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Abstract 

 
A visualization methodology is presented in which a Pareto Frontier can be visualized in 

an intuitive and straightforward manner for an n-dimensional performance space.  Based on 
this visualization, it is possible to quickly identify ‘good’ regions of the performance and 
optimal design spaces for a multi-objective optimization application, regardless of space 
complexity. Visualizing Pareto solutions for more than three objectives has long been a 
significant challenge to the multi-objective optimization community.  The Hyper-space 
Diagonal Counting (HSDC) method described here enables the lossless visualization to be 
implemented.  The proposed method requires no dimension fixing.  In this paper, we 
demonstrate the usefulness of visualizing n-f space (i.e. for more than three objective 
functions in a multiobjective optimization problem). The visualization is shown to aid in the 
final decision of what potential optimal design point should be chosen amongst all possible 
Pareto solutions.   

 
I.  Introduction 

 
lmost all real world engineering design problems are characterized by the presence of several conflicting and/or 
cooperating objectives, as opposed to having a single objective. The term Multi-objective Optimization 

Problems (MOP) is used to broadly classify problems with more than one objective.  
       A general multi-objective optimization problem can be 
expressed by the equations to the right where, k is the number of 
objective functions, n is the number of design variables, l is the 
number of constraints, and nRS ∈ is the solution or design 
space. 
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Typically, as a solution strategy, multi-objective problems are aggregated to form a single objective function 
leading to a single solution for the aggregated function. The solution found using this approach is strongly 
dependent on the way the objectives have been aggregated. A rather practical approach to deal with multi-objective 
problems is to find a set of solutions, (called a Pareto set shown as the Pareto optimal frontier in Figure 1), instead 
of finding a single aggregated objective-dependent global optimum. Vilfredo Pareto first introduced the concept of 
Pareto optima1 in the 19th century. A solution is said to be Pareto-optimal if it is not dominated by any other feasible 
solution (i.e. there exists no other solution that is better for 
at least one objective function value, and equal or superior 
with respect to the other objective functions values).  Thus, 
all of the Pareto solutions are equally important and all are 
the global optimal solutions. 
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The concept of Pareto optimality has been widely used in industry to aid designers in their decision-making 
processes. The decision-maker articulates his preference pertaining to the different objectives once he has 
knowledge of the Pareto frontier.  The approach of visualizing the Pareto frontier has been widely used in decision-
making for two and three objective problems.  The Pareto frontier for two or three objective functions can be readily 
visualized using traditional 2-D and 3-D graphical means.   

However, when the problem size is large (i.e. for more than three objective problems), there is no easy or 
intuitive method to visually represent the Pareto frontier. In this paper, we present a new approach that enables 
intuitive visualization of the Pareto frontier for n-objective problems. The method uses a new technique of ‘lossless’ 
dimension blending, termed the Hyper-Space Diagonal Counting (HSDC) method for multidimensional 
visualization. 

 
II.  Background 

 
First, a brief discussion of multidimensional visualization methods is presented, followed by a discussion of the 

types of these methods presently used in visualizing solutions for multi-objective optimization. These discussions 
will provide an appropriate groundwork for understanding the Hyper-Space Diagonal Counting (HSDC) method 
presented here, together with its application in visualization of the n-f Pareto Frontier. 

 
A.  Multidimensional Visualization Techniques  

 
Visualization is an incredibly powerful mechanism for providing insight into complex phenomena. By 

incorporating the ability to interact in real-time with resulting displays, a scientist can achieve a rapid and 
meaningful exploration of a problem space or dataset. The goal of Multidimensional Multivariate Visualization 
(MDMV) is to meaningfully translate large amounts of multidimensional data into intuitive visual representations3. 
Numerous methods and applications have been developed to achieve this goal, subject to hardware and software 
limitations of 2-D or 3-D visualization space. All multidimensional visualization techniques attempt to transform a 
multidimensional problem or dataset so that it can be mapped to a 2-D or 3-D visual space.  

A standard approach that is used in multidimensional visualization is to first process the multidimensional data 
in such a way so as to reduce the dimensionality, while still preserving the integrity of its meaning. This is generally 
a particularly important step for visualization, as the associated complexity of the problem or dataset will be 
significantly reduced. One of the most comprehensive resources for discussion of dimension reduction techniques 
can be found in Carreira-Perpinan2. Most multidimensional visualization techniques that depend on dimension 
reduction in some way result in a loss of meaning, a loss of the concept of a neighborhood, and an associated loss of 
an ability to understand the representation in an intuitive way.   

