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Cross-layer Routing and Dynamic Spectrum
Allocation in Cognitive Radio Ad Hoc Networks

Lei Ding, Tommaso Melodia, Stella N. Batalama, John D. Matyjas, and Michael J. Medley

Abstract—Throughput maximization is one of the main chal-
lenges in cognitive radio ad hoc networks, where the availability
of local spectrum resources may change from time to time
and hop-by-hop. For this reason, a cross-layer opportunistic
spectrum access and dynamic routing algorithm for cognitive
radio networks is proposed, called ROSA (ROuting and Spectrum
Allocation algorithm). Through local control actions, ROSA aims
at maximizing the network throughput by performing joint
routing, dynamic spectrum allocation, scheduling, and transmit
power control.

Specifically, the algorithm dynamically allocates spectrum
resources to maximize the capacity of links without generating
harmful interference to other users while guaranteeing bounded
bit error rate (BER) for the receiver. In addition, the algorithm
aims at maximizing the weighted sum of differential backlogs
to stabilize the system by giving priority to higher-capacity
links with high differential backlog. The proposed algorithm is
distributed, computationally efficient, and with bounded BER
guarantees.

ROSA is shown through numerical model-based evaluation
and discrete-event packet-level simulations to outperform base-
line solutions leading to a high throughput, low delay, and fair
bandwidth allocation.

Index Terms—Cognitive radio networks, routing, dynamic
spectrum allocation, cross-layer design, ad hoc networks.

I. INTRODUCTION

COGNITIVE 1 radio networks [2] have recently emerged
as a promising technology to improve the utilization

efficiency of the existing radio spectrum. In a cognitive
radio network, users access the existing wireless spectrum
opportunistically, without interfering with existing users. A
key challenge in the design of cognitive radio networks is
dynamic spectrum allocation, which enables wireless devices
to opportunistically access portions of the spectrum as they
become available. Consequently, techniques for dynamic spec-
trum access have received significant attention in the last few
years, e.g., [3] [4] [5] [6] [7].

In addition to this, in cognitive radio networks with multi-
hop communication requirements (i.e., cognitive radio ad
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hoc networks), the dynamic nature of the radio spectrum
calls for the development of novel spectrum-aware routing
algorithms. In fact, spectrum occupancy is location-dependent,
and therefore in a multi-hop path the available spectrum bands
may be different at each relay node. Hence, controlling the
interaction between the routing and the spectrum management
functionalities is of fundamental importance. While cross-
layer design principles have been extensively studied by the
wireless networking research community in the recent past, the
availability of cognitive and frequency agile devices motivates
research on new algorithms and models to study cross-layer
interactions that involve spectrum management-related func-
tionalities.

For the reasons above, in this paper we consider inter-
actions between spectrum management and dynamic routing
functionalities. With this respect, we propose a distributed
algorithm that jointly addresses the routing, dynamic spectrum
assignment, scheduling and power allocation functionalities
for cognitive radio ad hoc networks. The objective of the
proposed algorithm is to allocate resources efficiently, distribu-
tively, and in a cross-layer fashion.

We further show how our algorithm can be interpreted as
a distributed solution to a centralized cross-layer optimization
problem. While the optimization problem is centralized and
hard to solve, our algorithm is practically and distributively
implementable. We show how a cross-layer solution that solves
routing and spectrum allocation jointly at each hop outper-
forms approaches where routes are selected independently
of the spectrum assignment, with moderate computational
complexity. Our main contributions can be outlined as follows:
• We derive a distributed and localized algorithm for joint

dynamic routing and spectrum allocation for multi-hop
cognitive radio networks. The proposed algorithm jointly
addresses routing and spectrum assignment with power
control under the so-called physical interference model,
which computes the interference among secondary users
using a SINR-based model. The proposed algorithm
considers and leverages the unique characteristics of
cognitive radio including the availability of spectrum
holes at a particular geographic location and their possible
variability with time;

• In the proposed algorithm each cognitive radio makes
real-time decisions on spectrum and power allocation
based on locally collected information. Nodes can adjust
their transmission power to maximize the link capacity
on the selected spectrum portion;

• We introduce a notion of “spectrum hole” that con-
siders interference from neighboring secondary as well
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as primary users, and leverage it to optimize resource
utilization at a low computational cost;

• We discuss a practical implementation of the proposed
algorithm that relies on a dual radio with a common
control channel and a frequency-agile data channel;

• We show how the proposed algorithm can be interpreted
as a distributed and practical solution to a cross-layer
optimal resource allocation problem, whose performance
is close to the optimum.

The remainder of this paper is organized as follows. In
Section II, we review related work. In Section III, we introduce
the system model. In Section IV we propose ROSA, our
distributed algorithm for joint routing and dynamic spectrum
allocation. Section V addresses implementation details. In
Section VI we show how ROSA can be interpreted as a
distributed solution to a centralized cross-layer network utility
maximization problem for cognitive radio ad hoc networks.
Section VII evaluates the performance of the algorithm. Fi-
nally, Section VIII concludes the paper.

II. RELATED WORK

Recent work has investigated algorithms and protocols for
dynamic spectrum allocation in cognitive radio networks. Pro-
posed approaches to assign spectrum can be broadly classified
into centralized and distributed schemes. For example, the
Dynamic Spectrum Access Protocol (DSAP) [8] is centralized,
and thus requires a central controller to allocate spectrum. In
[7], a distributed spectrum assignment algorithm is proposed,
which aims at solving the spectrum allocation problem: which
node should use how wide a spectrum-band at what center-
frequency and for how long. Our work differs significantly
from [7], which assumes mutually exclusive transmissions
with zero interference tolerance.

