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ABSTRACT

This paper focuses on the design of prefilters for ma-

neuvering structures with the objective of desensitizing

the controller to errors in the system model. Given

information about the expected variation of the un-

certain parameters, a minimax optimization problem

is formulated to minimize the maximum value of the

residual energy over the range of the uncertain pa-

rameter. The proposed technique is illustrated on a

spring-mass-dashpot system with uncertainties in both

the damping and stiffness constants and on a two-mass

two-spring, two input system.

INTRODUCTION

Control of vibratory structures by filtering the ref-

erence input to the system has been addressed by

numerous researchers [14], [7], [3], [8] etc. Singh and

Singhose [2] present a tutorial related to the design

of input shapers/time-delay filters and include a com-

prehensive list of relevant papers. Smith [14] proposed

a wave cancellation technique to drive a second order

system to its final position in finite time. However,

this technique is sensitive to modeling errors. Singer

and Seering [7] proposed a simple technique to de-

sensitize the input shaper to modeling errors. This

involved design of a sequence of impulses which forced

the magnitude of the residual energy and its deriva-

tive with respect to damping or natural frequency, to

zero. Singh and Vadali [8] arrived at the same results

of Singer and Seering [7] by the design of a time-delay

filter which cancelled the poles of the system. They

also showed that by cascading the time-delay filter de-

signed to cancel the poles of the system, the resulting

filter was insensitive to errors in modeled damping

and frequency. The idea of locating multiple zeros
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of a time-delay filter at the estimated location of the

poles of the system has been exploited to design robust

time-optimal control [9], [5], robust fuel-time optimal

control [11], fuel constrainted time-optimal control [12]

etc. Liu and Singh [4] extended this idea to nonlinear

systems undergoing rest-to-rest maneuvers, by requir-

ing the sensitivity of the system states with respect to

uncertain parameters be zero at the final time.

Techniques to increase the range of uncertain pa-

rameters where the residual vibration is below a pre-

specified amount has been addressed by Singhose et

al. [13]. This was referred to as the extra insensitive

input shaper. Pao et al. [6] included the probability

distribution of the uncertain parameters into the de-

sign process to arrive at input shapers which weighted

the nominal value of the uncertain parameter the most.

This paper proposes a technique to design time-

delay filters which minimize the maximum magnitude

of the residual vibration over the range of the uncertain

parameter. Closed form expressions for the analyti-

cal gradients of the cost function and constraints have

been derived by Singh [10], which can be used to ex-

pedite the convergence of optimization algorithms for

the minimax time-delay filters, studied in this paper.

The resulting controller will be referred to as the mini-

max time-delay controller. The first section will review

the development of the time-delay control. This will

be followed by the development of the minimax time-

delay controller which is illustrated on single input

numerical example. The penultimate section presents

a multi-input example and final section summarizes

results generated in this paper.

TIME-DELAY CONTROL

This section reviews the time-delay control tech-

nique. Figure 1 represents the time-delay control of

a second order underdamped system. The parameters

A0 and T need to be determined so that the poles of

the system are cancelled by a pair of zeros of the time-

delay filter. The location of the zeros of the time-delay
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r(s)
−→

A0

A0+1
+ e−sT

A0+1
−→

u(s)
−→ ω2

s2+2ξωs+ω2 −→
y(s)

Fig. 1 Single Time-Delay Controlled System

filter are given by the solution of the equation

A0 + e−sT = 0 (1)

where s is the Laplace variable. To locate a pair of

zeros of the time-delay filter at

s = −ζω ± jω
√

1 − ζ2, (2)

we can show that

A0 = exp

(

ζπ
√

1 − ζ2

)

(3)

and

T =
π

ωn

√

1 − ζ2
, (4)

where ζ is the damping ratio and ω is the natural

frequency of the system.

