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ABSTRACT
Decentralized systems constitute a special class of design

under distributed environments. They are characterized as large
and complex systems divided into several smaller entities that
have autonomy in local optimization and decision-making. The
mechanisms behind this network of decentralized design deci-
sions create difficult management and coordination issues. Stan-
dard techniques to modeling and solving decentralized design
problems typically fail to understand the underlying dynamics
of the decentralized processes and therefore result in suboptimal
solutions. This paper aims to model and understand the mech-
anisms and dynamics behind a decentralized set of decisions
within a complex design process. This paper builds on already
existing results of convergence in decentralized design for simple
problems to extend them to any kind of quadratic decentralized
system. This involves two major steps: developing the conver-
gence conditions for the distributed optimization problem, and
finding the equilibrium points of the design space. Illustrations
of the results are given in the form of hypothetical decentralized
examples.

Keywords: Decentralized Design, Process Convergence,
Decomposition, Game Theory, Nash Equilibrium, Linear Sys-
tem Theory.

INTRODUCTION
The focus of this paper is a theoretical study of the design

of complex engineering systems, or those systems that necessi-

tate the decomposition of the system into smaller subsystems in
order to reduce the complexity of the design problems. Most of
these systems are very large and multidisciplinary in nature, and
therefore have a great number of subsystems and components.
This creates issues in understanding the interactions between all
these subsystems, in order to create more efficient design pro-
cesses. In this paper, we focus on the dynamics of distributed
design processes and attempt to understand the fundamental me-
chanics behind these processes in order to facilitate the decision
process between networks of decision makers.

The novelty of this paper stands in the fact that it extends the
results published in [1]. The latter paper had presented prelim-
inary results for convergence in decentralized design problems.
It lays out the first steps towards the study of stability for a cer-
tain class of design problems with quadratic objective functions:
problems involving two designers or design teams, each control-
ling only one design variable. This paper goes further by giving
convergence conditions for any kind of quadratic decentralized
optimization problem. In this first section, we describe the main
properties of complex distributed systems, which are the focus of
this paper.

The multidisciplinary nature of these systems make it im-
possible for one designer, or even a single design team, to con-
sider the entire system as a single design problem. Typically, in
complex systems, breaking it up into smaller units or subsystems
will make the system more manageable [2, 3].

The decentralization of decisions is unavoidable in a large
organization where having only one centralized decision maker
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is usually not applicable [4]. A more effective way is to dele-
gate decision responsibilities to the appropriate person, team or
supplier. In fact, decentralization is recommended as a way to
speed up product development processes and decrease the com-
putational time and the complexity of the problem [5].

While the decomposition of complex problems certainly cre-
ates a series of smaller, less complex problems, it also creates
several challenging issues associated with the coordination of
these less complex problems. The origin of these problems is the
fact that the less complex subproblems are usually coupled and
dependent upon information from other subproblems. The ideal
case would be when a system could be broken up into subsys-
tems without interdependence. Unfortunately, there are usually
design variables and parameters that have an influence on several
subproblems. A formal definition of coupled subsystems can be
found in [6].

Previous work has been done on the decomposition of the
system into smaller ones; using Design Structure Matrices [7], a
hierarchical approach [8], or by effectively propagating the desir-
able top level design specifications to appropriate subsystems [9],
and their efficiency has also been compared [10].

Also previous work has concentrated on solving those de-
sign problems with interacting subsystems using Game Theory.
The main goal is to try to improve the quality of the final solution
in a multiobjective, distributed design optimization problem [11].
Previous work in Game Theory includes work to model the in-
teractions between the designers if several design variables are
shared among designers [12]. In [13], Game Theory is formally
presented as a method to help designers make strategic decisions
in a scientific way. In [14], distributed collaborative design is
viewed as a non-cooperative game, and maintenance considera-
tions are introduced into a design problem using concepts from
Game Theory. In [15], the manufacturability of multi-agent pro-
cess planning systems is studied using Game Theory concepts.
In [16], non-cooperative protocols are studied and the application
of Stackelberg leader/follower solutions is shown. Also in [17],
a Game Theory approach is used to address and describe a multi-
functional team approach for concurrent parametric design. This
set of previous work has established a solid foundation for the
application of game theory in design, but has not directly studied
the mechanisms of convergence in a generic decentralized design
problem.