Spectrum band auctions [9][10] have been proposed to
allocate wireless spectrum resources, in which bidders obtain
different spectrum channels to minimize the interference. In
contrast, our proposed solution jointly considers spectrum
allocation and routing in a cross-layer fashion, since the
available spectrum bands may be different at each hop.

Some recent work has made initial steps in the direction of
leveraging interactions between routing and spectrum alloca-
tion. In [11], each source node finds candidate paths based on
Dynamic Source Routing (DSR) [12] and collects information
on link connectivity and quality. For each candidate route, the
algorithm finds all feasible spectrum assignment combinations
and estimates the end-to-end throughput performance for each
combination. Based on this, it selects the route and spectrum
assignment with maximal throughput and schedules a conflict-
free channel for this route. In [13], a connectivity-based rout-
ing scheme for cognitive radio ad hoc networks is proposed,
where the connectivity of different paths is evaluated by
taking into account primary user activities. The authors in [14]
propose a layered graph model, where each layer corresponds
to a channel, and find shortest paths based on the layered
graph. Both [11] and [14] are channel-based solutions, i.e.,
the available spectrum is divided into predefined channels, and
devices are assigned opportunities to transmit on channels on a
relatively long time scale. However, cognitive radio networks

require spectrum allocation on a short time scale since the
available spectrum bands will vary continuously based on the
activities of primary and secondary users. In addition, the
algorithms in [11] and [14] are based on the so-called protocol
model [15], in which two links either interfere destructively
or do not interfere at all. Although simple, this model fails to
capture the cumulative effect of interference. Conversely, our
work assumes a richer interference model, which accounts for
the fact that advanced transmission techniques, including code-
division multiple access (CDMA) [3] [16], allow concurrent
co-located communications so that a message from node i to
node j can be correctly received even if there is a concurrent
transmission close to j.

Recent work has started investigating cross-layer opti-
mizations for cognitive radio networks. In [17], Hou et al.
formulate a cross-layer optimization problem for a network
with cognitive radios, whose objective is to minimize the
required network-wide radio spectrum resource needed to
support traffic for a given set of user sessions. The problem
is formulated as a mixed integer non-linear problem, and a
sequential fixing algorithm is developed where the integer
variables are determined iteratively via a sequence of linear
programs. Shi et al. studied the joint optimization of power
control, scheduling, and routing for a multi-hop cognitive radio
network via a centralized approach [18] and a distributed
approach [19]. In [19] the authors developed a distributed
optimization algorithm with the objective of maximizing data
rates for a set of sessions. The performance of the algorithm
is shown to be in average within 88% of the performance of
the optimal (centralized) algorithm.

III. SYSTEM MODEL

We consider a cognitive radio network consisting of M
primary users and N secondary users. Primary users hold
licenses for specific spectrum bands, and can only occupy their
assigned portion of the spectrum. Secondary users do not have
any licensed spectrum and opportunistically send their data by
utilizing idle portions of the primary spectrum.

Let the multi-hop wireless network be modeled by a directed
connectivity graph G(V , E), where V = {v1, ..., vN+M} is
a finite set of nodes, with |V| = N + M , and (i, j) ∈ E
represent a unidirectional wireless link from node vi to node
vj (referred to also as node i and node j, respectively, for
simplicity). Nodes from the subset PU = {v1, ..., vM} are
designated as primary users, and nodes from subset SU =
{vM+1, ..., vM+N} are designated as secondary users.

We assume that all secondary users are equipped with
cognitive radios that consist of a reconfigurable transceiver
and a scanner, similar for example to the KNOWS prototype
from Microsoft [20]. The transceiver can tune to a set of
contiguous frequency bands [f, f+∆B], where ∆B represents
the maximum bandwidth of the cognitive radio. We keep
the physical layer model general. However, we assume that
multiple transmissions can concurrently occur in a frequency
band, e.g., with different spreading codes. Among others, our
physical layer model could represent orthogonal frequency
division multiplexing (OFDM)-based transmission, which is
based on a flexible subcarriers pool, and is thus a promising
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candidate technology for cognitive radio networks. Alterna-
tively, the considered abstraction could model a multi-channel
time-hopping impulse radio ultra wide band system [21].

The available spectrum is assumed to be organized in two
separate channels. A common control channel (CCC) is used
by all secondary users for spectrum access negotiation, and
is assumed to be time slotted. A data channel (DC) is used
for data communication. The data channel consists of a set of
discrete minibands {fmin, fmin+1, · · · , fmax−1, fmax}, each
of bandwidth w and identified by a discrete index. For ex-
ample, the interval [fi, fi+∆fi

] represents the (discrete) set of
minibands selected by secondary user i between fi and fi+∆fi ,
with bandwidth w∆fi. If we let w∆fB denote the maximum
bandwidth of the cognitive radio, where ∆fB denotes the
maximum number of minibands, we have ∆fi ≤ ∆fB repre-
senting the constraint of maximum bandwidth of the cognitive
radio. Each backlogged secondary user contends for spectrum
access on the control channel fcc, where fcc /∈ [fmin, fmax].
All secondary users exchange local information on the com-
mon control channel.

Traffic flows are, in general, carried over multi-hop routes.
Let the traffic demands consist of a set S = 1, 2, · · · , S,
where S = |S|, of unicast sessions. Each session s ∈ S
is characterized by a fixed source-destination node pair. We
indicate the arrival rate of session s at node i as λs

i (t), and
with Λ the vector of arrival rates.

