and wave passage effects are approximately equally important
and they have a jointly reinforcing effect (this means that the peak ductility demand for Case
1 is larger than the peak ductility demand of either Case 2 or 3). For pier 2, it appears that the
incoherence effect is more important than the wave passage effect, and the two effects have a
jointly canceling effect (this means that the peak ductility demand for Case 1 is less than
either the peak ductility demand of Case 2 or 3).

For different local soil conditions:
The relative effect of wave passage and incoherence on the peak ductility demand of the
piers is identical to the case where all piers are on the same local soil conditions.

For low velocity:
At low apparent velocities of wave propagation, the effect of incoherence becomes more
pronounced, especially for pier 2.

The assumption of identical support ground motion is unconservative and the peak ductility
demand for both piers would be underestimated by a factor of approximately 2.6 (for bridge
supports on different local soil conditions) or a factor of approximately 1.4 (for bridge
supports on the same local soil conditions), if the bridge were to be analyzed using identical
support ground motion, rather than differential support ground motion.

4.43 Observations/Conclusions for TEXT Bridge

1.

Effect of local soil conditions: It was found that the peak ductility demand when considering
different local soil conditions becomes 1.6 times (for Pier 1) the corresponding value when
considering same local soil conditions. This indicates that it is very important to take into
account the local soil effect when studying bridges similar to this one having supports on
different local soil conditions.

Effect of apparent velocity of wave propagation: Comparing corresponding cases with
apparent velocities of wave propagation of 300 m/sec and 1,000 m/sec, it was found that the
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velocity has no significant effect on the peak ductility demand of the piers. However, for
Case 3 where there is only wave propagation (and no loss of coherence), it was observed that
the peak ductility demand reduces at Pier 2 for velocity of 300 m/sec (when compared to the
case of 1,000 m/sec).

3. Relative effect of coherence and wave passage

For same local soil conditions:

For both Piers 1 and 2, the incoherence effect appears to be more important than the wave
passage effect, and the two effects have a jointly reinforcing effect (this means that the peak
ductility demand for Case 1 is larger than the peak ductility demand of either Case 2 or 3).

For different local soil conditions:

For Pier 1, the incoherence and wave passage effects are approximately equally important
and they have a jointly reinforcing effect (this means that the peak ductility demand for Case
1 is larger than the peak ductility demand of either Case 2 or 3). For Pier 2, the incoherence
effect is more important than the wave passage effect, and the two effects have a jointly
reinforcing effect.

For low velocity:
At low apparent velocities of wave propagation, the effect of incoherence becomes more

pronounced especially for Pier 2.

4. The assumption of identical support ground motion is unconservative and the peak ductility
demand for the piers would be underestimated by a factor as high as 2.2 (for bridge supports
on different local soil conditions) or by a factor as high as 1.3 (for bridge supports on same
local soil conditions), if the bridge were to be analyzed using identical support ground
motion, rather than differential support ground motion.

4.44 Observations/Conclusions for GC2D Bridge

1. Effect of local soil conditions: It was found that the peak ductility demand when considering
different local soil conditions does not vary much for Piers 1 and 4 from the corresponding
value when considering same local soil conditions. However, the peak ductility demand
when considering different local soil conditions for Piers 2 and 3 becomes as much as 1.8
times higher than the corresponding value when considering same local soil conditions.

2. Effect of apparent velocity of wave propagation: Comparing corresponding cases with
apparent velocities of wave propagation of 300 m/sec and 1,000 m/sec, it was found that the
velocity has no significant effect on the peak ductility demand except for Pier 3. For Pier 3,
the peak ductility demand reduces when the apparent velocity of wave propagation is 300
m/sec (as compared to the case of 1,000 m/s). Also for Case 3 where there is only wave
propagation (and no loss of coherence), it was observed that the peak ductility demand
reduces at Pier 3 for velocity of 300 m/sec (when compared to the case of 1,000 m/sec).

3. Relative effect of coherence and wave passage:
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For same local soil conditions:

For Piers 1 and 2, the incoherence and wave passage effects are approximately equally
important and provide values for the peak ductility demand almost equal to the
corresponding value for Case 1 (both loss of coherence and wave passage). For Piers 3 and 4,
it appears that the incoherence effect is slightly more important than the wave passage effect
and the two effects have a jointly canceling effect.

For different local soil conditions:

For Pier 1, the incoherence and wave passage effects are approximately equally important
and provide values for the peak ductility demand almost equal to the corresponding value for
Case 1 (both loss of coherence and wave passage). For piers 2, 3 and 4, the incoherence
effect is slightly more important than the wave passage effect, and the two effects have a
jointly canceling effect for Piers 3 and 4 and a jointly reinforcing effect for Pier 2.