Categorizing MDMV techniques is difficult for a variety of reasons. Possible criteria for such a categorization 
include the goal of visualization, the type and/or dimensionality of the data, the use of color, the use of animation, 
and the dimensionality of the visualization technique, amongst many other possibilities. We will use the three broad 
categories defined in reference [3] to provide an overview of the best-known methods. These categories are 
summarized as follows.  
1. Techniques based on 2-variate displays as well as multiple views of 2-variate displays. This includes fitted 

curves, reference grids, and banking.  
2. Techniques based on multivariate displays. Here, color, symbols, and matrices of views are often used as a key 

to the representation. One of the best-known methods is the scatter plot matrix, where n dimensions are 
projected onto n*(n-1) scatter plots, in which each pair of dimensions has two scatterplots showing their 
relation3. HyperSlice4 and HyperBox5 can be considered extensions of scatterplot matrices, in which color and 
interactivity provide for greater insight into the problem. Another is Chernoff Faces6 and, more broadly, the use 
of glyphs7,8, to represent characteristics of relationships and the space in question. Hierarchical axis9-11, 
Dimension Stacking12, and World within Worlds13, 14 all use the concept of a hierarchical representation in some 
way for the dimensional relationships. Parallel Coordinates15-17 has become an extensively used approach in a 
variety of fields and applications, including for Multi-objective optimization. In this approach, a point in N-
dimensional space is equivalent to a polyline through N parallel coordinates. Stump and Simpson18 use glyphs 
and colors to represent multivariate data. These represent only a small number of the methods that have been 
proposed for n-dimensional visualization, but are probably the most widely recognized.  

3. Techniques using time as an animation parameter. In this class of methods, time is generally used as a fourth 
dimension and each set of data is applied to each step of a time series which is then represented as an animation 
sequence.  
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Each of the techniques developed under the three broad categories listed above have advantages and limitations. 
Some of them are somewhat difficult to understand, some of them are computationally expensive, and some are just 
awkward. A few of the more widely used techniques are shown in Figure2.  We will attempt to demonstrate the 
great potentials of visualization based on our HSDC method in this paper.  

This paper focuses on the application of HSDC method to multi-objective optimization, in order to demonstrate 
its usefulness in visualizing n-f space (i.e. for more than three objective functions in a multiobjective optimization 
problem).  In the next section, some of the leading approaches for visualizing solutions for MOPs are presented. 

 

 
Scatterplot Matrix3 
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Figure 2. Representative visualizations 
associated with key MDMV visualizations. 

B.  Multidimensional Visualization in Multiobjective 
Optimization 

 
Multi-Objective Optimization Problems (MOPs), in 

contrast to single objective problems, involve a set of 
objectives that might be cooperative, competitive or have 
no relationship. Typically, the case of competitive 
objectives is the most interesting, since the choice of an 
‘acceptable’ or ‘best’ solution depends on the preferences 
on, compromises between, and trade-offs of the objective 
functions. When the objectives in an MOP are conflicting, 
the set of optimal solutions is known as the Pareto set, 
wherein no one solution is superior to the others.  

The solution validation for multi-objective problems 
has continued to be an extremely difficult issue for all 
researchers.   So far, the most practical way to validate  

MOP solutions are to use visualization to verify the obtained results.  Also, visualization allows designers to 
interpret results and use design information in more meaningful ways. Since visualization is recognized as a process 
that transforms data into visible objects, decision-makers can easily view and analyze a rich set of information and 
then use this to help make trade-offs so as to reduce the time and cost of the design process18. Multidimensional data 
visualization is a promising research area for application to MOPs.  

Being able to visualize the Pareto frontier in a performance space with more than three objective functions has 
been a great challenge to the optimization community. Parallel coordinates15-17 has been one of the leading 
approaches used in industry to assist in ultimately choose leading design candidates to explore further. Multivariate 
data is displayed using a polyline that intersects equally spaced vertical axes. Each polyline represents one design 
possibility. The use of parallel coordinates to visualize the performance space still remains unwieldy for large 
numbers of functions. Cloud Visualization19 provides a means by which a designer can view all previously 
generated design information in both the design and the performance spaces simultaneously. However, since all 
spaces are displayed in separate windows that are linked, the functionality is compromised for large numbers of 
functions, since it becomes tedious to work with too many windows. Mattson and Messac20 use a Pareto filter to 
reduce the Pareto frontiers from various disparate design concepts into a single Pareto frontier termed the s-Pareto 
frontier.  Unfortunately, the use of approximations in the s-Pareto approach ultimately results in loss of dimension 
representation. 