Each node maintains a separate queue for each session s for
which it is either a source or an intermediate relay. At time slot
t, define Qs

i (t) as the number of queued packets of session s
waiting for transmission at secondary user i. Define rs

ij(t) as
the transmission rate on link (i, j) for session s during time
slot t, and R as the vector of rates. For ∀i ∈ SU , the queue
is updated as follows:

Qs
i (t+1) =


Qs

i (t) +
∑

k∈SU,k 6=i

rs
ki(t)−

∑

l∈SU,l6=i

rs
il(t) + λs

i (t)




+

.

(1)

IV. JOINT ROUTING AND DYNAMIC SPECTRUM
ALLOCATION

In this section, we present the distributed joint ROuting and
dynamic Spectrum Allocation (ROSA) algorithm. We start by
introducing the notions of spectrum hole and spectrum utility
in Sections IV-A and IV-B, respectively. Opportunities to
transmit are assigned based on the concept of spectrum utility,
and routes are explored based on the presence of spectrum
holes with the objective of maximizing the spectrum utility.
Then, in Section IV-C we outline the algorithm for spectrum
and power allocation executed in a distributed fashion at each
secondary user. Finally, we present the core ROSA algorithm
in Section IV-D.
A. Spectrum Holes

For frequency f , secondary user i needs to (i) satisfy the
BER requirement when it transmits to secondary user j, and
(ii) avoid interfering with ongoing receivers. Denote SINRth

PU

and SINRth
SU as the SINR thresholds to achieve a target

bit error rate BER∗PU for primary users and BER∗SU for
secondary users, respectively.

The first constraint can be expressed as

Pi(f) · Lij(f) ·G
Nj(f) +

∑
k∈V,k 6=i Pk(f)Lkj(f)

≥ SINRth
SU (BER∗SU ),

(2)
where G is the processing gain, e.g., length of the spreading
code. Pi(f) represents the transmit power of i on frequency
f . Lij(f) represents the the transmission loss from node
i to j. The expression

∑
k∈V,k 6=i Pk(f)Lkj(f) represents

interference at node j. Finally, Nj(f) is the receiver noise
on frequency f .

The second constraint models the condition that receiver l is
not impaired by i’s transmission. We can also indicate interfer-
ence at node l ∈ V, l 6= j as NIl(f)+∆Iil(f), where NIl(f)
represents noise plus interference at l before i’s transmission,
and ∆Iil(f) represents the additional interference at l caused
by i’s transmission, i.e., Pi(f)Lil(f). This is expressed as

PR
l (f)

NIl(f) + ∆Iil(f)
≥ SINRth(BER∗), l ∈ V, l 6= j, (3)

where PR
l (f) represents the signal power being received at re-

ceiver l. Since this has to be true for all ongoing transmissions,
the constraint can be written as

Pi(f) ≤ min
l∈V

∆Imax
l

Lil(f)
, Pmax

i (f) (4)

where

∆Imax
l (f) =

{
P R

l (f)

SINRth
P U (BER∗P U )

−NIl(f), l ∈ PU ,

P R
l (f)

SINRth
SU (BER∗SU )

−NIl(f), l ∈ SU . (5)

The constraint in (2) states that the SINR at receiver j
needs to be above a pre-defined threshold, which means that
the power received at receiver j on frequency f needs be
sufficiently high to allow receiver j to successfully decode the
signal given its current noise and interferences. The constraint
in (4) states that the interference generated by i’s transmission
on each frequency should not exceed the threshold value that
represents the maximum interference that can be tolerated by
the most vulnerable of i’s neighbors l ∈ V, l 6= j. Hence, i’s
transmit power needs to be bounded on each frequency. The
constraint in (2) represents a lower bound and the constraint
in (4) represents an upper bound on the transmit power for
each frequency. By combing constraints (2) and (4), we can
define for link (i, j) and frequency f

Sij(f) = Pmax
i (f)− Pmin

i (f), (6)

where Pmax
i (f) is defined in (4) and Pmin

i (f) is the value of
Pi(f) for which equality in (2) holds. Let vectors Pmax

i =
[Pmax

i (fmin), Pmax
i (fmin+1), · · · , Pmax

i (fmax)] and
Pmin

i = [Pmin
i (fmin), Pmin

i (fmin+1), · · · , Pmin
i (fmax)]

denote the maximum and minimum transmit power constraints
for link (i, j). Hence, we introduce the following definition.

Definition 1: A spectrum hole for link (i, j) is a set of
contiguous minibands where Sij(f) ≥ 0.

Figure 1 illustrates the notion of spectrum hole. As shown
in the figure, the spectrum portion [fi, fi+∆fi ] is a possible
spectrum hole for link (i, j).
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Fig. 1. Illustration of a Spectrum Hole.

B. Spectrum Utility

The control channel is assumed to be time slotted. At each
time slot for which node i is backlogged and not already
transmitting, node i can evaluate the spectrum utility for link
(i, j), defined as

Uij(t) = cij(t) ·
[
Qs∗

i (t)−Qs∗
j (t)

]+

, (7)

where s∗ is the session with maximal differential backlog
on link (i, j). The spectrum utility function is defined based
on the principle of dynamic back-pressure, first introduced
in [22], where the authors showed that a policy that jointly
assigns resources at the physical/link layers and routes to
maximize the weighted sum of differential backlogs (with
weights given by the achievable data rates on the link) is
throughput-optimal, in the sense that it is able to keep all
network queues finite for any level of offered traffic that is
within the network capacity region. As will be discussed in
Section VI, the same result can be derived from a cross-
layer network utility maximization problem, which can be
decomposed into two subproblems. After the decomposition,
the solution of the routing and scheduling subproblem requires
maximization of a weighted sum of differential backlogs.