For low velocity:
At low velocities, the effect of wave passage reduces and that of incoherence increases for
Pier 3. For Pier 4 the effect of incoherence becomes approximately equally important to that
of wave passage.

4. The assumption of identical support ground motion is reasonable for Piers 1 and 4 (for bridge
supports on same as well as different local soil conditions). For Piers 2 and 3, the assumption
of identical support ground motion is unconservative and the peak ductility demand for Pier 2
would be underestimated by a factor of approximately 2.2 (for bridge supports on different
local soil conditions) or by a factor of approximately 1.2 (for bridge supports on same local
soil conditions), if the bridge were to be analyzed using identical support ground motion,
rather than differential support ground motion.

4.4.5 Observations/Conclusions for TYOH Bridge

1. Effect of local soil conditions: It was found that the peak ductility demand for every pier
when considering different local soil conditions becomes as much as 1.7 times the
corresponding value when considering same local soil conditions. This indicates that it is
very important to take into account the local soil effect when studying bridges similar to this
one having supports on different local soil conditions.

2. Effect of apparent velocity of wave propagation: Comparing corresponding cases with
apparent velocities of wave propagation of 300 m/sec and 1,000 m/sec, it was found that the
peak ductility demand increases for Pier 1 and reduces for Piers 2, 3 and 4 when the apparent
velocity of wave propagation is reduced to 300m/s (as compared to the case of 1,000m/s).
For Case 3 where there is only wave propagation (and no loss of coherence), it was observed
that the peak ductility demand increases for Pier 1 and reduces for Piers 2 and 3 for the case
of velocity 300 m/sec (when compared to the case of 1,000 m/sec).

3. Relative effect of coherence and wave passage:

For same local soil conditions:
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For all the piers, the incoherence effect appears to be more important than the wave passage
effect. The two effects have a jointly reinforcing effect for Pier 1 and a jointly canceling
effect for Piers 2, 3 and 4.

For different local soil conditions:

For all the piers, the incoherence effect appears to be more important than the wave passage
effect. The two effects have a jointly reinforcing effect for Piers 1 and 2 and a jointly
canceling effect for Piers 3 and 4.

For low velocity:
At low apparent velocities of wave propagation, the effect of wave passage becomes more
important than the incoherence effect for Pier 1 and reduces for Pier 3.

The assumption of identical support ground motion is unconservative and the peak ductility
demand for the piers would be underestimated by a factor as high as 2.1 (for bridge supports
on different local soil conditions) or by a factor as high as 1.6 (for bridge supports on the
same local soil conditions), if the bridge were to be analyzed using identical support ground
motion, rather than differential support ground motion.

4.4.6 Observations/Conclusions for TY1H Bridge

1.

Effect of local soil conditions: It was found that the peak ductility demand for every pier
when considering different local soil conditions becomes as much as 1.5 times the
corresponding value when considering same local soil conditions. This indicates that it is
very important to take into account the local soil effect when studying bridges similar to this
one having supports on different local soil conditions.

Effect of apparent velocity of wave propagation: Comparing corresponding cases with
apparent velocities of wave propagation of 300 m/sec and 1,000 m/sec, it was found that the
peak ductility demand increases for Pier 1 and reduces for Piers 2 and 4 when the apparent
velocity of wave propagation is reduced to 300 m/s (as compared to the case of 1,000 m/s).
For Case 3 where there is only wave propagation (and no loss of coherence), it was observed
that the peak ductility demand reduces for Piers 2 and 4 for the case of velocity 300 m/sec
(when compared to the case of 1,000 m/sec).

3. Relative effect of coherence and wave passage:

For same local soil conditions:

For all four piers, the incoherence effect appears to be more important than the wave passage
effect. The two effects have a jointly reinforcing effect for Piers 1 and 3 and a jointly
canceling effect for Piers 2 and 4.

For different local soil conditions:

For all four piers, the incoherence effect appears to be more important than the wave passage
effect, and the relative effect of wave passage and incoherence is similar to the case with
same local soil conditions.
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For low velocity:

At low apparent velocities of wave propagation, the effect of incoherence becomes more
pronounced for Piers 2 and 4 whereas the effect of wave passage reduces for these piers. This
results in a decrease in the peak ductility demands of Piers 2 and 4 for Case 1 (both wave
passage and loss of coherence) and the two effects seem to have a jointly canceling effect.

4. The assumption of identical support ground motion is unconservative and the peak ductility
demand for the piers would be underestimated by a factor as high as 2.1 (for bridge supports
on different local soil conditions) or by a factor as high as 1.4 (for bridge supports on the
same local soil conditions), if the bridge were to be analyzed using identical support ground
motion, rather than differential support ground motion.