This paper does not propose any other decomposition
method, nor another Game-Theoretic approach to the design pro-
cess. However, it tries to formally describe the dynamics and in-
teractions involved in such design scenarios. We believe that, in
order to be able to design better, those dynamics have to be well
understood. They will be a strong basis for further research in
this area. As Tufte puts it,

An essential analytic task in making decisions based on evi-
dence is to understand how things work - mechanism, trade-offs,
process and dynamics, cause and effect. That is, intervention-

thinking and policy-thinking demand causality-thinking [18].
Therefore, explaining and understanding the dynamics in-

volved will help us make better decisions in design, and it is the
goal of this paper. The next section presents the background for
this work, in terms of problem formulation for decentralized de-
cision processes.

DESIGN SCENARIOS
In this section, the main game theory scenarios used to solve

large multiobjective design problems are reviewed and discussed.
We assume that the design problem has already been subdivided
into smaller subsystems, either naturally because several differ-
ent companies interact on the design of the same product, or ei-
ther because the system has been subdivided into smaller sub-
systems using one of the techniques described in the previous
section. A good description of the different scenarios in design
can be found in [16] and [19].

As mentioned in the previous section, Game Theory is usu-
ally used as a way to study those design scenarios. Table 1
presents the Game-Theoretic formulation for an optimization de-
sign problem with two designers (also called players). In this
table, x1 represents the vector of design variables controlled by
designer 1, while designer 2 controls design variable vector x2.
We denote x1c and x2c the nonlocal design variables, variables
that appear in a model but are controlled by the other player. In
some decomposed problems, one variable may be local to many
subsystems. This kind of problem is not investigated in this pa-
per, but is part of the current work of our research.

A complete description of all the protocols can be found
in [20], but we present here only the three main types.

Cooperative Protocol
In this protocol, both players have knowledge of the other
player’s information and they work together to find a Pareto so-
lution. A pair (x1P, x2P) is Pareto optimal [21] if no other pair
(x1, x2) exists such that

Fi(x1,x2) ≤ Fi(x1p,x2p) i = 1,2

& Fj(x1,x2) < Fj(x1p,x2p) for at least one j = 1,2 (1)

Systems thinking is the key to full cooperation in modern
organizations where a shared vision is common and subscribed
to by all members of an organization [22]. However, shared
vision does not suggest that the designers will necessarily fully
cooperate. Mathematical and model cooperation are required to
assume full cooperation and that the final design will be Pareto
optimal. Unfortunately, this is rarely the case in distributed en-
vironments, as there are several obstacles to this full cooperation.

2 Copyright c© 2004 by ASME



Player 1’s Model: Player 2’s Model

Minimize Minimize

F1(x1,x2c) = {F1
1 ,F2

1 , ...,F p
1 } F2(x2,x1c) = {F1

2 ,F2
2 , ...,Fq

2 }
subject to subject to

g1
j(x1,x2c) ≤ 0 j = 1..m1 g2

j(x2,x1c) ≤ 0 j = 1..m2

h1
k(x1,x2c) = 0 k = 1..l1 h2

k(x2,x1c) = 0 k = 1..l2

x1L ≤ x1 ≤ x1U x2L ≤ x2 ≤ x2U

Table 1. MULTI-PLAYER OPTIMIZATION PROBLEM FORMULATION

Noncooperative Protocol
This protocol occurs when full coalition among players is not
possible due to organizational, information, or process barriers.
Players must make decisions by assuming the choices of the
other decision makers. In an iterative approach, the final solu-
tion would be a Nash equilibrium. A strategy pair (x1N , x2N) is a
Nash solution if

F1(x1N ,x2N) = min
x1

F1(x1,x2N)

and F2(x1N ,x2N) = min
x2

F2(x1N ,x2) (2)

In other words, A point is said to be a Nash Equilibrium or
a Nash Solution if no designer can improve unilaterally his/her
objective function [23]. This solution has the property of being
individually stable, but is not necessarily collectively optimal,
meaning that, at this point, each designer will perceive the design
point to be optimal [24], whereas the solution is not necessarily
Pareto optimal. This is because any unilateral decision to change
a design variable value by either designer can not, by definition,
result in a better objective function value for the designer who
makes the change. The Nash Equilibrium also has the property
of being the fixed point of two subsets of the feasible space:

(x1N ,x2N) ∈ X1N(x2N)×X2N(x1N)

where X1N(x2) = {x1N |F1(x1N ,x2) = min
x1

F1(x1,x2)}
X2N(x1) = {x2N |F2(x1,x2N) = min

x2
F2(x1,x2)}

are called the Rational Reaction Sets of the two players. The
Rational Reaction Set (RRS) of a player is a function that
embodies his reactions to decisions made by other players.