The single time-delay control, by cancelling the

poles corresponding to the oscillatory behavior of the

system, provides us with a technique to produce non-

oscillatory response. The cancellation of the poles of

the system is contingent on the availability of accurate

estimates of the pole locations. To improve the robust-

ness of the time-delay control to errors in estimated

location of the poles, the two time-delay controller is

proposed whose transfer function is

A0 + A1e
−sT + e−2sT . (5)

The requirement of cancelling the poles of the system

results in two constraints. The third constraint is de-

rived by requiring the derivative of Equation 5 with

respect to σ or ω be forced to zero. Solving the three

equations results in

A0 = exp(
2ζπ

√

1 − ζ2
) (6)

A1 = exp(
ζπ

√

1 − ζ2
) (7)

and

T =
π

ω
√

1 − ζ2
(8)

It can be seen from the parameters of the two time-

delay controller that it can be derived by cascading

two, single time-delay controllers. This now provide

the designer with a simple technique to desensitize the

time-delay controller to modeling errors.

MINIMAX TIME-DELAY CONTROL

With the knowledge that the uncertain parameters

lie within a specified range, it is desirable to design a

controller with the worst model in mind. This can be

achieved by considering the performance of the con-

troller over the range of the uncertain parameter. In

this paper, a design technique is proposed, which mini-

mizes the worst performance of the system. The metric

used to gauge the performance of the system corre-

sponds to the residual energy of the system at the end

of the maneuver. The goal of the optimization prob-

lem is to minimize the maximum magnitude of the

residual energy over the entire range of the uncertain

parameters.

For an asymptotically stable mechanical system un-

dergoing rest-to-rest maneuvers, the model can be rep-

resented as

Mÿ + C(p)ẏ + K(p)y = Dr (9)

where M , and K are positive definite matrices and

C is positive semi-definite. p is a vector of uncertain

parameters and is bounded by the lower plb
i and upper

pub
i bounds:

plb
i ≤ pi ≤ pub

i (10)

The objective is to design a time-delay filter which

pre-filters the reference input r to the system with the

objective of

min
Ti,Ai

max
p

√

1

2
ẏT Mẏ +

1

2
(y − yf )T K(y − yf )

(11)
where Ti and Ai are parameters which define the ro-

bust time-delay filter and yf corresponds to the final

displacement states of the system. The above equa-

tion will be referred to as the pseudo-energy function

since it is associated with a hypothetical spring whose

potential energy is zero when y = yf . Without loss of

generality, we can assume that the initial displacement

states are zero.

NUMERICAL EXAMPLES

The proposed technique will be illustrated on a

rest-to-rest maneuver of a single mode system whose

dynamics are defined by the equation
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mÿ + cẏ + ky = kr (12)

with the boundary conditions

y(0) = ẏ(0) = 0, y(tf ) = 1, ẏ(tf ) = 0 (13)

where tf is the maneuver time.

ONE UNCERTAIN PARAMETER

First, a minimax time-delay controller will be de-

signed assuming that only k is uncertain and satisfies

the constraint

0.7 ≤ k ≤ 1.3 (14)

where the nominal value of k = 1 and m = 1, c =

0.2. The form of the transfer function for the minimax

time-delay controller is chosen to be

A0 + A1e
−sT + A2e

−2sT (15)

which is identical to the robust time-delay controller

(Equation 5). The optimization problem can be stated

as the determination of A0, A1, A2 and T of the time-

delay filter so as to

min
Ai,T

max
k

(

1

2
mẏ2 +

1

2
k(y − 1)2

)

(16)

The transfer function of the non-robust time-delay

filter for the nominal system is

0.5783 + 0.4217e−3.1574s. (17)

With the knowledge that two non-robust filters in cas-

cade will force the derivative of the square root of the

pseudo-energy to be zero at the nominal value of the

system parameters resulting in smaller magnitude of

residual vibration in the vicinity of the nominal pa-

rameters as illustrated in Figure 2 (dashed line), the

transfer function of the robust time-delay controller

can be shown to be

0.3344 + 0.4877e−3.1574s + 0.1788e−6.3148s. (18)