4.4.7 Observations/Conclusions for TY2H Bridge

1. Effect of local soil conditions: It was found that the peak ductility demand for every pier
when considering different local soil conditions becomes as much as 1.7 times the
corresponding value when considering same local soil conditions. This indicates that it is
very important to take into account the local soil effect when studying bridges similar to this
one having supports on different local soil conditions.

2. Effect of apparent velocity of wave propagation: Comparing corresponding cases with
apparent velocities of wave propagation of 300 m/sec and 1,000 m/sec, it was found that the
peak ductility demand reduces for Pier 3 when the apparent velocity of wave propagation is
reduced to 300 m/s (as compared to the case of 1,000 m/s). For Case 3, where there is only
wave propagation (and no loss of coherence), it was observed that the peak ductility demand
slightly increases for Piers 1, 4 and reduces for Piers 2, 3 for the case of velocity 300 m/sec
(when compared to the case of 1,000 m/sec).

3. Relative effect of coherence and wave passage:

For same local soil conditions:

For Pier 1, the incoherence and the wave passage effects are approximately equally
important. For Piers 2, 3 and 4 the incoherence effect appears to be more important than the
wave passage effect. The two effects have a jointly reinforcing effect for Piers 2 and 4 and a
jointly canceling effect for Pier 3.

For different local soil conditions:

The relative effect of wave passage and incoherence for Piers 2 and 3 is similar to the case
with same local soil conditions. For Pier 1 the wave passage effect becomes more important
than the incoherence effect, whereas for Pier 4 the wave passage and incoherence effects
become equally important.

For low velocity:

At low apparent velocities of wave propagation, the effect of incoherence becomes more
pronounced for Pier 3 whereas the effect of wave passage reduces for this pier. This results in
a decrease in the peak ductility demand in this pier for Case 1 (both wave passage and loss of
coherence), and the two effects seem to have a jointly canceling effect. Moreover, for Pier 1,
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the wave passage effect becomes more important the incoherence effect when the velocity is
reduced to 300 m/s.

4. The assumption of identical support ground motion is unconservative and the peak ductility
demand for the piers would be underestimated by a factor as high as 2.7 (for bridge supports
on different local soil conditions) or by a factor as high as 1.7 (for bridge supports on the
same local soil conditions), if the bridge were to be analyzed using identical support ground
motion, rather than differential support ground motion.

4.4.8 Observations/Conclusions for Santa Clara Bridge

1. Effect of local soil conditions: It was found that the peak ductility demand when considering
different local soil conditions becomes almost twice than the corresponding value when
considering same local soil conditions for Piers 5, 6 and 7. For Piers 10 and 11, the peak
ductility demand when considering different local soil conditions becomes much less (two-
thirds for Pier 10, one-third for Pier 11) than the corresponding value when considering same
local soil conditions. This indicates that when studying very long bridges similar to this one
having supports on different local soil conditions, the peak ductility demand may increase or
decrease by a large amount in different piers, depending on the structural properties and the
configuration of the bridge.

2. Effect of apparent velocity of wave propagation Comparing corresponding cases with
apparent velocities of wave propagation of 300 m/sec and 1,000 m/sec, it was found that the
velocity has a very significant effect on the peak ductility demand of the piers. The peak
ductility demand increases for Piers 1 to 9 and reduces for Piers 10 and 11, when the
apparent velocity of wave propagation is reduced to 300 m/s (as compared to the case of
1,000 m/s).

The most significant effect is observed for Case 3 (where there is only wave propagation and
no loss of coherence), where the peak ductility demand increases for all piers for the velocity
of 300 m/sec (when compared to the case of 1,000 m/sec).

3. Relative effect of coherence and wave passage:

For same local soil conditions:

For all eleven piers, the incoherence effect appears to be more important than the wave
passage effect. The two effects have a jointly reinforcing effect for external piers (1, 2, 10
and 11) and a jointly canceling effect for Piers 3 to 9.

For different local soil conditions:

For all eleven piers, the incoherence effect appears to be more important than the wave
passage effect and the relative effect is similar to the case with same local soil conditions,
except for Piers 5 to 9. For these piers the effect of wave passage increases as compared to
the case of same local soil conditions; however, the effect of incoherence still remains more
important than the effect of wave passage.

For low velocity:
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At low apparent velocities of wave propagation, the effect of wave passage increases for all
piers, as compared to the case with velocity 1000 m/s. This effect is most pronounced for
Piers 1 to 5 where the wave passage effect becomes more important than the incoherence
effect. This results in an increase in the peak ductility demand for Piers 1 to 5 for Case 1(both
wave passage and loss of coherence), and the two effects seem to have a jointly canceling
effect for Piers 1 to 3 and a jointly reinforcing effect for Piers 4 and 5.

