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Abstract  

The primary objective of this work is to investigate lin- 
ear time invariant systems undergoing rest to rest ma- 
neuvers in a finite time using the discrete time domain 
approach. Using a given sampling period, the govern- 
ing equations of linear systems are first discretized into 
the equivalent discrete time domain representation. To 
decouple the resulting difference equations, the sys- 
tem equations are converted into the Jordan Canon- 
ical Form by using a similarity transformation. 'The 
decoupled Jordan Canonical equations are converted 
to a set of algebraic input /output  equations with em- 
bedded end-points conditions, by a recursive approach. 
The optimal or sub-optimal control profiles required to 
achieve the desired maneuver can be easily calculated 
through basic manipulation. The sensitivity of the de- 
sign to the uncertainities in the system parameters is 
reduced by introducing sensitivity equations, and the 
design is found to be robust to these uncertainities. 

Introduct ion  

The control of physical systems with digital computers 
is becoming more popular in industry. Many new digi- 
tal control applications are being stimulated by micro- 
processor technology with applications such as automo- 
biles and household appliances. Among the advantages 
of the digital logic for control are the increased flexi- 
bility of the control programs and the decision-making 
or logic capability of digital systems. Systems requir- 
ing a change in state in a finite time are often referred 
to as point to point control problems. Practical ex- 
amples of this class of problems range from control of 
large space apparatus (Juang [1]),(Singh [2]), robotic 
manipulators (Cannon [3]) and small scale apparatus 
like computer disk drives where precise point to point 
positioning is required (Bhat [4]). A linear time in- 
variant system with one rigid mode and one flexible 
mode is considered in this work to illustrate the pro- 
posed technique. The governing equations of motion of 
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the system are transformed from continuous time do- 
main to discrete time domain with different sampling 
periods. The system differential equations are decou- 
pled using similarity transformation resulting in a set 
of algebraic equations. The resulting system is first 
solved assuming sub-optimal polynomial control profile 
at different sampling periods. To achieve an optimum 
control sequence u.*,, ui+l,* ..., u~v_l, the Lagrange mul- 
tipliers approach and the Hamiltonian at each interval 
of interest [i, N] is used to minimize the performance 
index which is chosen to be the power consumed . 

Pr o b l e m Formulat ion 

In point-to-point control problems, the vector y(t) is 
completely specified at two different instants of time, 
tl and t2, and the control input ~!(t) required to achieve 
these end conditions is to be determined. Let N = ( t2 -  
t l ) / T  be the total sampling interval, and the boundary 
conditions at the beginning and end of maneuver are 
specified as _y(tl) = _y(0) and y(t2) = y (NT) .  The 
behavior of this system can be characterized by a set 
of one or more differential equations. If the system is 
linear and time-invariant, the dynamic equations can 
be written in a state variable form as 

_~(t) = A_y(t) + B u(t) (1) 

The solution of Eq. (1) is 

y_(t) = ¢( t  - to)y_(to) + ¢( t  - r ) B g ( r ) d r  (2) 

where, y(t0) is the initial state. The input u(r)  is con- 
stant between any two consecutive sampling instants 
based on the assumption of zero-order hold (ZOH) ,  
that  is u_(r)= u(kAT),  for kAT_< r < ( k + i ) A T .  
By substituting to = k A T ,  Eq. (2) becomes 

~ k  t 

y(t) = ¢ ( t - k A T ) y _ ( k A T ) +  O ( t - r ) B d r  u_(kAT) 
~ T  (a) 

Eq. (3) describes the state vector y(t) at all times be- 
tween the sampling instants k A T  and (k + 1)AT, 
for k = 0, 1,2 . . . .  ,N-l(for simplicity, T will replace 
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AT). For numerical simulations, it is more convenient 
to describe y(t) only at the sampling instants. Let 
t = (k + 1)T, then Eq. (3) becomes the discrete state 
equations of the sampled-data system. 

_g[(k + 1)T] = Ady(kT)  + Bdu(kT) (4) 

where ,  A d  = O(T) = e A T  is the state transition matrix 

of A, and Bd = ®(T) = f ?  ~ ( T - r ) B d r  is the discrete 
control influence matrix• The most straightforward 
method of solving Eq. (4) under the boundary con- 
straints is by recursion (Kuo [6]). Using the transition 

N t e r m s  

matrix property O(NT) = ~ (T)O(T) . . .  ~ (T)  = Ad N, 
the solution of Eq. (4) is 

N-1 
y(NT) = AdNy(0) + E AdN-k - iBdu(kT)  (5) 

k=0 

Assuming full controllability, a unique transformation 
can be found such that  the discrete state equations 
Eq. (4), with some rearrangement, can be re-written 
in Jordan canonical form (Miu [5]). 