Leader/Follower Protocol
When one player makes their decision first, they have a

leader/follower relationship [25]. This is a common occurrence
in a design process when one discipline plays a large role early
in the design, or in a design process that involves a sequential ex-
ecution of interrelated disciplinary processes. Player 1 is said to
be the leader is he/she declares his/her strategy first, by assuming
that Player 2 behaves rationally. Thus the model of Player 1 as a
leader is the following

Minimize F1(x1,x2)
subject to x2 ∈ X2N(x1) (3)

where X2N(x1) is the Rational Reaction Set of Player 2.
The next section explains how these scenarios apply to an

engineering design process, and explains the concepts of equilib-
riums and stability, and their implications on the design process.

EQUILIBRIUM AND STABILITY OF THE DESIGN SPACE
Once again, the focus of this paper is the design of engineer-

ing products in decentralized environments. In that case, even
within the same corporation, perfect information and coopera-
tion is difficult to achieve due to several factors, including the
complexity of the design, geographic separation or information
privacy. Therefore, we focus on noncooperative relationships be-
tween designers. In other words, we focus on decentralized de-
sign scenarios where full and efficient exchange of all informa-
tion among subsystems is not possible.

Even though most companies are trying to break down the
walls between the different disciplines, many decisions are taken
in a sequential manner. We are not suggesting here that designers
and companies should not strive for cooperation, but that nonco-
operation is an involuntary result of organizational or informa-
tional barriers among decision makers. In particular, competitive
suppliers designing parts for the same overall product are usually
not willing to share their analysis models, thus also resulting in
noncooperation.

The presence of non-local variables in the model of sub-
systems requires a certain level of communication between the
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design teams. In a sequential approach, for example, this infor-
mation flow goes back and forth between the design teams until
they reach an agreement on a particular design point. This point
is known as a Nash equilibrium, whose properties are shown in
Equation (2). The fact that the designers agree on a final design
is known as convergence of the design process [1]. The issue of
divergence in an engineering design process was noted as early
as in [11], and remains an issue to be solved [13]. What hap-
pens in those cases is that the sequential approach taken by the
designers is endless [26]. Exchanging design variables values
back and forth, the design teams cannot agree on a final design
because, at each iteration, at least one designer will not be satis-
fied by the point chosen. Figure 1 shows a simple decentralized
example involving two designers, each controlling one design
variable [1, 11]. Starting with the initial design (x = 0,y = 0.8),
it shows the iteration of the designers between their own Rational
Reaction Set, and it is obvious to see that it results in a divergent
process where designers will not agree on a final design.
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Figure 1. A DIVERGENT DECENTRALIZED DESIGN EXAMPLE

This issue of an unstable equilibrium is challenging. Indeed,
in the case of divergence, designers will never agree on a final de-
sign since one of the designers will always be able to change the
value of their design variables and improve their objective func-
tion. In this case, the process by which the two designers might
go about choosing the final design is then difficult to predict, but
in the absence of any additional information or intervention by a
third party, it seems obvious that choosing the final design will
be problematic. The first steps towards the study of stability have
been laid out for quadratic problems involving two designers,
each controlling only one design variable [1]. The focus of this
paper is to study those same properties for any kind of quadratic
optimization problem. This is the novelty of this paper and it

lies on two main steps: extending the results for any number of
designers, and also any number of design variables for each de-
signer. The next section presents our approach for solving the
issues of stability of the design space.