4. The assumption of identical support ground motion severely underestimates the peak
ductility demand in all the piers by a factor as high as 6.8, both for same as well as for
different local soil conditions. Unlike the other six relatively shorter bridges where the same
local soil conditions always yielded smaller values for peak ductility demand from the case
of different local soil conditions, for this longer bridge higher peak ductility demands are
obtained for Piers 10 and 11 in the case of same local soil conditions as compared to the case
of different local soil conditions.

4.4.9 Observations/Conclusions from Other Researchers’ Work

After presenting observations and conclusions for the seven bridges considered in this study, and
before attempting to establish general conclusions and guidelines, some of the main results
reached by other researchers having studied in the past the effect of spatial variability of seismic
ground motion on the response of various structures are presented in this section. Specifically,
work done by Der Kiureghian, Harichandran, Monti, Zerva and their associates is discussed in
this section.

Der Kiureghian and his associates have studied the effect of spatial variability of seismic ground
motion on the linear response of two multi-span bridges (one with 120 ft spans and the other
with 240 ft spans) using the "Multiple Support Response Spectrum” method that they have
developed (a linear random vibration approach). They have used a model for the coherence
function that Der Kiureghian (1996) developed and they have considered all three spatial
variability effects: the wave passage, the incoherence, and the local soil effects. They have
modeled their multi-span bridges as frame structures. Their main conclusions were:

1) The spatial variability effect, consisting of the incoherence effect, the wave passage effect,
and the site response (local soil) effect, can strongly influence the response of bridge
structures. It could amplify or de-amplify the bridge response by as much as an order of
magnitude or more.

2) For the bridge with the longer spans (240 ft), the wave passage effect had the largest
influence, followed by the site response effect and the incoherence effect.

3) For the bridge with the shorter spans (120 ft), the site effect had the largest influence,
followed by the wave passage effect and the incoherence effect.

Harichandran and his associates examined the response of single and multiple span continuous
beams with different span lengths, subjected to spatially varying ground motions at their
supports, using a linear random vibration approach. Their attention was mainly focused on the
variance of various response quantities, as the expected maximum value of the response is
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directly proportional to the variance and the duration of the response. They have used the model
for the coherence function proposed by Harichandran and Vanmarcke (1986), and they have
considered the following two spatial variability effects: the wave passage, and the incoherence
effects. Their main conclusions were:

For single span beams:

1) The assumption of identical support ground motion provides a higher response in single span
beams for all fundamental frequencies and is overly conservative.

2) Considering only the incoherence effect overestimates the response in all cases.
3) Considering only the wave passage effect underestimates the response in some cases.

For multiple span continuous beams:

1) For relatively stiffer beams, the pseudo-static response can induce significantly larger
stresses - almost by an order of magnitude - when the incoherence effect is considered.

2) Deterministic or probabilistic analysis accounting for only the wave passage effect will
seriously underestimate the response for stiff lifelines but should be adequate for flexible
lifelines for which the dynamic response is dominant.

Zerva and her associates have studied the effect of spatial variation of ground motion on multiply
supported structures modeled as continuous beams. Some of the commonly utilized spatial
coherence models were chosen to study characteristics that affect the response of such structures.
They have used a linear random vibration approach, and they have considered the following two
spatial variability effects: the wave passage and the incoherence effects. Their main conclusions
were:

1) The effect of spatial variation of ground motion is not critical for single-span simply
supported beams, and the assumption of identical support ground motion seems to be a
perfectly reasonable assumption for such bridges.

2) Comparing some of the commonly utilized spatial coherence models, it was found that
models for the coherence function with partial correlation at low frequencies and with slow
exponential decay as the frequency and separation distance increase would produce the
highest response for lifelines.

3) For high apparent velocities of wave propagation, the incoherence effect is more important
than the wave passage effect, while for relatively lower velocities the wave passage effect
can become more significant.

4) One of the most important effects of spatial incoherence on the response is the introduction

of high quasi-static internal forces in the structure with the simultaneous reduction in the
dynamic forces. The highest dynamic response is induced by identical support ground
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motion. However, to estimate the total response (quasi-static and dynamic) it is
recommended to incorporate both the wave passage and incoherence effects in the seismic
analysis of such types of extended structures.

Monti and his associates performed a unique study, in the sense that they examined the nonlinear
response of a bridge subjected to differential support ground motion. They modeled their multi-
span bridge as a frame and performed a sensitivity analysis for different pier heights (or
equivalently stiffnesses). As they had to perform nonlinear dynamic analyses, they followed a
Monte Carlo simulation approach. They used the Luco and Wong (1986) model for the
coherence function. They considered the following two spatial variability effects: the wave
passage and the incoherence effects. Their main conclusions were:

1) The apparent velocity of wave propagation has a notable effect on the bridge response only
for the case of zero coherence. When some amount of coherence is present its effect is
reduced.