Note that, for the sake of simplicity, we will drop all time
dependencies in the following. Note also that the notion of
spectrum utility is defined for a specific link (i, j). In (7),
cij(t) represents the achievable capacity for link (i, j) given
the current spectrum condition, and is defined as

cij(Fi,Pi) ,
∑

f∈Fi=[fi,fi+∆fi
]

w · log2

[
1 +

Pi(f)Lij(f)G
Nj(f) + Ij(f)

]
,

(8)
where Ij(f) represents the interference at j on f . The achiev-
able values of cij depend on the dynamic spectrum allocation
policy, i.e., spectrum selection vector Fi = [fi, fi+∆fi ], and
power allocation vector Pi = [Pi(f)], ∀i ∈ SU ,∀f ∈ Fi. The
notion of spectrum utility can be thought of as a differential
backlog, inspired by dynamic resource allocation policies that
react to the difference (Qs

i−Qs
j) of queue backlogs for a given

session [23][24], weighted with dynamic spectrum availability
information. Routing with consideration of differential backlog
can reduce the probability of relaying data through a congested

relay node. A large queue size at an intermediate node is
interpreted as an indicator that the path going through that
node is congested and should be avoided, while a small queue
size at an intermediate node indicates low congestion on the
path going through that node. Therefore, in ROSA nodes with
a smaller queue size have a higher probability of being selected
as next hop.

We let A indicate active links of secondary users on the
data channel, i.e., aij = 1 indicates that link (i, j) is active,
while aij = 0 indicates that the link is not active. Similarly,
we denote AP as the link status of primary users, i.e., aP

ij = 1
indicates that link between primary users i and j is active
(input to the problem). Thus, at each time slot the global
objective is to find global vectors P = [P1,P2, · · · ,PN ], F =
[F1,F2, · · · ,FN ], A (and, implicitly, C) that maximize the
sum of spectrum utilities over the activated links, under given
BER and power constraints. This is expressed by the problem
below.

P1 : Given : BER∗SU , G(V, E), PBgt, Q, AP

Find : P, F, A

Maximize :
∑

i∈SU
∑

j∈SU,j 6=i Uij · aij (9)
Subject to :

SINRf
kl ≥ SINRth

PU (BER∗PU ) · aP
kl, ∀k, l ∈ PU , ∀ f ∈ Fk

(10)
SINRf

ij ≥ SINRth
SU (BER∗SU ) · aij , ∀i, j ∈ SU , ∀ f ∈ Fi

(11)∑

f∈Fi

Pi(f) ≤ PBgt, ∀i ∈ SU , (12)

0 ≤ ∆fi ≤ ∆fB , ∀i ∈ SU . (13)

In the problem above, we denote SINRij as the SINR
for link (i, j). Constraint (10) indicates that primary user
transmissions should not be impaired. Constraint (11) imposes
that secondary user transmissions should also satisfy a given
BER performance, while sharing the spectrum with other
secondary users. In (12), PBgt represents the instantaneous
power available at the cognitive radio. Constraint (13) imposes
a limit on the bandwidth of cognitive radios. In addition,∑

i∈SU (aij + aji) ≤ 1,∀j ∈ SU must hold.
Solving the problem above requires global knowledge of

feasible rates, is centralized and its complexity is worst-case
exponential. This provides the motivation for our distributed
algorithm, whose objective is to maximize (9) under the con-
straints introduced by cognitive radio networks in a distributed
fashion. In addition, we show how the distributed algorithm
can be implemented in a practical protocol.

C. Spectrum and Power Allocation

In this section we present the spectrum and power allocation
algorithm executed in a distributed fashion at each secondary
user to maximize the link capacity given the current spectrum
condition. Maximizing the capacity of link (i, j) means select-
ing spectrum Fi = [fi, fi+∆fi ] and corresponding transmit
power Pi(f) on each frequency to maximize the Shannon
capacity.
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P2 : Given : (i, j), Ij,Nj,Lij, Pmin
i , Pmax

i , PBgt

Find : [fi, fi+∆fi
], Pi

Maximize : cij (14)
Subject to :

Pmin
i (f) ≤ Pi(f) ≤ Pmax

i (f), ∀ f ∈ [fi, fi+∆fi
]; (15)

∑

f∈[fi,fi+∆fi
]

Pi(f) ≤ PBgt, ∀i ∈ SU ; (16)

0 ≤ ∆fi ≤ ∆fB , ∀i ∈ SU , (17)

where Ij = [Ij(fmin), Ij(fmin+1), · · · , Ij(fmax)], Nj =
[Nj(fmin), Nj(fmin+1), · · · , Nj(fmax)], and Lij =
[Lij(fmin), Lij(fmin+1), · · · , Lij(fmax)] with i, j ∈ SU .

The objective of the problem above is to find the spec-
trum hole with maximal capacity, given spectrum condition
and hardware limitations of the cognitive radio. Note that
constraint (15) imposes the presence of a spectrum hole, and
constraints (16) and (17) indicate the hardware restrictions.