STABILITY ANALYSIS APPROACH
This section focuses on explaining the basic approach to

study the stability of a decentralized decision problem. As
mentioned earlier, we only study quadratic distributed problems
in this paper. By quadratic, we mean design problems with
quadratic objective functions and linear constraints. Indeed,
constraints can be included in the objective function to create
an unconstrained problem by the use of a penalty function [27]
and many algorithms use this approach, including many ge-
netic algorithms, simulated annealing, and other heuristic
method applications. Moreover, many optimization techniques
and algorithms use simplifications or approximations. Some
concepts have been developed, that allow the use of multiple
approximation models of different types simultaneously in one
optimization problem [28]. In addition, quadratic approxima-
tions are also used in optimization often since they are not
as trivial as linear approximations but are not too complex
either [29–32]. The most commonly used approximating func-
tions are polynomial response surface equations [33]. Therefore,
studying the behavior of quadratic distributed problems will
provide us with a good insight on the dynamics involved in a
wide range of design problems. Besides, most papers study
the behavior of decentralized decision problems involving
two or three design teams, while most complex engineering
design problems require a decomposition in a larger number
of subsystems. This paper tackles this issue by presenting
methods that can be used for design problems with any number
of designers, each of them controlling any number of design
variables. The following presents the main steps of our approach.

1. Find the Rational Reaction Sets
The first step for analyzing the stability properties of a design
process is to find the equilibrium points of the design space. As
mentioned earlier, they lie at the intersection of m subsets of the
design space, the Rational Reaction Sets, where m is the number
of designers or design teams involved in the design process. We
denote ni the number of design variables controlled by designer i.
We also denote x the state vector or vector of all the design vari-
ables, grouping all the design variables of every designer, while
xi is the design vector associated to designer i. Therefore, the
length of x is defined as

N =
m

∑
i=1

ni (4)
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Finding the Rational Reaction Sets in those conditions is
done by setting to zero the first partial derivative of the pseudo-
objective function obtained by adding the penalty term (due to
the constraints) to the objective function of each designer. In-
deed, using a penalty term for the constraints makes the op-
timization problem unconstrained, making it easy to find the
global minimum of an objective function in terms of the other de-
signers’ design variables by simply setting the first partial deriva-
tives to zero. Practically, this is done by holding constant the de-
sign variables controlled by all the other designers and taking the
partial derivative with respect to the design variables he or she
is controlling (to study the influence of changing their values).
Therefore, the equation of the Rational Reaction Set of designer
i is shown in Equation (5) where Fi is the pseudo-objective func-
tion of designer i.

RRSi
∂Fi

∂xi
= 0 (5)

Finding the Rational Reaction Set for every designer will
therefore provide us with m sets of equations representing the
rational behavior of every designer. Each set is a vector of ni

scalar equations. They give the values of the design variables
of a designer at an iteration, as a function of the values of the
design variables of the other designers at the previous iteration.
They can also be rewritten as N scalar equations, one for each
design variable.

2. Find the equilibrium points
The equilibrium points lie at the intersection of the Rational
Reaction Sets of every designer. This can be calculated using the
set of N equations defined by Equation (5). Since we are con-
sidering quadratic problem in this paper, these N equations will
be linear, because they are obtained by taking the first derivative
of the quadratic pseudo-objective function. Therefore, to find
the equilibrium points of the design space, we need to solve
a system of N linear equations with N unknowns (the design
variables). This system has either no solution (meaning that
there is no Nash equilibrium), an infinite number of solutions (a
line of Nash equilibriums for example), or a unique solution. An
infinite number of Nash solutions is unlikely, because it would
require every designer to have the same RRS in some region of
the design space. Therefore a quadratic distributed optimization
problem will primarily have either one Nash equilibrium or
none. This (potential) Nash equilibrium point is the only final
design attainable by distributed designers using a sequential
approach, but it does not necessarily mean that the designers will
converge to it. It depends on the stability of this equilibrium,
which is the point of study of this paper, and which is the next
logical step in our approach.

3. Study the stability of the equilibrium
Similarly to the notion of equilibriums in physics, equilibrium
points in the design space of an engineering design problem can
be either stable or unstable. A quadratic distributed decision
making problem is defined as a stable system if, independent
of the values of the initial conditions, it goes to a steady state
in a finite time [34]. In our quadratic environment, the steady
state point would naturally be the Nash equilibrium found at the
previous step.

Studying the stability of the equilibrium using concepts
adapted from Control Theory is the main point of this paper and
the details are explained in the next section. First, we present the
existing results in this area.