2) When high levels of incoherence are present, the response to differential support ground
motion is not influenced significantly by the wave passage effect.

3) For firm soils there is a considerable reduction in the mean value of the response
displacements for increasing levels of incoherence, but this behavior is not so evident for
medium soils. However for both type of soils the standard deviation of the response increases
with increasing levels of incoherence.

4) When the effect of wave passage alone is considered, there is a reduction of forces in the
central piers and an increase of forces in the external ones. However if the apparent velocity
of wave propagation is reduced, there is a substantial reduction of forces in every pier.

5) For very low levels of coherence, the wave passage effect decreases the response shear forces
in the piers and increases the pseudo-static component. The reverse happens for high levels
of coherence and low values of the apparent velocity of wave propagation.

6) One of the most important conclusions was that the assumption of incoherent motion leads to
a decrease in design forces, when compared to the corresponding values obtained using
identical support ground motion. Therefore the assumption of identical support ground
motions is a globally conservative one for design purposes.

4.4.10 General Observations and Conclusions

Studying the results from past work of other researchers (described very briefly in section 4.4.9),
it becomes very difficult to draw general conclusions concerning the effect of spatial variability
of seismic ground motion on the response of elongated structures on multiple supports. First, it is
quite difficult to make comparisons among the results of the different studies presented in section
4.4.9, as different researchers use different structures, different ways to model their structures,
different models for the spatial variability of seismic ground motion, different approaches to
analyze the structures, and different quantities to measure the response of the structure.
Therefore some of the conclusions reached by different researchers might seem contradictory
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because of differences in the cases that they have considered. There isn't even agreement about
whether the assumption of spatial variability of seismic ground motion is beneficial or
detrimental to the structural response (compared to the case of identical support ground motion).
The only common conclusion is that the effect of spatial variability of ground motion on the
response of the structure is a very complex one, depending on various parameters describing the
structure and the characteristics of the ground motion.

Based on the results, observations and conclusions of the seven bridges examined in detail in
Chapter 4, the following general conclusions can be drawn:

1.

The peak ductility demand at the piers can increase substantially when the bridge is analyzed
using differential support ground motion and considering that different supports of the
bridge are on different local soil conditions, compared to the case of identical support
ground motion. Specifically, the ratio of the peak ductility demand at the piers using
differential support ground motion and considering that different supports of the bridge are
on different local soil conditions over the peak ductility demand using identical support
ground motion is of the order of 2.0 - 2.5 for the six medium span bridges, and as high as 4.0
for the longer Santa Clara Bridge.

The peak ductility demand at the piers can increase by a smaller amount when the bridge is
analyzed using differential support ground motion and considering that all supports of the
bridge are on the same local soil conditions, compared to the case of identical support
ground motion. Specifically, the ratio of the peak ductility demand at the piers using
differential support ground motion and considering that all supports of the bridge are on the
same local soil conditions over the peak ductility demand using identical support ground
motion is of the order of 1.0 — 1.5 for the six medium span bridges, and as high as 4.0 for the
longer Santa Clara Bridge.

Low apparent velocity of wave propagation might reduce in some cases the peak ductility
demand of some of the piers, for the general case where both the wave propagation and loss
of coherence effects are considered and all supports of the bridge are on the same type of
local soil conditions. Further, a low value of the velocity might change the relative
contribution of the wave passage and the incoherence effects in some of the piers.

The incoherence effect is in general more important than the wave passage effect. The wave
passage effect becomes more important than the incoherence effect only for the relatively
longer Santa Clara bridge and for low velocities of wave propagation. But even in cases
where the incoherence effect is more important, the wave passage effect is still substantial
and its interaction with the incoherence effect cannot be predicted a priori. Therefore
neglecting either one of these two effects might produce inaccurate results.

The relative contribution of the wave passage and incoherence effects to the peak ductility

demand of the piers does not seem to be affected to any considerable degree by the
assumption of different versus same local soil conditions at the supports of the bridge.
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6. The identical support ground motion assumption seems to be generally unconservative, but
much more so in the case of different local soil conditions. However, for the relatively longer
Santa Clara bridge, the identical support ground motion assumption severely underestimates
the peak ductility demand at the piers by approximately the same amount for both same as
well as different local soil conditions.
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| FHWA BRIDGE |
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FIGURE 4-6 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of FHWA bridge, obtained by ensemble averaging from
20 time history analyses.

152



| FHWA BRIDGE I
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FIGURE 4-7 Mean value (denoted by block square) and mean value plus / minus one standard

deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of FHWA bridge, obtained by ensemble averaging from
20 time history analyses.