The parameters of the time-delay filter (Equation 18),

will be used as initial guesses for the minimax algo-

rithm. The optimization toolbox of MATLAB c© is

used to solve the minimax optimization algorithm. An

iterative approach proposed by Mills and Bryson [1] is

used to solve for the minimax solution. This technique
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Fig. 2 Residual Vibration Distribution

entails initiating the optimization algorithm with tight

bounds on the parameters to be optimized for and

gradually relaxing the bounds to their problem defined

bounds, iteratively. The solution of every iteration is

used as the initial condition for the next. The opti-

mal minimax time-delay filter is given by the transfer

function

0.3452 + 0.4730e−3.1703s + 0.1818e−6.2060s. (19)

Figure 2 (dotted line) illustrate the variation of the

residual energy of the system as a function of the un-

certain parameter k. It can be seen that the maximum

magnitude of the residual energy in the range of the

uncertain parameters occurs at the bounding limits (k

= 0.7, k = 1.3) and near the nominal value of k. It is

also clear that the maximum magnitude of the residual

energy is significantly smaller than that resulting from

the robust time-delay filter defined by equation 18 over

the entire range of k. However, near the nominal value

of k, the minimax solution has the largest magnitude

of residual vibration. The minimax solution can also

be shown to be similar to the extra-insensitive in-

put shaper proposed by Singhose et al. [13] where

an optimization problem is formulated by defining the

magnitude of residual vibration permitted at the nom-

inal value of the uncertain parameter and solving for

the magnitudes of a sequence of impulses. The impulse

sequence is required to satisfy the constraints that the

magnitude of the residual vibration is zero at two fre-

quencies which flank the nominal value and the slope

of the residual energy distribution curve is zero at the

nominal value of the uncertain parameter.

Notwithstanding that the maximum magnitude of

the residual vibration over the range of possible value
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of k has been minimized, the fact that the residual vi-

bration near the nominal value of k is the maximum is

a drawback of this controller. To address the afore-

mentioned disadvantage, an additional constraint is

included into the minimax optimization problem which

requires the magnitude of the residual vibration to be

zero at the nominal value of the uncertain parameter.

The added constraint necessitates addition of a time-

delay to the time-delay filter defined by Equation 19,

resulting in the transfer function

A0 + A1e
−sT + A2e

−2sT + A3e
−3sT . (20)

The unknown parameters of Equation 20 are solved

for using the solution of the parameters of three non-

robust time-delay filters in cascade as initial guesses.

The transfer function of the minimax time-delay con-

troller with the constraint to force the residual vibra-

tion to be zero at the nominal value of k can be shown

to be

0.2052 + 0.4141e−3.1652s

+0.3015e−6.3304s + 0.07924e−9.4956s.
(21)

Figure 3 illustrates the distribution of the residual

energy of the time-delay filter designed by cascading

three non-robust time-delay filters (solid line) and the

minimax time-delay filter (dashed line).

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.005

0.01

0.015

0.02

0.025

Spring Stiffness k

S
qu

ar
e 

ro
ot

 o
f R

es
id

ua
l E

ne
rg

y

Robust 3−Time−Delay Control
Minimax 3−Time−Delay Control

Fig. 3 Residual Vibration Distribution

TWO UNCERTAIN PARAMETERS

Equation 12 is considered again and a minimax

time-delay controller is designed assuming that the two

uncertain parameters satisfy the constraints

0.7 ≤ k ≤ 1.3, 0.1 ≤ c ≤ 0.3 (22)

where the nominal values of k and c are 1 and 0.2

respectively. A time-delay filter of the form

A0 + A1e
−sT1 + A2e

−2sT (23)

is selected which is identical to Equation 15. An

optimization problem is solved which minimizes the

maximum value of the residual energy at time 2T of

a set of (k, c) parameters over the uncertain region

given by Equation 22. The optimal time-delay filter

transfer function is

0.3380 + 0.4732e−3.1541s + 0.1888e−6.3082s. (24)
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Fig. 4 Residual Energy Distribution (Non-
Robust Control)
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Fig. 5 Residual Energy Distribution (Robust
Control)