Existing results
This issue of convergence of quadratic decentralized decision
systems have already been studied for some given particular
cases. Equilibrium points and conditions for convergence have
been found for quadratic distributed problems with two designers
each controlling one design variable [1], and with two designers
each controlling any number of design variables [35].

We here present a summary of the results presented in [35],
as the notations are used later in the development of the paper.
The form of the objective functions for the two designers is a
general quadratic equation shown in Equation (6).

F1 = xT Ax+yT By+yT Cx+Dx+Ey+F

F2 = yT Qy+xT Rx+xT Sy+Ty+Ux+V
(6)

with designer 1 choosing x and designer 2 choosing y.
Since the designers are controlling more than one design

variable, the control variables x and y are design variable vec-
tors. Similarly, A, B ... are matrices whose sizes can be deter-
mined depending on the size of x and y.

From these formulations, the equations of the Rational Re-
action Sets of both designers can be found. Since it is a sequential
approach and since the values of the design variables at one it-
eration are function of the values of the other design variables at
the previous iteration, the Rational Reaction Sets are expressed
as time series. A matrix formulation of these time series is shown
in Equation (7).

xn+1 = −1
2

A−1CT yn − 1
2

A−1DT

yn+1 = −1
2

Q−1ST xn − 1
2

Q−1TT
(7)

Next, the Characteristic Matrix of this two-designer decen-
tralized decision problem with quadratic objective functions is
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defined in Equation (8) and is denoted K.

K =
1
4

A−1CT Q−1ST (8)

Using matrix series, the convergence of the design process
can then be studied. It is shown that the stability of the equilib-
rium point of the design process depends on the eigenvalues of
the characteristic matrix K. More particularly, the convergence
criterion for the design process can be formulated as shown in
Equation (9).

The design process converges iff rσ(K) < 1 (9)

where rσ(K) is the spectral radius of the matrix K and is defined
in Equation (10).

rσ(K) = max{|λ| : λ = eigenvalue of K} (10)

While this two-designer scenario can be solved using matrix
series, it cannot be applied to more complex design problems in-
volving a great number of designers, thus constitutes the limita-
tions of this method. A more general way of solving the stability
of equilibriums of quadratic distributed is presented in the next
section, using some of the notation introduced in this section.

DEVELOPMENT OF THE NEW METHOD
Linear System Theory is used in this section as a tool to solve

the particular of problems of interest in this paper: quadratic dis-
tributed optimization problems with m designers, designer i con-
trolling ni design variables for a total number of N design vari-
ables. x represents the vector grouping all the design variables of
every designer.

Linear System Theory analyses mathematical description of
physical systems. Similarly, in this paper, we describe mathe-
matically the interactions of designers acting in a distributed en-
vironment, our physical system. Linear System Theory concen-
trates on quantitative analysis (where the responses of systems
excited by certain inputs are studied), and on qualitative analy-
sis (which investigates the general properties of systems, such as
stability). Qualitative analysis is very important, because design
techniques may often evolve from this study [36]. This paper
proposes a qualitative analysis of distributed problems, and fur-
ther analogies with Linear System Theory are made later on.

The mathematical representation used in this paper is similar
to the one used in [1, 35]. The pseudo-objective function for
designer i is shown in Equation (11).

Fi = xT
i Ai xi +xT

−i Bi x−i +xT
−i Ci xi +Di xi +Ei x−i +Fi (11)

where xi denotes the vector of design variables controlled by de-
signer i, and x−i the vector of design variables not controlled by
designer i: x−i = x\xi = {x j ∈ x, x j /∈ xi}.

The matrix Ci embodies the coupling between the subsys-
tem i and all the other subsystems. In order to make more visible
the coupling of the subsystem i with every particular other sub-
system, the coupling term of Equation (11) is rewritten as shown
in Equation (12). The matrix Ci is essentially subdivided in a
series of smaller sub-matrices Ci j, each of them expressing the
coupling between subsystem i and j.

xT
−i Ci xi =

m

∑
j=1
j �=i

xT
j Ci j xi (12)

where Ci j are a set of smaller matrices embodying the cou-
pled terms of the design variables of designer j into designer
i’s model.