All these visualization techniques, which are essentially used as methods of solution validation, become 
cumbersome for very large problems.  Hence, developing an appropriate multidimensional visualization capability 
to facilitate the decision-making process for large multi-objective optimization problems is the main focus of this 
work.  

 
III.  Development of a Framework for Intuitive Multidimensional Visualization (HSDC Method) 

 
In the previous sections, a background on multi-objective optimization, multidimensional visualization 

techniques, dimension reduction techniques, and the application of multidimensional visualization to MOP was 
presented to lay the groundwork for this research. Here, the Hyper-Space Diagonal Counting (HSDC) method is 
developed, which enables a lossless mapping of dimensions using a counting strategy derived from complexity 
theory.  Hence, complexity theory is briefly reviewed together with Cantor’s original counting method, which is 
critical for understanding the HSDC method developed in this work.  The HSDC method ultimately enables an 
intuitive and meaningful visualization capability for multidimensional multi-objective optimization problems.   
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The goal of complexity theory is to understand what makes some problems algorithmically difficult to solve. 
Research pertaining to counting complexity classes has been demonstrated to be very promising. Such research on 
counting complexity classes has provided important insights into the inherent complexity of many natural 
computational problems. These classes essentially consist of functions quantifying the time or space required to 
enumerate them. Why is this important to know here? Because the concept of counting complexity classes 
originated with the famous German mathematician, Georg Ferdinand Ludwig Philipp Cantor, who recognized that 
every point on a surface has a corresponding point on a line, and vice versa. The result of this observation is that 
there is a one to one correspondence of points on the interval [0, 1] and points in an n-dimensional space. It is this 
correspondence which provides the basis for the development of the Hyper-Space Diagonal Counting method. 

Cantor's discoveries in set theory rest upon a very simple idea – that even though you may not be able to count 
something, you can equate it with something else that has the same cardinality (i.e. the same number of elements). 
Cantor's insight was that even though an infinite set can’t be enumerated its cardinality can be determined or at least 
equated to that of another set.  Two infinite sets can be shown to have the same cardinality by finding a one-to-one 
mapping between the elements of each set. Cantor’s theorem for 
mapping points in a 2-dimensional space on a line can be written as 
in Eq. 2. The cardinality of |N| denotes ℵ0 (the meta-letter aleph-
zero or aleph-null), which is equal to the cardinality of the integers. 

2NN =                                                    (2) 

where, { }
{ }NofmembersofpairsorderedN

N
=

=
2

...,4,3,2,1  

The very famous proof is represented visually in Figure 3. Consider an array that includes all the ordered pairs 
of positive integers and then make a path through all the pairs in the spiral way shown. In this way, every single 
element of set N2 can be mapped to one (and only one) element of set N (i.e. the cardinality of set N is same as that 
of set N2). Hence, for every point on a 2-dimensional surface there is a corresponding point on a line, which is 
unique. This concept of counting, which represents a very small portion of Cantor’s contributions to the field of 
mathematics, is key to understanding the Hyper-Space Diagonal Counting (HSDC) Method we propose here.  The 
use of the HSDC enables us to achieve lossless dimension blending for multidimensional visualization.  

 
 Array of ordered pairs of  
      positive integers 

 
 

Path through all the pairs 
Figure 3. Graphic proof of Cantor’s theorem 

We have extended Cantor’s work on counting to enable 
mapping points in an n-dimensional space to a line. 
Incredibly, this has not been done, as others who use 
counting in Complexity Theory have had no need to move 
beyond two dimensions. This mapping can be described by:  

 
          nNNNNN ==== K432  = ℵ0                     (3) 

where,
{ }
{ }NofmemberstheallofnscombinatioorderednN

N
thn =

= ...,4,3,2,1  

 
       The proof for this is almost unnecessary as Cantor has already 
done it for N2 and what remains is a matter of making an array of nth 
ordered combinations of all the members of Nn and then creating a 
path through all the points to get a sequence. An extension of Figure 3 
to show a mapping for three-dimensional points is shown in Figure 
4.In order to understand how this counting will be generalized, we 
have defined the following terms that will be used throughout our 
method development section. The variable n is used to denote the 
number of dimensions, l is used to represent the level on which a 
particular point falls (i.e. which loop out from the origin), El is the 
number of elements (i.e. points) on a particular level, Ci is the 
counting index associated with element i (point i), and TEn

l are the 
total number of elements up to level l.  