Figure 4 illustrates the variation of the residual en-

ergy as a function of damping and stiffness constants
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for the time-delay filter given by Equation 17 which

was designed to cancel the poles of the system based

on the nominal values of the uncertain parameters. It

is clear that the increase in the residual vibration is

significant as the modeling error increases. Figure 5

exemplifies the variation of the residual energy when

the robust time-delay filter (Equation 18) is used to

prefilter the step input to the system. The minimax

time-delay filter given by Equation 24 illustrates that

the residual energy over the uncertain region is greatly

reduced. However, this is at the cost of increasing the

residual vibration at the nominal value of the uncer-

tain parameters as shown in Figure 6. This can be

remedied by adding a time-delay to the above filter

and including a constraint into the optimization prob-

lem, which forces the residual energy to be zero at the

nominal value of the model parameters. The resulting

filter transfer function is

0.1963 + 0.4122e−3.1664s

+0.3091e−6.3328s + 0.08243e−9.4992s.
(25)

Figure 7 illustrates that the residual vibration over the

uncertain region has been further reduced and is zero

at the nominal value of the model parameters.
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Fig. 6 Residual Energy Distribution (Minimax
Control)

MULTI INPUT SYSTEMS

The technique for the design of minimax prefilters

can be extended to multi-input systems. Figure 8 il-

lustrates a two mass/spring system with two inputs.

The equations of motion of the system are
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Fig. 7 Residual Energy Distribution (Minimax
Control with Zero Vibration Constraint)

m1 m2

k 2k 1

u 1

y 1

u 2

y 2

Fig. 8 Two Input Oscillator

[

m1 0
0 m2

]{

ÿ1

ÿ2

}

+

[

k1 + k2 −k2

−k2 k2

]{

y1

y2

}

=

[

1 0
0 1

]{

u1

u2

}

.(26)

The objective is to design a time-delay filter with the

objective of completing a rest-to-rest maneuver with

the boundary conditions:

y1(0) = y2(0) = ẏ1(0) = ẏ2(0) = 0 (27)

y1(tf ) = 2, y2(tf ) = 1, ẏ1(tf ) = ẏ2(tf ) = 0, (28)

and which it is robust to uncertainties in the spring

stiffness k1 and k2. It is assumed that the uncertain

parameters lie in the range:

0.7 ≤ k1 ≤ 1.3 and 0.7 ≤ k2 ≤ 1.3. (29)

The control input is rewritten as

{

u1

u2

}

=

[

k1 + k2 −k2

−k2 k2

]∣

∣

∣

∣

nominal

{

v1

v2

}

(30)
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The final values of the new control inputs to satisfy

the boundary conditions are given as

{

v1

v2

}

=

{

2
1

}

. (31)

Assuming the nominal values of the spring stiffness are

k1 = 1, k2 = 1, the final values of the control inputs

are u1 = 3, u2 = -1. A minimax problem is formulated

to minimize the maximum magnitude of the residual

energy of the system over the domain of uncertainty

defined by Equation 29. The transfer function of the

time-delay filters are parameterized as

G1(s) =
N
∑

i=0

A1iexp(−sT1i) where T10 = 0 (32)

G2(s) =
N
∑

i=0

A2iexp(−sT2i) where T20 = 0. (33)

The minimax optimization problem is used to solve

for A1i, T1i, A2i, and T2i. The following constraints

are imposed on the optimization problem. To ensure

that the systems states are quiesent at the final time,

and since the system modes cannot be decoupled, we

require

T1N = T2N . (34)

Further, we require

{

∑N
i=0 A1i

∑N
i=0 A2i

}

=

{

y1(tf )
y2(tf )

}

(35)

where tf is the final maneuver time.