For a fixed contiguous set of minibands [fi, fi+∆fi ], we can
obtain a solution to the problem above by relaxing constraints
(15) and (16). Hence, we can express the dual objective
function as

g(Pi,Υ) =
∑

f∈[fi,fi+∆fi
]

w · log2

[
1 +

Pi(f)Lij(f)G
Nj(f) + Ij(f)

]
+

∑

f∈[fi,fi+∆fi
]

[υf
min(Pmin

i (f)−Pi(f))+υf
max(Pi(f)−Pmax

i (f))]

+υBgt(
∑

f∈[fi,fi+∆fi
]

Pi(f)− PBgt), (18)

where
Υ = [υfi

minυ
fi+1
min · · · υ

fi+∆fi
min υfi

maxυfi+1
max · · · υ

fi+∆fi
max υBgt] (19)

is the vector of Lagrange multipliers, Υ º 0.

Algorithm 1 Spectrum and Power Allocation.
Inputs: (i, j), Ij, Nj, Lij, Pmin

i , Pmax
i , PBgt.

1: [f∗i , ∆f∗i ] = ∅, P∗i = 0
2: for ∆fi ∈ [0, ∆fB ] do
3: m = 1, ∆ = ∞, cij = 0
4: for fi ∈ [fmin, · · · , fmax−∆fi ] do
5: while ∆ > ∆th do
6: m = m + 1
7: for f ∈ [fi, · · · , fi+∆fi ] do
8: Assign P m

i (f) as in (20)
9: end for

10: Update Lagrange Multipliers

Υ(m) = [Υ(m− 1) +
1 + ε

m + ε
Γ(m)]+ (21)

11: ∆ = |Υ(m)−Υ(m− 1)|2
12: end while
13: Calculate ctemp as in (8)
14: if ctemp > cij then
15: cij = ctemp

16: [f∗i , ∆f∗i ,P∗i ] = [fi, ∆fi,Pi]
17: end if
18: end for
19: end for
20: Return solution as [f∗i , ∆f∗i ,P∗i , cij ]

A solution to problem P2 is obtained as described in Algo-

rithm 1, which provides a dual-based iterative solution to the
problem. Specifically, for a given spectrum window between
frequency fi and fi+∆fi

, at each iteration m the algorithm
assigns power Pm

i (f) sequentially for each frequency as in
(20). Equation (20) is obtained by setting dg(Pi,Υ)

dPi(f) = 0. Then,
Lagrange multipliers are updated following a gradient descent
algorithm. In Algorithm 1, ∆th represents a target precision,
while ε is a small constant used in the gradient stepsize 1+ε

m+ε .
Finally, Γ(m) represents a suitable gradient at step m, i.e.,
Γ(m) = [(P min

i (fi)−P m−1
i (fi))...(P

min
i (fi+∆fi)−P m−1

i (fi+∆fi))

(−P max
i (fi) + P m−1

i (fi))...(−P max
i (fi+∆fi) + P m−1

i (fi+∆fi))

(
∑

f=[fi,fi+∆fi
]

P m−1
i (f)− P Bgt)]. (22)

D. Routing and Dynamic Spectrum Allocation Algorithm
We now present the cross-layer ROuting and dynamic Spec-

trum Allocation algorithm (ROSA), which aims at maximizing
throughput through joint opportunistic routing, dynamic spec-
trum allocation and transmit power control, while performing
scheduling in a distributed way.

Every backlogged node i, once it senses an idle common
control channel, performs the following joint routing and
scheduling algorithm:

1) Find the set of feasible next hops {ns
1, n

s
2, ..., n

s
k} for

the backlogged session s, which are neighbors with
positive advance towards the destination of s. Node n
has positive advance with respect to i iff n is closer to
the destination than i. Calculate cij for each link (i, j),
where j ∈ {ns

1, n
s
2, ..., n

s
k}, using Algorithm 1.

2) Schedule s∗ with next hop j∗ such that

(s∗, j∗) = arg max(Us
ij). (23)

Note that Us
ij depends on both the capacity and the

differential backlog of link (i, j). Hence, routing is
performed in such a way that lightly backlogged queues
with more spectrum resource receive most of the traffic.

3) Once spectrum selection, power allocation and next
hop have been determined, the probability of accessing
the medium is calculated based on the value of Us∗

ij∗ .
Nodes with higher Us∗

ij∗ will get a higher probability
of accessing the medium and transmit. Note that Us

ij

defined in (7) is an increasing function of (Qs
i−Qs

j), i.e.,
links with higher differential backlog may have higher
spectrum utility, thus have higher probability of being
scheduled for transmission.
This probability is implemented by varying the size
of the contention window at the MAC layer. The
transmitter i generates a backoff counter BCi chosen
uniformly from the range [0, 2CWi−1], where CWi is
the contention window of transmitter i, whose value is
a decreasing function Φ() of the optimal spectrum utility
Us∗

ij∗ as below

CWi = −α · Us∗
ij∗∑

k∈SU ,(k,l)∈E Us
kl

+ β, α > 0, β > 0

(24)
where

∑
k∈SU ,(k,l)∈E Us

kl represents the total spectrum
utility of the competing nodes. Note that sender i col-
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Pm
i (f) =

wLij(f)Glog2e− (Nj(f) + Ij(f))(υf,m
min + υf,m

max − υBgt,m)

Lij(f)G(υf,m
min + υf,m

max − υBgt,m)
(20)

lects the spectrum utilities of its neighbors by overhear-
ing the control packets on the common control channel
as discussed in Section V. Nodes with smaller values of
the backoff counter will have higher priority in allocating
resources for transmission than nodes with larger value
of the backoff counter. With this mechanism, heavily
backlogged queues with more spectrum resources are
given higher probability of transmitting.