 
 

Figure 4. Path for counting in 3-d space 
There are five equations which must be developed in order to be able to automate a counting in any 

multidimensional space.  We need to know the following: 
1) the total number of elements at a particular level;  
2) the total elements up to a particular level;  
3) the elements at a particular level in terms of the elements of the previous level; 
4) the total number of elements up to a level in terms of the elements in that level; and 
5) what counting indices will correspond to a particular level.  
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The first four equations and the fifth formula have been developed as is shown in Equations 4-8. 
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The final formula provides more of a challenge. It can be 
expressed in terms of an inequality as: 
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The fifth formula (Eq. 8) is an (n-1)th order polynomial inequality, which must be solved in constant time in 
order to automatically generate any combination of variables for any size multidimensional problem. Alternatively, 
an optimization routine or similar technique could be used in a preprocessing mode. This would not be as desirable 
an approach, although it would certainly work.  

What this counting and indexing approach enables us to do is to map each and every dimension in a ‘lossless’ 
way (i.e. no dimension fixing) to a 2-D or 3-D graphical display.  Because the counting is done in an outward 
spiraling manner, the concept of a neighborhood is preserved with the HSDC, as is the concept of going from small 
to large as one moves from left to right in the indexing.  The details of how the HSDC method is applied to MOP is 
presented in the next section. 

 
IV. HSDC Applied to Visualization of Multidimensional Performance Space in 

Multiobjective Optimization 
 

We first apply the HSDC approach to a two function multi-objective optimization problem to demonstrate that 
the resulting visualization of the Pareto frontier is what we are used to seeing for 2-D performance space.  We will 
then extend the method to two different three objective problems and then a four objective problem. 
 
A.  Two Objective Test Problem 
 
Consider a test problem with two objectives, four design 
variables, and two inequality constraints, in which the 
objectives are competitive and to be minimized. The problem 
statement is shown in Eq. 9. A typical 2-D visualization of 
the Pareto frontier for this problem is a bi-objective plot as 
shown in Fig. 5a or the parallel coordinate plot seen in Fig. 
5b. Both these visualizations are incredibly useful, but they 
have their own limitations. For the visualization of Figure 5, 
we can plot the Pareto frontier for up to only three objectives 
(if we move to a 3-D representation). Using parallel 
coordinates, we can theoretically have as many objectives on 
parallel axes as needed. However, for large problems, we 
soon have so many of these plots that an intuitive 
interpretation becomes impossible. 
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As we established in the previous sections, the HSDC method can easily map n dimensions to a line, without 
loss of dimensional representation. In its application to multi-objective optimization, we can readily use the counting 
scheme described to map any number of objectives to a single line in order to generate the visual representation of 
the Pareto frontier for any number of objectives. The procedure developed to enable visualization of the Pareto 
frontier for multidimensional performance space is outlined next. The counting scheme is implemented together 
with a simple but very significant binning technique in order to enable this meaningful visualization. 

For demonstration purposes, consider the same bi-objective problem described previously.  The steps for 
visualizing the Pareto frontier using HSDC are outlined. 
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Step 1. Obtain Pareto points using any appropriate optimization routine. 
Step 2. Identify the minimum and maximum values for each of the objectives to establish a range. Divide these 

ranges into some finite number of compartments, resulting in small bins along each objective.(e.g. F1 range divided 
into five, resulting in five bins in which a point may fall).  

Step 3. The indices of the bins created can be plotted on a line and thus we can have F1 bin indices on one axis 
and F2 bin indices on the other axis (e.g. for five ranges associated with F1, there will be five bins and, hence, five 
indices – 1 through 5). For problems with more than two objective functions, multiple functions are represented on a 
single axis through the use of counting in the HSDC method.  