x[(k + 1)T] = J £(kr)  + ru(kT)  (6) 

where, J = diag[Aj] and Aj is the Jordan block asso- 
ciated with the pole zj with multiplicity of mjl The 
similarity transformation J = P - 1 A d P  transforms the 
discrete system matrix Ad into Jordan canonical form 
J,  which is nearly a diagonal matrix• The columns of 
transformation matrix P are the eigenvectors of Ad. 
The control influence matrix Bd and the end condi- 
tions are transformed accordingly• 

F = P-1Bd , x_(0) = P-iV(0) , x(NT) = P-~y_(NT) (7) 

As an example, consider a Jordan block A1 defined 
above) associated with a pole zt which has a multi- 
plicity of four, so the state equation is 

+ 1)] = A1 (k) = 

oo] 
zl 1 0 

[00 0 z l 1  
0 0 zt 

(s)  

It is possible to find the state transition matrix in a 
systematic manner with almost the same ease as in the 
case of a diagonal matrix. Notice that the last state 
equation in Eq. (8) is entirely decoupled from the other 
equations, thus the fourth element of the vector ~ can 
be found as x4(k) = zlkx4(O). Substituting x4(k) in the 
third state equation, solve for xa(k) 

x 3 ( k  + 1) = ZlX3(k ) + x4(k ) -~- zlx3(lg ) + ZlkX4(0) (9) 

Eq. (9) can now easily be solved for x3: 

x3(k) = z~x3(O) + kzlk-~x4(k) (10) 

Continuing with the same process, the solution of xl (k) 
is 

• l (k)  = k(k - 1)(k - 2) zk-3x4( 0 ) 1  (11) 
3~ 

In matrix form, the state transition equation is written 
as ~(k) = J~ x(0) where 

i - kik-1)(k-2)z-Zn 
1 kz~ "-1 k(k2~-l)Z 1 2 3! 1 ! 

k(k--1) -2  / 1 kz~ 1 2! Zl | (12) J~ = Zlk 0 1 k 1 

o o ] 

Using the same recursive approach, the solution of 
Eq. (6) can be derived as 

N-1  
x(NT)  = Jgx (0 )  + E Jg-k-lru--(kT) (13) 

k=O 

where, jm = diag[Ay] , and 

AJ y = z~ v 

"1 Nz f '  
0 1 

0 0 

0 0 

0 0 

0 0 

N ( N - - 1 ) ' " ( N - - m i + 2 )  z - - m  j + l  
• . .  ( m i _ l ) !  J 
. . ,  0 

". 0 

N(N-1) - 2  
• " ' 2~ z3 

• . .  N z f  1 
• "" 1 

(14) 

S o l u t i o n  of  t h e  D i s c r e t e  O p e n - L o o p  C o n t r o l  
Under the assumption that  the control input u(kT) is 
represented as a linear combination of some indepen- 
dent components, the control input can be written as 

 (kT) = ¢ff (KT)h (15) 

where C T(KT)  and h are the assumed control profile 
independent variable vector and their coefficients re- 
spectively.Using Eq. (15), Eq. (13) can be rewritten as 

x(NT)  - JNx_(0) = Z(T, N).A (16) 

N--1 
where Z(T, N) = E JY-k-lF¢-- T(kT)" For a control in- 

k=0 
put u(kT) as specified in Eq. (15) and a given end con- 
ditions x(NT),  Eq. (16) can be solved for the unknown 
coefficients 

_~ : Z- i (T ,  N)[x(NT) - JNx_(0)] (17) 

O p t i m a l  S o l u t i o n  of  t h e  D i s c r e t e  O p e n - L o o p  
C o n t r o l  
The optimal control problem is to find the control _u~ 
on the interval [0, N] that  drives the system along a 
trajectory x_~ such that  a given performance index is 
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minimized. Suppose we are concerned with minimizing 
the power of a single input problem, that is 

N - 1  

jk = E u2(kT) (18). 
k = 0  

s.t.: x_[(k + 1)T] = J x_(kT) + ru_(kr) 

Because the constraint equation is specified at each 
time k in the interval of interest, a Lagrange multiplier 
is required at each time step, i.e. each constraint has 
an associated Lagrange multiplier ( ~  E Rn). To find 
the optimal control profile u(k) that drives the system 
from a given initial state x(0) to the desired ~(N) over 
the interval [0, N] while minimizing Eq. (18), define the 
Hamiltonian as 

H k = u~ + $_kT+l[J.{~ + Fuk] (19) 

the set of necessary conditions to be satisfied are given 
by (Lewis [7]). 