Algorithm 2 ROSA Algorithm.
1: At backlogged node i
2: Ui = 0, [f∗i , ∆f∗i ] = ∅, Pi = 0
3: for each backlogged session s do
4: for j ∈ {ns

1, n
s
2, ..., n

s
k} do

5: Calculate cij , [fi, ∆fi] and Pi using Algorithm 1
6: Utemp = cij · (Qs

i −Qs
j)

7: if Utemp > Ui then
8: Ui = Utemp

9: [s∗, j∗, Us∗
ij∗ , f

∗
i , ∆f∗i ,P∗i ] = [s, j, Ui, fi, ∆fi,Pi]

10: aij∗ = 1
11: end if
12: end for
13: end for
14: Set contention window CWi = Φ(Us∗

ij∗)
15: Generate backoff counter BCi ∈ [0, 2CWi−1]

16: Return [s∗, j∗, BCi, U
s∗
ij∗ , f

∗
i , ∆f∗i ,P∗i , aij∗ ]

The details are shown in Algorithm 2.
ROSA calculates the next hop opportunistically depend-

ing on queueing and spectrum dynamics, according to the
spectrum utility function in (7). Hence, each packet will
potentially follow a different path depending on queueing and
spectrum dynamics. Hence, packets from the same session
may follow different paths. At every backlogged node, the
next hop is selected with the objective of maximizing the
spectrum utility. The combination of next hops leads to a
multi-hop path. The multi-hop path discovery terminates when
the destination is selected as the next hop. If the destination is
in the transmission range of the transmitter (either a source or
an intermediate relay node for that session), the differential
backlog between the transmitter and the destination is no
less than the differential backlogs between the transmitter and
any other nodes, because the queue length of the destination
is zero. Hence, the destination has a higher probability of
being selected as next hop than any other neighboring node
of the transmitter. Note that the transmitter may still select a
node other than the destination as the next hop even if the
destination is in the transmission range. This can happen, for
example, if there is no available miniband (low interference)
between the transmitter and destination, or if the interference
on all minibands at that time is high, which results in low link
capacity between the transmitter and the destination.

V. COLLABORATIVE VIRTUAL SENSING IN ROSA

As discussed earlier, we assume that each node is equipped
with two transceivers, one of which is a reconfigurable
transceiver that can dynamically adjust its waveform and

Fig. 2. ROSA’s Medium Access Control.

bandwidth for data transmission2. The other is a conven-
tional transceiver employed on the common control channel.
Handshakes on the CCC are conducted in parallel with data
transmissions on the data channel.

We propose a new scheme called Collaborative Virtual
Sensing (CVS), which aims at providing nodes with accurate
spectrum information based on a combination of physical sens-
ing and of local exchange of information. Scanner-equipped
cognitive radios can detect primary users transmissions by
sensing the data channel. In addition, collaborative virtual
sensing is achieved by combining scanning results and infor-
mation from control packets exchanged on the control channel
that contain information about transmissions and power used
on different minibands.

ROSA’s medium access control logic is illustrated in Fig.
2. Similar to the IEEE 802.11 two-way RTS (request-to-send)
and CTS (clear-to-send) handshake, backlogged nodes contend
for spectrum access on the CCC. In particular, backlogged
nodes must first sense an idle control channel for a time period
of Distributed Inter-Frame Spacing (DIFS), and then generate
a backoff counter. The values of backoff counter are deter-
mined under the objective that nodes with higher spectrum
utility should have a higher channel access probability.

The sender informs the receiver of the selected frequency
interval [fi, fi+∆f ] using an RTS packet. On receiving the
RTS packet, the receiver responds by using a CTS packet after
the Short Inter-Frame Space (SIFS) and tunes its transceiver
for data transmission on the frequency specified in the RTS
packet. As in [7], an additional control packet, DTS (Data
Transmission reServation), is needed for the transmitter to
announce the spectrum reservation and transmit power to its
neighbors. Here, we modify the RTS/CTS/DTS packets and
include channel allocation information to allow the nodes to
make adaptive decisions. The control packets carry address
fields of the sender and the receiver, the spectrum reservation

2Implementations of ROSA that rely on a single transceiver are also
possible, for example by letting the reconfigurable transceivers periodically
tune to the common control channel to exchange control information. This is
the subject of ongoing research.
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[fi, fi+∆f ], reservation duration field (t0, t0+∆t), information
on queue length Q, and power constrains Pmax,Pmin, all of
which are input parameters of ROSA. Based on the collected
information, each node learns the spectrum environment and
queue length information from its neighborhood. Each back-
logged node performs ROSA to adaptively select the portion
of the spectrum to be used and the next hop. Note that ∆t is
the reservation time for the data channel, and includes the time
needed for transmitting all the remaining data in the scheduled
queue ∆Qs

i /cij , plus the time needed to ACK packets. By
actively collecting RTS, CTS, and DTS packets transmitted on
the CCC, each node learns spectrum and queue information
of its neighborhood.

Once RTS/CTS/DTS are successfully exchanged, sender
and receiver tune their transceivers to the selected spectrum
portion. Before transmitting, they sense the selected spectrum
and, if it is idle, the sender begins data transmission without
further delay. Note that it is possible that the sender or the
receiver find the selected spectrum busy just before data
transmission. This can be caused by the presence of primary
users, or by conflicting reservations caused by losses of control
packets. In this case, the node gives up the selected spectrum,
and goes back to the control channel for further negotiation.
During the RTS/CTS/DTS exchange, if the sender-selected
spectrum can not be entirely used, i.e., the receiver just
sensed primary user presence, the receiver will not send a
CTS. The sender will go back to the control channel for
further negotiation once the waiting-for-CTS timer expires
and the RTS retransmission limit is achieved. When data are
successfully received, an ACK will be sent by the receiver.
The transaction is considered completed after the ACK is
successfully received.