Step 4. Each Pareto point previously generated in Step 1 will fall under some combination of these bins that are 
plotted using their indices on the X and Y axes (e.g. if a Pareto point has an F1 that falls into the third range of F1 
and an F2 that falls into the fourth range of F2, this would correspond to indices (3,4) and would be placed in that 
particular bin). The points are represented as a unit cylinder along the vertical axis. Multiple solutions might fall at 
the same set of indices, resulting in a bin that contains multiple Pareto points. 

 

 
Figure 5a. Pareto frontier for the above problem 

using the f1, f2 performance space 

 
Figure 5b. Parallel coordinate plot of the 
performance space for the same problem 

 
Figure 6 shows the resulting 2-D representation of the Pareto frontier for the bi-objective problem using the 

HSDC method.  This provides a representation that is exactly what would be expected using traditional means of 
plotting (i.e. Figure 5a).  The only difference between the two approaches is that the HSDC representation is actually 
plotting per index, not per functional value.  Hence, due to this discretization, some small changes in the visual 
representation might occur.  What’s important to note, however, is that the axes are actually enumerating the indices.  
Hence, this is easily extensible to more than two objective functions.  For instance, in a four objective function MOP, 
we can index two objectives per axis.  For six objective functions, we would index three objective functions per axis.  
The resulting plot, however, will still look very similar to the traditional Pareto frontier shown below. 
      A slight variation of this approach yields an 
extremely powerful capability. Rather than 
running some number of optimizations in order 
to generate Pareto points, it is possible to sample 
points in the original design space, evaluate the 
objectives at these points, and then identify 
which of these are non-dominated. Then, the 
same procedure outlined in Steps 2 through 4 
can be performed. While any type of approach 
could be used to sample the design space, the 
HSDC method ensures capture of all dimensions 
existing in the original space. 

Figure 6. Pareto points (bins) for two objective performance 
space using HSDC method. 

For instance, consider a case for the same bi-objective optimization problem we’ve been discussing, where a 
discretization grid of 10 is used along all the dimensions (design variables X1 through X4). Objective function values 
are evaluated at all the grid points. All the feasible points are compared to enumerate the non-dominated points.  The 
blue points in Figures 7a and 7b represent the non-dominated points for the problem and the green points show all 
the feasible points. 

Figure 7a shows a more coarse discretization than does Figure 7b, with the non-dominated blue points falling in 
lower indices bins. This is what we would normally expect since the non-dominated points have low objective 
function value for at least one of the objectives. Figure 7b shows a more refined representation, with 50 bins along 
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each objective. We can readily see that non-dominated points form an approximate Pareto curve by falling towards 
the low objective valued bins. This representation is clearly analogous to the normal Pareto frontier representation 
from Figures 5a and 6.  The motivation for using this approximate approach would be for applications where 
obtaining a full set of Pareto optimum points is difficult or impractical.  We can see that the approximate Pareto 
frontier provides valuable information to the designer, suggesting where further refinement and investigation might 
be warranted. 
 

 
Figure 7a. F1 bins on X-axis, F2 bins on Y-axis and 

occurrence of feasible and non-dominated points on 
Z-axis (Grid of 20 for F1 & F2 bins) 

 
Figure 7b. F1 bins on X-axis, F2 bins on Y-axis and 

occurrence of feasible and non-dominated points on 
Z-axis (Grid of 50 for F1 & F2 bins) 

 
       Figure 7c shows the true Pareto points (in black) for 
the problem along side the non-dominated points (in 
blue) obtained using the grid.  Also, as we can see from 
the previous figures that the larger the number of 
divisions we have for our bins, the better the shape for 
the Pareto frontier. The division of the objectives for an 
optimum number of bins remains a research issue.  
Another issue pertains to the grouping of objectives for 
indexing.  This is discussed further in subsequent 
sections.  Next, the HSDC approach for MOP Pareto 
frontier visualization is applied to a multi-objective 
problem with three objective functions. 