To compare the performance of the minimax time-

delay filter to conventional filters, two classes of filters

are considered. The first is designed to cancel the

undamped poles of the system which is given by the

time-delay filters

G1(s) = 2(
1

2
+

1

2
exp(−s

π

ω1
))

(
1

2
+

1

2
exp(−s

π

ω2
))

(36)

G2(s) = 1(
1

2
+

1

2
exp(−s

π

ω1
))

(
1

2
+

1

2
exp(−s

π

ω2
))

(37)

where ω1 and ω2 are the nominal frequencies of the

controlled system. Next, a minimax problem is solved

for the same number of delays as in Equations 36 and

37. The optimal parameters of the minimax time-delay

filter are given in Table 1.

A1i 0.5200 0.5954 0.5344 0.3503

T1i 0.0 3.3688 6.3719 12.1535

A2i 0.3630 -0.5139 0.7001 0.4508

T2i 0 1.6853 6.8284 12.1535

Table 1 Minimax Time-Delay Filter Parame-
ters
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Fig. 9 Residual Vibration Distribution (Non-
robust Filter)
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Fig. 10 Residual Vibration Distribution (Min-
imax Filter)

Figure 9 and 10 illustrate the variation of the resid-

ual energy of the nonrobust and the corresponding

minimax prefilters. It is clear that for the nominal

model, the non-robust filter results in zero residual

energy. However, over the entire uncertain region, the

minimax filter outperforms the nonrobust filter.
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The second is the robust time-delay filter designed

by locating multiple zeros of the time-delay filter at the

estimated location of the poles of the system, which is

given by the transfer functions:

G1(s) = 2(
1

4
+

1

2
exp(−s

π

ω1
) +

1

4
exp(−2s

π

ω1
))

(
1

4
+

1

2
exp(−s

π

ω2
) +

1

4
exp(−2s

π

ω2
))(38)

G2(s) = 1(
1

4
+

1

2
exp(−s

π

ω1
) +

1

4
exp(−2s

π

ω1
))

(
1

4
+

1

2
exp(−s

π

ω2
) +

1

4
exp(−2s

π

ω2
))(39)

Next, a minimax time-delay filter is designed to min-

imize the maximum magnitude of the residual energy

of the uncertain domain and the optimal parameters

of the time-delay filter are given in Table 2.
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Fig. 11 Residual Vibration Distribution (Ro-
bust Control)

From Figures 11 and 12, it can be seen that the

maximum magnitude of the square root of the residual

energy over the uncertain region reduces from 0.0762

to 0.0116 a 85% reduction.

CONCLUSIONS

This paper proposes a simple technique to design

time-delay filters for reducing the maximum magni-

tude of residual vibration over a range of parameter

A1i 0.1014 0.1568 0.3376 0.2147 0.2609 0.2843 0.3379 0.2127 0.0938

T1i 0 2.2897 4.7851 7.0169 8.0249 10.2515 12.2812 14.8886 18.6908

A2i 0.1003 -0.0867 0.1551 0.0678 0.1571 -0.1312 0.3658 0.2104 0.1613

T2i 0 5.0907 5.0907 6.6232 8.2987 11.6788 11.8754 15.1427 18.6908

Table 2 Minimax Time-Delay Filter Parame-
ters
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Fig. 12 Residual Vibration Distribution (Min-
imax Control)

uncertainty. A minimax optimization problem is for-

mulated which requires only one equations which is

used both as the cost function and when evaluated

at the nominal value of the model parameters, as the

constraint. The minimax filter is designed for a spring-

mass-dashpot with uncertainties in the spring stiffness

and damping factor of the systems. This is followed

by a two-mass two-spring, two-input system, with un-

certainties in the stiffness of both the springs.
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