OH k 
state equation: x-k+l - -  O.~..k+ 1 - -  J-~.-k + ruk 

0H k 
co-state equation: A k -- - -  -- JT~k+ 1 (20) 

X_k 

1 T 
stationarity uk = - ~ F  ~k+l 

Eq. (20) are a set of linear homogeneous difference 
equations. We can rewrite the costate equations as 

h~ = (Jr)mA_k+,~ (21) 

Let m = N - k, then the solution of ~k can be repre- 
sented by the final co-state vector aN as 

hk = (jT)N-khN ( 2 2 )  

Substituting Eq. (22) into Eq. (21) with k = k + l ,  solve 
for the optimal control profile in terms of the final co- 
state vector as 

u(k) = --21--FT(jT)N-k-lh(N) = $_T~N (23) 

Sensit ivi ty  to Sys tem Parameters  
The design of accurate control system in the presence 
of significant uncertainty requires the designer to seek 
a robust system. The plant model will always be an 
inaccurate representation of the actual physical system 
because of parameter changes, unmodeled dynamics, 
time delays, sensor noise. The goal of robust system 
design is to retain assurance of system performance in 
spite of model inaccuracies and changes. If we want to 
reduce the influence of the uncertainty of the parame- 
ters on the final states , we can include the sensitivity 
to these parameters inside the state equations. From 

Eq. (6), the relation of the pole zj associated with the 
state xj with multiplicity 1 in Jordan canonical form is 

xi (k+l)=zl~=~.x~(k)+7~u(k  ) (24) 

Differentiating Eq. (24) with respect to z, the sensitiv- 
ity equation is obtained as 

dx~(k) (25) dx~(k + 1) _ x ¢ . . ~ ± z ~ = ~  j ~  , 
dz dz 

assuming new s ta te  X n + j ( k )  = dxj(k)/dz, then 
Eq. (25) becomes 

x . + j ( k + l ) = x j ( k ) + z j x n + j ( k )  (26) 

the new discrete state equation is similar to Eq. (6 )  
and the combined system can be represented as 

~(k + 1) = J ~(k) + F~(k) (27) 

where, 

j = 

i 100011 zl 0 0 0 

o z2 o o (28) 
O0 0 0 z3 0 

0 1 0 z2 
0 0 1 0 z3 J 

and !(k) = [x(k),,×l_ ,(~Sd~dz ,;×1 ]T ,~ = [r~x~ _09 ×~ iT, 
applying similarity transformation, the Jordan canon- 
ical form of Eq. (27) and the corresponding optimal 
and sub-optimal control profiles can be found using the 
same procedure outlined above. 

Simulat ion and Numerica l  Examples  

A systematic procedure to obtain the control profile for 
a system undergoing a rest-to-rest maneuver in discrete 
time domain is presented in this section, the results are 
then compared with those of the corresponding contin- 
uous system. The solution for the control parameters 
is obtained for a plant with a repeated poles using var- 
ious sampling periods. Both sub-optimal and optima! 
solutions are presented. The effect of the uncertainty 
in the system's parameters is addressed by introducing 
the sensitivity equations and the optimal control pro- 
file for this case is derived. The following general pro- 
cedure is adapted throughout the this paper : 1. Check 
the rank of the system controllability matrix. It must 
be fully controllable system, 2. Discretize the system 
using Eq. (4), 3. Find the Jordan canonical form of the 
discrete state equation as shown in Eq. (6) and the cor- 
responding generalized eigenvectors P associated with 
it, 4. Transform the system control influence matrix 13 
and the boundary conditions using Eq. (7), 5. Assume 
a control profile u(kT) = ¢_T(KT)h, which is a vector 
of linearly independent components and use Eq. (17) 
to solve for ~. 
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E x a m p l e  1: Consider the continuous time transfer 
function Y ( s ) / U ( s )  = 1/s2(s ~ + 1) s.t. : y(t])  = 1, 
and all other end conditions are zero at ti = -4~r 
and t.f = 0. This is an undamped system with one 
rigid body mode and one flexible mode and natural 
frequency of 1 rad/sec. Using Eq. (6) for a sampling 
period of 0.1 sec, the equivalent Jordan Canonical form 
of the system 

J = 

.9950+.0998~ 0 0 0 
0 . 9 9 5 0 -  .0998z 0 0 
0 0 1 1 
0 0 0 1 

(29) 

and the new control influence matr ix  and end con- 
ditions are respectively: F = [.099 + .005~ . 0 9 9 -  
.005~ .050 .100] r , x(0) = [ 0  0 0 0 ]T , x (N)  = 
[0 0 10 0] T. Assuming the control profile has 
a polynomial form given by u(kT)  = _¢T(KT)~, 

where c T ( k T ) = [ 1  ( - k T ) ( - k T )  ~ ( - k T )  3 ]. 
Solving for the control profile parameters 
using Eqs. (15), (16) and (17), we have 