With this new formulation, the Rational Reaction Sets of ev-
ery designer can be found, by setting to zero the first derivative
of the pseudo-objective functions, as described in Equation (5).
We then find unique equations for the Rational Reaction Sets of
every designer. The equation of the Rational Reaction Set of
designer i is shown in Equation (13) It is valid only if Ai is in-
vertible; in some situations, it might not be invertible, and those
cases are discussed in [20].

xi = −1
2

A−1
i

m

∑
j=1
j �=i

CT
i j x j − 1

2
A−1

i DT
i (13)

A set of m different equations can be written similar to Equa-
tion (13), representing the Rational Reaction Set of every de-
signer. In order to be able to use tools from Linear System The-
ory, we have to make the analogy between this set of equations
and the main form of discrete update equation in Linear System
Theory, called the state-space equation, and shown in Equation
(14).

x(k +1) = Φx(k)+Γ u(k) (14)

where x is the state vector (vector of variables that we are study-
ing) and u the input vector. In this paper, since we are not in-
fluencing the design process in any way and just studying its
dynamics, we set the input vector equal to the unity vector (cor-
responding to no special outside influence). The matrix Φ, the
state matrix represents the dynamics of the system, how it up-
dates from one iteration to the next. The matrix Γ, the input
matrix embodies the influence of outside intervention, or, in our
case, of initial conditions.
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First, we need to write Equation (13) as a discrete-time up-
date equation; this represents the sequential approach to the de-
sign process and is shown in Equation (15).

xi(k +1) = −1
2

A−1
i

m

∑
j=1
j �=i

CT
i j x j(k) − 1

2
A−1

i DT
i (15)

We can now identify the set of m equations similar to Equa-
tion (15) with Equation (14). To do so, the coefficient of x j(k)
with the summation is identified with the matrix Φ, while the
constant term is identified with Γ. Equations (16) and (17) show
the expressions for the matrices Φ and Γ. Φ can be written as the
multiplication of two block matrices, block i being of size ni.

Φ = −1
2




A−1
1

A−1
2 0

0 . . .
A−1

m


 ·




0 CT
12 · · · CT

1m

CT
21 0

...
...

. . .
...

CT
m1 · · · · · · 0




= −1
2

diag
(
A−1

i

)∗Λ (16)

where Λ =

{
λi j = CT

ji

λii = 0

Γ = −1
2




A−1
1 DT

1
...

A−1
m DT

m


 (17)

The formulations of these matrices look fairly complicated,
but, in fact, they are straight forward, as they are only functions
of the matrices involved in the objective functions of the design-
ers. From Equations (16) and (17), Φ is a square matrix com-
posed of blocks and its size is the sum of the size of every block
which are of size ni, which is N by Equation (4). Thus, Φ is of
size N ×N; similarly, Γ is of size N ×1.

Therefore, we now have the formulation for the two matrices
Φ and Γ and a new update equation for the state vector x shown
in Equation (18).

x(k +1) = Φx(k)+Γ (18)

Once Equation (18) has been derived, it is possible to find
the steady-state and the stability of the problem. The steady-
state solution corresponds to the equilibrium point of the physical
system studied, the design space in our case. If it exists, Linear
System Theory ensures its uniqueness, given by Equation (19).

x∗ = [IN −Φ]−1 Γ (19)

where IN is the identity matrix of size N.
However, it is even more important to study the stability of

this equilibrium. According to Linear System Theory, the defini-
tion of asymptotic stability is used [36]:

Theorem: The equation x(k +1) = Ax(k) is asymptotically
stable if and only if all eigenvalues of A have magnitudes less
than 1.

Therefore, the stability of the equilibrium point of the design
space can be expressed as a function of the spectral radius of the
state matrix Φ (which is defined in Equation (10)). The conver-
gence analysis of the design process can therefore be captured as
follows: the design process converges to the equilibrium point
found thanks to Equation (19) if and only if:

rσ(Φ) < 1 (20)

This result is very important, as it means that building the
state matrix Φ and calculating its spectral radius gives insight-
ful information on the convergence of the design process to the
equilibrium point, which can also be calculated using Equation
(19).

The next section investigates an hypothetical simple decen-
tralized design case study to show how the methods presented in
this section are applied to a decentralized design problem.