153



6.00

~
o
o

w
o
o

Ductility Demand

-
(84
(=}

0.00

10.00

8.00

6.00

4.00

Ductility Demand

2.00

0.00

| FHWA BRIDGE |

Case3 Same Local Soil Conditions
Vel = 1000 m/s

1 Pier No. 2

Case3 Different Local Soil Conditions
Vel = 1000 ml/s

Pier No.

FIGURE 4-8 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of FHWA bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-9 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of FHWA bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-10a Bar chart depicting mean values for the peak ductility demand of the various

piers of FHWA bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-10b Bar chart depicting mean values for the peak ductility demand of the various

piers of FHWA bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.
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| FHWA BRIDGE I

Identical Ground Motion

Vel = 1000 m/s

6.00
b 4.50 I
g ¥
a
2 3.00
2 1.50

0.00 1

1 2
Pier No.

FIGURE 4-11 Mean vaiue (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of FHWA bridge, obtained by ensemble averaging from
20 time history analyses, for the case of identical support ground motion.
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FIGURE 4-12 Bar chart depicting mean values for the peak ductility demand of the various

piers of FHWA bridge, obtained from ensemble averaging from 20 time history
analyses. Comparison of cases with differential support ground motion and

different local soil conditions, differential support ground motion and same
local soil conditions, and identical support ground motion.
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FIGURE 4-13
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Effect of Differential Support Ground Motion
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SAME/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and same local soil conditions over the peak ductility demand
computed using identical support ground motion.

DIFF/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and different local soil conditions over the peak ductility demand

computed using identical support ground motion.

Bar chart depicting ratios of mean values for the peak ductility demand of the various

piers of FHWA bridge, obtained by ensemble averaging from 20 time history analyses
The effect of differential support ground motion and different local soil conditions,

differential support ground motion and same local soil conditions and identical support
ground motion can be assessed.
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FIGURE 4-14 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TEXT bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-15 Mean value (denoted by block square) and mean value plus / minus one standard

deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TEXT bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-16 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TEXT bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-17 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TEXT bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-18a Bar chart depicting mean values for the peak ductility demand of the various

piers of TEXT bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-18b Bar chart depicting mean values for the peak ductility demand of the various

piers of TEXT bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.

165



| TEXT BRIDGE |

Identical Ground Motion

Vel = 1000 m/s

4.50
. l
& 3.00 +
E I
a
£
2 1.50

0.00 ;

1 Pier No. 2

FIGURE 4-19 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TEXT bridge, obtained by ensemble averaging from
20 time history analyses, for the case of identical support ground motion.

Effect of Differential Ground Motion
Vel = 1000 m/s

7.00
6.00+
5.00

4.00+
3.00+
2.00
1.00-
0.00+

M Casel DIFF
O Caset SAME
B IDENT

Ductility Demand

AAVAVAVAEN

Pier No.
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FIGURE 4-20 Bar chart depicting mean values for the peak ductility demand of the various

piers of TEXT bridge, obtained from ensemble averaging from 20 time history
analyses. Comparison of cases with differential support ground motion and

different local soil conditions, differential support ground motion and same
local soil conditions, and identical support ground motion.
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DIFF/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and different local soil conditions over the peak ductility demand
computed using identical support ground motion.

FIGURE 4-21 Bar chart depicting ratios of mean values for the peak ductility demand of the various

piers of TEXT bridge, obtained by ensemble averaging from 20 time history analyses
The effect of differential support ground motion and different local soil conditions,

differential support ground motion and same local soil conditions and identical support
ground motion can be assessed.

167



| GC2D BRIDGE |

Case1 Same Local Soil Conditions
Vel = 1000 m/s

Ductility Demand
(o]
o
(&)

Case1 Different Local Soil Conditions
Vel = 1000 m/s

16.00
14.00 +

12.00
10.00 .
8.00 -L
6.00 + j
4.00
2.00
0.00 : : :

T -

Ductility Demand

FIGURE 4-22 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of GC2D bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-23 Mean value (denoted by block square) and mean value plus / minus one standard

deviation (denoted by vertical line above and below square) for the peak ductility
demand of the various piers of GC2D bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-24 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility
demand of the various piers of GC2D bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-25 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of GC2D bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-26a Bar chart depicting mean values for the peak ductility demand of the various

piers of GC2D bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-26b Bar chart depicting mean values for the peak ductility demand of the various

piers of GC2D bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and

the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-27

FIGURE 4-28
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Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of GC2D bridge, obtained by ensemble averaging from
20 time history analyses, for the case of identical support ground motion.
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DIFF denotes supports on different local soil conditions
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IDENT denotes identical support ground motion

Bar chart depicting mean values for the peak ductility demand of the various

piers of GC2D bridge, obtained from ensemble averaging from 20 time history
analyses. Comparison of cases with differential support ground motion and

different local soil conditions, differential support ground motion and same
local soil conditions, and identical support ground motion.
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FIGURE 4-29
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SAME/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and same local soil conditions over the peak ductility demand

computed using identical support ground motion.