= -[0.0188 0.0501 .0114 0.0006] ,and the 
associated control profile is 

u(k) = -0.019 + 0.050(k) - 0.011(k): + 0.0006(k) 3 (30) 

To find the optimal control profile, the control profile 
is assumed to be a function of the systems eigenvalues. 
Because we have a repeated poles, the equivalent trans- 
formation must he done by introducing the generalized 
eigenvectors as shown in Eq. (23): and the correspond- 
ing control profile is 

[ z~ N-~-~ ( g -  1 - k)z~ N-~-~ 

z N_,_ ~ Z~V_,_~ ] [ )~, ]T (31) 

where z~ is the repeated pole . For this system, the 
vector of the optimal control profile parameters ~ can 
be evaluated by Eq. (17) as 

A_ = 10 - ~  [ - 4 . 4  .07 .02 + .7, .02 - .7, ]T (32 )  

For this sampling period the control profile is 

u ( k ) = ~ 0  × z [ + ~ l P × Z [  - ' + ~ × z ~ + ~ 3 × z ~  (33) 

where p = N - 1 - k and N is the number of sampling 
periods. The system response for the control input 
given by Eq. 30 is shown in Fig. (1). To compare the 
discrete system results with the continuous system re- 
sponse, the simulations for the system given in [4] are 
also presented in the same figure. Plots of the optimal 
control profile and the system response are shown in 
Figs. (1) and (2). 

E x a m p l e  2: To examine the robustness of the system 
response to the parameter  uncertainty in the flexible 
mode poles z~ and z3, the same system as considered 
previously will be discussed here, this time with the 
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F i g u r e  1: open-loop control of example 2 using polyno- 
mial input, T = 0.1 sec. 
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F i g u r e  2: minimum power control and system response 
of example 2 , T = 0.1 sec. 

inclusion of sensitivity equations. As in the previous 
example, a sampling period of 0.1 sec is used. Use 
Eq. (27) and similarity transformation to examine the 
influence of parameter  uncertainty of the flexible mode 
poles z2 and z3. The resulting Jordan canonical for this 
system has 3 poles each of multiplicity 2. Following the 
same procedure of the previous example, the optimal 
control profile is assumed to be 

u(k) = ~0 × zf + Alp × z[ -1 + ~2 × z~ + ~3p × z~ -1 

+ ~4 × z~ + ~ p  × z~ -1 (34) 

where, p = N - 1 - k and zi, )q are respectively the 
elements of 

¢(k) : [ z~ -~-~ (N - 1 - k)z~ -~-~ 

z~  -~ -~  (N  - 1 - k)z~ -2 -~  

~ - 1 - ~  (N - 1 - k ) z ~ - ~ - ~ ]  ~ (35) 

= [ -4 .57  e -2 7.31 e -4 

-8 .56  e -5 + 1.14 e-hz 

-8 .56  e -~ - 1.14 e-5z] T 

5.61 e -3 + 6.70 e-3t 
5.61 e -3 - 6.70 e-3t  

(36) 
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Plots of the optimal control profiles with and with- 
out considering the sensitivity equations are shown in 
Fig. (3) for a sampling period T = 0.1 sac and natu- 
ral frequency of 1 rad/sec. In Figs. (4), a system with 
natural frequencies :E5% of the original is subjected to 
the same optimal control input . It shows that the sys- 
tem performance is robust to the model inaccuracies 
and changes. The system response at the final state 
for each frequency is zoomed up on the right subplots. 
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Figure  3: minimum power control profiles of example 2 
with sensitivity, sampling period T = 0.1 see. 
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Figure  4: system response of example 2 with variation 
of natural frequency :t=O.05rad/sec. 

Conclus ion 

The focus of this paper was on solving the point to 
point control problem in discrete time domain and com- 
pare it with the results obtained by (Miu & Bhat [5]) 
and other researchers for continuous time systems. 
They used a finite Laplace transform technique for solv- 
ing the benchmark problem with spring-mass system in 
continuous time. The same example was used in this 

study in order to compare the control results in discrete 
time domain. The original continuous system were dis- 
cretized and decoupled by using the similarity trans- 
formation which change the difference equations into a 
set of algebraic equations that can be easily solved. 

The finite time Laplace transform used in continuous 
time system by (Miu & nhat [5]) was replaced by a 
method which can be called a finite Z transform. For 
this class of problems, the results obtained were com- 
patible with the continuous time counterparts. As the 
sampling period was decreased, the behavior of the sys- 
tem approaches that of the continuous time system. 
The shape of control profile depends on the position 
of the poles, which in turn depends on the sampling 
period used. 

The sensitivity analysis shown in example 2, illustrates 
that the added states based on the parameters of the 
system can significantly reduce the influence of uncer- 
tainty of identification of the parameters. The pro- 
posed control system exhibits the desired performance 
despite the presence of plant uncertainty. 
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