EXAMPLE PROBLEM
The case study presented here investigates a design example

involving five designers with quadratic objective functions, each
of them controlling a different number of design variables. This
case study has been hypothetically created using Matlab to model
a quadratic distributed optimization problem with relatively high
interactions between the models of the designers. Tables 2-6
present the model of each designer: the design variables con-
trolled, as well as the objective function to be minimized (which
is quadratic, and can be a utility function or a response surface
approximation of the actual objective function of the designer
including the constraints of the subsystem).

Several interesting properties can be found by studying these
models, including the coupling between the systems. For exam-
ple, subsystem 5 is coupled with subsystems 2 and 4 (through
the terms with x3, x4, x5, x8, and x10), but completely indepen-
dent of the models of designers 1 and 3. Another property worth
mentioning is that every subsystem is dependent on subsystem
2, while subsystem 2 itself is only weakly coupled to the other
subsystems. This illustrates a design process where one of the
disciplines has a strong influence on the design process since it
is influencing every other subsystem.

Before going further and numerically studying this design
problem, it is necessary to describe some properties related to
the mechanics of the design process. An important instant is that
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DESIGNER 1

Design variables: x1 and x2

F1 = 9.41x2
1 +1.80x2

2 +6.06x1 +1.62x2 +8.16x1x3 +2.82x2x4

+6.20x2x5 +9.82x1x6 +4.26x2x7 +2.37x1x8 +1.25x1x9

+2.23x2x10 +3.47x1x11 +0.23x2x12

Table 2. DESIGNER 1 MODEL

DESIGNER 2

Design variables: x3, x4 and x5

F2 = 6.55x2
3 +7.57x2

4 +5.68x2
5 +4.29x3 +8.84x4 +5.25x1x5

+2.13x5x8 +5.34x5x9 +3.48x5x13 +2.34x3x14 +4.57x4x15

+4.12x5x16

Table 3. DESIGNER 2 MODEL

DESIGNER 3

Design variables: x6 and x7

F3 = 7.81x2
6 +5.49x2

7 +5.43x6 +7.51x7 +7.87x1x6 +4.57x2x7

+4.52x3x6 +1.23x4x6 +2.47x4x7 +2.12x5x7 +3.26x6x10

Table 4. DESIGNER 3 MODEL

DESIGNER 4

Design variables: x8, x9, x10, x11 and x12

F4 = 9.88x2
8 +9.86x2

9 +6.49x2
10 +9.48x2

11 +6.4x2
12 +5.43x8

+1.23x9 +7.84x10 +0.32x11 +5.43x12 +1.30x3x9

+1.94x3x11 +5.75x3x12 +4.32x4x8 +0.12x4x10 +4.56x4x11

+3.26x4x12 +4.89x5x8 +2.3x5x9 +1.51x5x10 +3.20x5x11

Table 5. DESIGNER 4 MODEL

DESIGNER 5
Design variables: x13, x14, x15 and x16

F5 = 9.52x2
13 +7.75x2

14 +9.93x2
15 +8.12x2

16 +2.79x13 +0.5x14

+9.37x15 +6.53x16 +5.43x3x13 +6.41x3x14 +0.12x3x16

+6.27x4x13 +5.43x4x15 +1.23x5x14 +6.77x5x16

+1.38x8x13 +4.31x10x14 +2.64x10x15 +3.41x10x16

Table 6. DESIGNER 5 MODEL

Subsystem 1

Subsystem i

Subsystem m

Subsystem 1

Subsystem i

Subsystem m

Iteration n Iteration n+1

Parallel-sequential approach 

Subsystem 1

Individual-sequential approach 

Subsystem 2 Subsystem m

Subsystem 1

Subsystem 2

Subsystem 3

Subsystem 4

Subsystem 5

Hybrid-sequential approach 

Figure 2. SEQUENTIAL APPROACHES TO DESIGN

the conditions proven in the previous sections are applicable no
matter what design approach is taken. Whether it is parallel-
sequential (at each time step, every subsystem solves its own
model using the design variables’ values obtained at the previ-
ous time step), or individual-sequential (one discipline goes after
another, in a specified order), the same conditions apply to the
stability of the design process. This is important because, in a
design problem, the approach used can be of different sequential
nature, and can also be a combination of the different types de-
scribed above. The conditions developed in this paper apply in
all these cases, parallel, sequential and hybrid, which are illus-
trated in Figure 2. Indeed, for every approach, the designers are
only exchanging the design variables values between each itera-
tion, and this is how the problem was modeled in our formula-
tion. Even though the path taken along the design process might
be different from one approach to another, the designers will still
go back and forth between their RRS. Therefore the final solu-
tion will be the same for every approach and the convergence
criterion developed also applies to each approach.