DIFF/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and different local soil conditions over the peak ductility demand

computed using identical support ground motion.

Bar chart depicting ratios of mean values for the peak ductility demand of the various

piers of FHWA bridge, obtained by ensemble averaging from 20 time history analyses
The effect of differential support ground motion and different local soil conditions,

differential support ground motion and same local soil conditions and identical support
ground motion can be assessed.
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FIGURE 4-30 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TYOH bridge, obtained by ensemble averaging from
20 time history analyses.

176



l TYOH BRIDGE |

Case2 Same Local Soil Conditions
Vel = Infinity

Ductility Demand
w
o
o

0.00 } f }
1 2  Pier No. 3 4

Case2 Different Local Soil Conditions
Vel = Infinity

10.00

8.00

6.00 d ,i,

4.00

Ductility Demand

2.00

0.00 } 4 }
1 2 Pier No. 3 4

FIGURE 4-31 Mean value (denoted by block square) and mean value plus / minus one standard

deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TYOH bridge, obtained by ensemble averaging from
20 time history analyses.
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- FIGURE 4-32 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TYOH bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-33 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TYOH bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-34a Bar chart depicting mean values for the peak ductility demand of the various

piers of TYOH bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.

180



| TYOH BRIDGE ]

Relative Effect of Coherence and Wave Propagation
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FIGURE 4-34b Bar chart depicting mean values for the peak ductility demand of the various
piers of TYOH bridge, obtained from ensemble averaging from 20 time history
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analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-35 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TYOH bridge, obtained by ensemble averaging from
20 time history analyses, for the case of identical support ground motion.
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DIFF denotes supports on different local soil conditions
SAME denotes all supports on same local soil conditions
IDENT denotes identical support ground motion

FIGURE 4-36 Bar chart depicting mean values for the peak ductility demand of the various

piers of TYOH bridge, obtained from ensemble averaging from 20 time history
analyses. Comparison of cases with differential support ground motion and

different local soil conditions, differential support ground motion and same
local soil conditions, and identical support ground motion.
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SAME/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and same local soil conditions over the peak ductility demand
computed using identical support ground motion.

DIFF/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and different local soil conditions over the peak ductility demand

computed using identical support ground motion.

FIGURE 4-37 Bar chart depicting ratios of mean values for the peak ductility demand of the various

piers of TYOH bridge, obtained by ensemble averaging from 20 time history analyses
The effect of differential support ground motion and different local soil conditions,

differential support ground motion and same local soil conditions and identical support
ground motion can be assessed.
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FIGURE 4-38 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY1H bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-39 Mean value (denoted by block square) and mean value plus / minus one standard

deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY1H bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-40 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY1H bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-41 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY1H bridge, obtained by ensemble averaging from
20 time history analyses.
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SAME denotes all supports on same local soil conditions
DIFF denotes supports on different local soil conditions
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FIGURE 4-42a Bar chart depicting mean values for the peak ductility demand of the various

piers of TY1H bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-42b Bar chart depicting mean values for the peak ductility demand of the various
piers of TY1H bridge, obtained from ensemble averaging from 20 time history
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analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-43 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY1H bridge, obtained by ensemble averaging from
20 time history analyses, for the case of identical support ground motion.
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DIFF denctes supports on different local soil conditions
SAME denotes all supports on same local soil conditions
IDENT denotes identical support ground motion

FIGURE 4-44 Bar chart depicting mean values for the peak ductility demand of the various

piers of TY1H bridge, obtained from ensemble averaging from 20 time history
analyses. Comparison of cases with differential support ground motion and

different local soil conditions, differential support ground motion and same
local soil conditions, and identical support ground motion.
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Effect of Differential Ground Motion
Velocity = 1000 m/s

il Case1 SAME/IDENT
B Caset1 DIFF/IDENT

Ductility Ratio

SAME/IDENT denotes the ratio of the peak ductility demand computed using differentia
support ground motion and same local soil conditions over the peak ductility demand
computed using identical support ground motion.

DIFFADENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and different local soil conditions over the peak ductility demand

computed using identical support ground motion.