VI. INTERPRETATION OF ROSA AS A NUM SOLVER

In this section, we show how ROSA can be interpreted as a
distributed dual-based solution to a cross-layer network utility
maximization problem for cognitive radio ad hoc networks
under the system model described in the previous sections. A
joint congestion control, routing, and dynamic spectrum allo-
cation problem for cognitive radio networks can be formulated
as follows.
P3 : Given : BER∗SU , BER∗PU , G(V, E), PBgt, AP

Find : Λ, R, C

Maximize :
∑

i∈SU
∑

s∈S Ui(λs
i ); (25)

Subject to :

λs
i +

∑

k∈SU ,k 6=i

rs
ki =

∑

l∈SU ,l 6=i

rs
il, ∀i ∈ SU , ∀s ∈ S (26)

∑

s∈S
rs
ij ≤ cij , ∀i ∈ SU , ∀j ∈ SU \ i. (27)

Note that if C is the feasible set of the physical rates, values
of cij ∈ Co(C), i.e., they are constrained to be within the
convex hull of the feasible rate region [24][25]. The feasible
set of the physical rates is expressed by

cij ,
∑

f∈[fi,fi+∆fi
]

w · log2

[
1 +

Pi(f)Lij(f)G
Nj(f) + Ij(f)

]
(28)

SINRf
kl ≥ SINRth

PU (BER∗PU )·aP
kl,∀k, l ∈ PU ,∀f ∈ [fk, fk+∆fk ]

(29)
SINRf

ij ≥ SINRth
SU (BER∗SU ),∀i, j ∈ SUs.t.

∑
s∈S

rs
ij ≥ 0, ∀f ∈ Fi

(30)
∑

f∈[fi,fi+∆fi
]

Pi(f) ≤ PBgt, ∀i ∈ SU , (31)

0 ≤ ∆fi ≤ ∆fB , ∀i ∈ SU . (32)

In the problem above, the objective is to maximize a
sum of utility functions Ui(λs

i ), which are assumed to be
smooth, increasing, concave, and dependent on local rate at
node i only [26]. Constraint (26) expresses conservation of
flows through the routing variables rs

ij , which represent the
traffic from session s that is being transported on link (i, j).
Finally, constraint (27) imposes that the total amount of traffic
transported on link (i, j) is lower than the capacity of the
physical link.

By taking a duality approach, the Lagrange dual function
of P3 can be obtained by relaxing constraint (26) through
Lagrange multipliers Q = [Qs

i ], with i ∈ SU and s ∈ S .

L(Q) = max
Λ

{ ∑

i∈SU

∑

s∈S
(Ui(λs

i )−Qs
i λ

s
i )

}
+

+max
R,C





∑

i∈SU

∑

j∈SU,j 6=i

∑

s∈S
rs
ij

(
Qs

i −Qs
j

)


 , (33)

where variables indicating data rates are still constrained to be
cij ∈ Co(C), and C is defined by constraints (28)- (32).

In the above decomposition, the first term of (33) rep-
resents the congestion control functionality (which can be
carried out independently), while the second term repre-
sents routing, scheduling, and physical rate allocation. Let
Λ∗(Q),R∗(Q),C∗(Q) be the vectors of optimum values for
a given set of Lagrange multipliers Q. While λs,∗

i (Q) can
be computed locally at each source i of session s, R∗(Q),
C∗(Q) require global knowledge and centralized algorithms.

To solve the above problem, the following actions need to
be performed at each time slot t:

• Update the congestion control variables. For each session
s and for each source node i:

λs
i (t) = sup

λs
i

{Ui(λs
i )−Qs

i λ
s
i} (34)

• Scheduling and Routing. For each link (i, j), choose the
session that maximizes the differential backlog between
transmitter and receiver:

s∗ij = arg max
s

{
Qs

i −Qs
j

}
(35)

Then, set r
s∗ij

ij (t) = cij(t). Assign link rates cij(t) to
maximize the weighted sum of the link rates of the
network, where the weights correspond to differential
backlogs:

C(t) = arg max
C





∑

i∈SU

∑

j∈SU ,j 6=i

cij

(
Q

s∗ij

i −Q
s∗ij

j

)



(36)

Note that the maximization above is analogous to the
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dynamic backpressure algorithm in [24][22].
• Update Lagrange multipliers (queues) as

Qs
i (t + 1) =


Qs

i (t) + ε


 ∑

k∈SU,k 6=i

rs
ki(t)−

∑

l∈SU ,l 6=i

rs
il(t) + λs

i (t)







+

(37)
Note that the Lagrange function is always convex, and
thus the multipliers can be computed using a subgradient
algorithm.

Clearly, the bottleneck of the above solution lies in the routing
and scheduling component in (36). Solving (36) requires
global knowledge of feasible rates and centralized algorithm. It
has been shown that the complexity of this family of schedule
problems is worst-case exponential [22][27]. Exact distributed
solution of (36) is thus infeasible. However, it can be shown
that the closer a policy gets to maximizing (36), the closer the
policy gets to the capacity region of the network [24]. This
provides the rationale for our distributed algorithm, whose
objective is to maximize (36) under the constraints expressed
by (30) and (31), together with (32) for cognitive radio ad hoc
networks.