In order to study the stability of this design process, we first
need to put the equations involved in the models of the designers
in the specific form described in Equation (18). Specifically, the
matrices Φ and Γ need to be written out. They are displayed
in the Appendix of this paper for sake of completeness. These
matrices are of size 16× 16 and 16× 1 respectively, since the
total number of design variables in this example is sixteen.

The first step is to calculate the equilibrium point of this de-
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sign problem. This is given by calculating Equation (19). Equa-
tion (21) shows the results for each of the designers.

x∗1 = [−0.1499 1.3360]T

x∗2 = [−0.3776 −0.5084 0.2285]T

x∗3 = [0.0081 −1.1709]T (21)

x∗4 = [−0.2204 −0.0643 −0.6263 0.1055 −0.1251]T

x∗5 = [0.1447 0.2796 −0.2494 −0.3633]T

This design point x∗ represents the potential final point where
designers might end up if they use any sequential approach to
design. The stability now depends on the value of the eigenval-
ues of Φ. Equation (22) shows the sixteen eigenvalues of matrix
Φ (there are less than sixteen because the eigenvalue ′0′ has a
multiplicity greater than 1). The spectral radius of the state ma-
trix Φ can then be calculated using Equation (10) and compared
to the convergence criterion in Equation (20).

Eig(Φ) = {±0.7023, −0.6829, 0.48±0.1i,−0.29±0.04i,

−0.3, 0.33, 0.2763,−0.0378, 0.0279, 0} (22)

rσ(Φ) = 0.7023 (23)

Since the spectral radius of the state matrix is less than 1, it can be
concluded that using any sequential design approach, and start-
ing with any design point, the distributed design problem studied
will converge to the equilibrium point given in Equation (21).
This is the Nash equilibrium for this problem, and it is both indi-
vidually and collectively stable, meaning that it will be the final
design point that the designers will agree on at the end of the
design process.

These results are verified by solving the same problem us-
ing a parallel-sequential approach, similar to the first approach
shown in Figure 2. Starting the optimization with a great number
of random initial conditions (different initial vectors of design
variables), the distributed design process converged in all cases,
thus verifying the stability found using the convergence criterion
developed in this paper. The computer simulation converged if,
at one iteration, the design variables values were changing by less
than 0.1. With that accuracy, the simulations took, on average
(depending on the initial conditions) 10 iterations to converge,
meaning that each subsystem would have to solve its optimiza-
tion problem ten times. Equation (24) shows the final solution

for a particular run of the simulation.

x∗1 = [−0.1499 1.3292]T

x∗2 = [−0.3776 −0.5084 0.2285]T

x∗3 = [0.0082 −1.1681]T (24)

x∗4 = [−0.2204 −0.0643 −0.6263 0.1055 −0.1251]T

x∗5 = [0.1447 0.2796 −0.2494 −0.3634]T

Comparing it with Equation (21), it is clear that the results
found with our technique match the results found using a sequen-
tial approach, as expected. We can see that some of the design
variables fully converged, while some are still not converged,
but are in the neighborhood of their final solution. This point
is therefore the Nash solution, as presented earlier, and verifies
the accuracy of the approach presented in this paper.

CONCLUSION
This paper presents a full qualitative analysis of the stabil-

ity of the design process for a distributed design problem. Us-
ing concepts from Linear System Theory, conditions for stability
as well as values as of the final equilibrium are found for any
quadratic distributed design problem.

This paper is a strong basis for further research in this area.
Future work involves finding the same kind of conditions for
highly nonlinear problems, and the results are essential since they
will be used as a base and reference for future research and pub-
lication. It is also worth noticing the effort for trying to bridge
the gaps between different disciplines, namely, in this paper, en-
gineering design and system theory.

We believe that this research will first need to extend the
results of this qualitative analysis to more complex problems.
Then, as mentioned earlier in the paper, we want to build new de-
sign techniques based on these results to help designers be more
efficient and get closer to Pareto optimal final solutions even in
distributed design environments.
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