FIGURE 4-45 Bar chart depicting ratios of mean values for the peak ductility demand of the various

piers of TY1H bridge, obtained by ensemble averaging from 20 time history analyses
The effect of differential support ground motion and different local soil conditions,

differential support ground motion and same local soil conditions and identical support
ground motion can be assessed.
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FIGURE 4-46 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY2H bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-47 Mean value (denoted by block square) and mean value plus / minus one standard

deviation (denoted by vertical line above and below square) for the peak ductility
demand of the various piers of TY2H bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-48 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY2H bridge, obtained by ensemble averaging from
20 time history analyses.
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FIGURE 4-49 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY2H bridge, obtained by ensemble averaging from
20 time history analyses.
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SAME denotes all supports on same local soil conditions
DIFF denotes supports on different local soil conditions
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FIGURE 4-50a Bar chart depicting mean values for the peak ductility demand of the various

piers of TY2H bridge, obtained from ensemble averaging from 20 time history
analyses. Case 1, 2 and 3 are compared to estimate the relative effect of

coherence and wave propagation. The effect of different local soil conditions and
the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-50b Bar chart depicting mean values for the peak ductility demand of the various
piers of TY2H bridge, obtained from ensemble averaging from 20 time history

analyses. Case
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1, 2 and 3 are compared to estimate the relative effect of

wave propagation. The effect of different local soil conditions and

the effect of different velocities of wave propagation can also be assessed.
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FIGURE 4-51 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of TY2H bridge, obtained by ensemble averaging from
20 time history analyses, for the case of identical support ground motion.
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DIFF denotes supports on different local soil conditions
SAME denotes all supports on same local soil conditions
IDENT denotes identical support ground motion

FIGURE 4-52 Bar chart depicting mean values for the peak ductility demand of the various

piers of TY2H bridge, obtained from ensemble averaging from 20 time history
analyses. Comparison of cases with differential support ground motion and

different local soil conditions, differential support ground motion and same
local soil conditions, and identical support ground motion.
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SAME/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and same local soil conditions over the peak ductility demand
computed using identical support ground motion.

DIFF/IDENT denotes the ratio of the peak ductility demand computed using differential
support ground motion and different local soil conditions over the peak ductility demand
computed using identical support ground motion.

FIGURE 4-53 Bar chart depicting ratios of mean values for the peak ductility demand of the various

piers of TY2H bridge, obtained by ensemble averaging from 20 time history analyses
The effect of differential support ground motion and different local soil conditions,

differential support ground motion and same local soil conditions and identical support
ground motion can be assessed.
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FIGURE 4-54 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility
demand of the various piers of SANTA CLARA bridge, obtained by ensemble averaging
from 20 time history analyses.
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FIGURE 4-55 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of SANTA CLARA bridge, obtained by ensemble averaging
from 20 time history analyses.
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FIGURE 4-56 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility

demand of the various piers of SANTA CLARA bridge, obtained by ensemble averaging
from 20 time history analyses.
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FIGURE 4-57 Mean value (denoted by block square) and mean value plus / minus one standard
deviation (denoted by vertical line above and below square) for the peak ductility
demand of the various piers of SANTA CLARA bridge, obtained by ensemble averaging

from 20 time history analyses. '
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SECTION 5
GUIDELINES FOR ANALYSIS AND DESIGN
OF HIGHWAY BRIDGES

Based mainly on the general observations and conclusions of the analyses performed in
Chapter 4 (refer to section 4.4.10), and taking into account the observations and conclusions
of other researchers’ work (refer to section 4.4.9) and the preliminary analyses carried out
in Chapter 3, the following guidelines are proposed for the analysis and design of highway
bridges to account for the spatial variation of seismic ground motion:

e For Bridges That Are Less Than Approximately 1,000 to 1,500 ft in Total Length,
And Have All Their Supports on the Same Local Soil Conditions:

— For such bridges, we believe that the relatively small increases in the peak re-
sponse values due to the spatial variability of seismic ground motion can be taken
care of by the various safety margins built in current seismic codes.

— It is therefore recommended that such bridges be analyzed and designed using
currently available seismic design practices that do not consider the spatial vari-
ability of seismic ground motion.

e For Bridges That Are More Than Approximately 1,000 to 1,500 ft in Total Length,
Or Bridges of Any Length That Have Supports on Different Local Soil Conditions:

— For such bridges, we believe that the significant increases in the peak response
values due to the spatial variability of seismic ground motion can not be taken
care of by the various safety margins built in current seismic codes without com-
promising the overall safety of the structure.

— It is therefore recommended to perform time history dynamic analyses for de-
sign purposes, involving response spectrum compatible asynchronous (differen-
tial) support ground motion time histories reflecting the (potentially) different
local soil conditions, wave propagation and loss of coherence effects.

— The generation of such asynchronous support ground motion time histories can be
performed using the methodology presented in this report or analogous method-
ologies suggested by other researchers.

— It is recommended to consider a minimum of twenty time history analyses of the
bridge to get a reliable estimate of the peak response that will be used for design
purposes.

— Dynamic analyses of a bridge using asynchronous support ground motion can be
done without undue difficulty today using commercially available finite element
codes.
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