Department of Mechanical \& Aerospace Engineering
 University at Buffalo
 MAE 476/576 Mechatronics
 Spring 2003

Mini Assignment 4 - Solution

1. Design a Gray Code to BCD converter by the following procedures:

a. Write down the truth table of the converter.

Binary Coded Decimal (BCD) is a way to store the decimal numbers in binary form. The number representation requires 4 bits to store every decimal digit (from 0 to 9). Since there are 10 different combinations of BCD , we need at least a 4-bit Gray Code to create sufficient number of these combinations.

The truth table is:

Decimal Gray Code						BCD			
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	
0	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	0	0	1	
2	0	0	1	1	0	0	1	0	
3	0	0	1	0	0	0	1	1	
4	0	1	1	0	0	1	0	0	
5	0	1	1	1	0	1	0	1	
6	0	1	0	1	0	1	1	0	
7	0	1	0	0	0	1	1	1	
8	1	1	0	0	1	0	0	0	
9	1	1	0	1	1	0	0	1	
10	1	1	1	1	D	D	D	D	
11	1	1	1	0	D	D	D	D	
12	1	0	1	0	D	D	D	D	
13	1	0	1	1	D	D	D	D	
14	1	0	0	1	D	D	D	D	
15	1	0	0	0	D	D	D	D	

b. Apply Karnaugh Map to look for the minimized logic expression.

Karnaugh Map for W:

Minimal Expression for W:
$\mathrm{W}=\mathrm{A}$

Karnaugh Map for X:

Minimal Expression for X :
X $=$ A'B

Karnaugh Map for Y :

Karnaugh Map for Z:

c. Implement the logic gates by using Circuit Maker.