VII. SIMULATION RESULTS

To evaluate ROSA, we have developed an object-oriented
packet-level discrete-event simulator, which models in detail
all layers of the communication protocol stack as described
in this paper. We first concentrate on evaluating the network
throughput, delay, and fairness. Then, we compare the perfor-
mance of the proposed distributed algorithm and the central-
ized algorithm. In all simulation scenarios, we considered a
common set of parameters. A grid topology of 49 nodes is
deployed, in a 6000m x 6000m area. We initiate sessions be-
tween randomly selected but disjoint source-destination pairs.
Sessions are CBR sources with a data rate of 2Mbit/s each.
We set the available spectrum to be 54MHz - 72MHz, a
portion of the TV band that secondary users are allowed to
use when there is no licensed (primary) user operating on it.
We restrict the bandwidth usable by cognitive radios to be
2, 4 and 6MHz. The bandwidth of the CCC is 2MHz. The
duration of a time slot is set to 20 microseconds. Parameters α
and β in (24) are set to 10 and 10 respectively. A Larger CW
can reduce the collision rate but may lead to lower utilization
of the control channel caused by backoff. These values are
implicitly optimized based on the network size in the paper.
The SU SINR threshold is 9 dB, and the PU SINR threshold
is 19 dB in the simulation.

We average over multiple trials to obtain a small relative
error (within 10% of the average value). The data rate is a step-
wise approximation of (8), which can model, among others,
different modulation schemes available for different SINR
values. Fig. 3(a) illustrates the network throughput achieved by
ROSA with time as the number of active sessions varies. With
a higher number of active sessions, ROSA achieves higher
overall network throughput by adaptively adjusting bandwidth
to enable concurrent parallel transmissions.

We compare the performance of ROSA with two alternative
schemes, both of which rely on the same knowledge of the

environment as ROSA. In particular, we consider Routing with
Fixed Allocation (RFA) as the solution where routing is based
on differential backlog (as in Section IV) with pre-defined
channel and transmit power, and to Routing with Dynamic
Allocation (RDA) as the solution where routing is based on
shortest path with dynamic channel selection and transmit
power allocation without considering differential backlog.

We compare against the three solutions by varying the
number of sessions injected into the network and plot the
network throughput (sum of individual session throughput) in
Fig. 4(a), which shows that ROSA outperforms RFA and RDA.
When there are a few active sessions, e.g., 2 or 4, ROSA, RDA
and RFA obtain similar throughput performance. However,
with more active sessions, ROSA and RDA perform much
better than RFA since they use the best among possible spec-
trum allocations and routes adaptively. RDA restricts packets
forwarding to the receiver that is closest to the destination,
even if the link capacity is very low or the receiver is heavily
congested. In contrast, ROSA, by considering both the link
capacity and the differential backlog, is more flexible and may
route packets along paths that temporarily take them farther
from the destination, especially if these paths eventually lead
to links that have higher capacity and/or that are not as heavily
utilized by other traffic. The improvement obtained by ROSA
is more visible when the number of active sessions increases.

Fig. 4(b) shows the delay performance for the three solu-
tions. RFA, on average, delivers a larger delay than the other
two solutions. The above delay performance gap grows as the
number of sessions increases. As shown in Fig. 4(b), ROSA
provides very low and stable delay performance as the number
of sessions increases. ROSA and RDA yield almost the same
delay performance.

Fig. 4(c) shows the impact of source data rate per session
on the performance of throughput and delay. We evaluate
the throughput and delay performance as the traffic load per
session increases from 100Kbit/s to 8Mbit/s. As shown in
Fig. 4(c), the throughput achieved by ROSA increases linearly
as the load per session increases. As the load increases, ROSA
obtains a significant throughput gain.

Fig. 3(b) shows Jain’s fairness index, calculated as
(
∑

rs)2/S ∗ ∑
(rs)2, where rs is the throughput of session

s, and S is the total number of active sessions. As shown in
the figure, the overall fairness among competing sessions is
improved by ROSA using prioritized channel access scheme.
When the sessions are dynamic, the protocol is supposed to be
stable since the algorithm adaptively adjusts channel selection
and power allocation according to the current transmissions.

We compare the performance in terms of network spectrum
utility defined in (9) of P1 between our distributed algo-
rithm and the centralized algorithm. We consider a cognitive
radio network with 10 nodes. We assume that there are
7 secondary users and 3 primary users associated with 3
different minibands. Every primary user holds a license for
one specific miniband, and can only occupy its assigned
miniband. We activate sessions between randomly selected
but disjoint source-destination pairs among the 7 secondary
users. Fig. 3(c) shows that even though ROSA uses only
local information and has low complexity, the performance
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is within 75% of the optimal (centralized) solution. However,
the centralized solution is obtained with global information
and has exponential computational complexity.

VIII. CONCLUSIONS

We proposed, discussed and analyzed ROSA, a distributed
algorithm for joint opportunistic routing and dynamic spec-
trum access in multi-hop cognitive radio networks. ROSA
was derived by decomposing a cross-layer network utility
maximization problem formulated under the constraints of
cognitive radio networks. Through discrete-event simulation,
ROSA was shown to outperform simpler solutions for inelastic
traffic. Future work will aim at deriving a theoretical lower
bound on the performance of ROSA. In addition, we are
currently implementing ROSA on a software defined radio
platform based on an open source platform built on GNU radio
and USRP2.
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