  
Figure 7c. F1 on X-axis, F2 on Y-axis; Showing Pareto 

points & Non-dominated points 
 
B.  Three Objective Test Problem (3 constraints) 
 

This MOP has three objectives, three inequality 
constraints, side constraints, and two design variables.  
The problem statement is given in Eq. 10.  For this 
problem, true Pareto points were found, together with 
results of an HSDC-based evaluation to provide non-
dominated and feasible points (as explained in the last 
section).  Here, F1 and F2 are indexed on one axis while 
F3 is indexed on the second.  Figure 11 shows feasible 
(green) and non-dominated (blue) points generated 
through evaluation at index points in the discretized 
design space (using HSDC), as well as true Pareto points 
(black) obtained as a result of optimization runs. 
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Figure 11 shows that the HSDC-based indexed representation is quite intuitive, clearly showing the Pareto 
frontier.  Further, using the HSDC in the design space allows for the evaluation of objective functions with a 
subsequent identification of non-dominated points.  These points clearly approximate the behavior of the Pareto 
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frontier itself, without having to actually perform any formal optimization.  Hence, for the purposes of identifying 
‘good’ regions for further detailed exploration, this approximate Pareto frontier approach might be worthwhile. 

It should be noted that having an odd number of objectives necessitates a slightly different indexing strategy so 
that the resulting representation is still visually viable.  This is a minor point, which can be seen from the indices in 
the figures below.  Another point to recall is that each ‘point’ in Figure 8a is actually a bin, which might contain 
multiple points (as shown more clearly in Figure 8b).  The tremendous advantage of using the HSDC is that each 
point within a bin can be linked back to its original design space values.  Hence, a bin with multiple ‘points’ in the 
performance space allows the designer to go back to the design space values  
 

 
Figure 8a. F1F2 on X-axis, F3 on Y-axis, number of 

points on Z-axis (Grid of 30 for all three objectives) 

 
Figure 8b. F1F2 on X-axis, F3 on Y-axis, number of 

points on Z-axis (Grid of 30 for all three objectives), 
both non-dominated and Pareto points. 

 
       Figures 8c-8d show Pareto points only, with a 
discretization of 50 for each of the three objective 
functions. There are 49 Pareto points for this particular 
problem, which are therefore being distributed amongst 
50x50x50 (125,000) bins. One can see the slight 
differences in the Pareto frontier between Figures 8a and 
8c, due to the difference in binning (27,000 versus 
125,000). This is further demonstrated in Figure 8e, in 
which each function has 80 discretizations (for a total of 
512,000 possible bins into which the Pareto points might 
fall).  However, the Pareto frontier is still easily and 
intuitively recognized, even for the 30 bin discretization.  

 
Figure 8c. F1F2 on X-axis, F3 on Y-axis, number of 

points on Z-axis (Grid of 50 for all three objectives) 
 

 
Figure 8d. F1F2 on X-axis, F3 on Y-axis, number of 

points on Z-axis (Grid of 50 for all three objectives) 

 
Figure 8e. F1F2 on X-axis, F3 on Y-axis, number of 

points on Z-axis (Grid of 80 for all three objectives) 
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C.  Three Objective Test Problem (one constraint) 
 
      Another three objective MOP was investigated with one constraint 
and three design variables. The problem formulation is shown in Eq. 
11 below. Again, we see from Figs. 9a-c that a clear Pareto frontier is 
obtained, even while representing this three objective problem in a 2-
D graphical display. Recall that the third dimension in the figures 
shown corresponds to the number of Pareto points falling into a 
particular bin.  Also, we see from the three figures that a more refined 
discretization results in more bins with fewer points falling per bin. 
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Figure 9a. F1F2 on X-axis, F3 on Y-
axis, number of points on Z-axis 

(Grid of 30 for all three objectives) 

 
Figure 9b. F1F2 on X-axis, F3 on Y-

axis, number of points on Z-axis 
(Grid of 50 for all three objectives) 

 
Figure 9c. F1F2 on X-axis, F3 on Y-
axis, number of points on Z-axis 

(Grid of 80 for all three objectives) 
 
D.  Four Objective Test Problem 
      The four objective problem in this paper derives originally from 
a three objective test problem taken from Veldhuizen’s dissertation21. 
Another objective was added using the same two design variables. 
The three inequality constraints for the test problem remained the 
same, as do the side constraints. The problem statement is shown in 
Equation 11 to the right. 
      Figures 10a-b show two orientations of a Pareto frontier for the 
case where F1 and F2 are indexed along the x axis and F3 and F4 are 
indexed along the y axis, with a coarse 15 discretizations for each of 
the objective functions. Figure 10c corresponds to a finer 
discretization of 40 along each objective.  These figures clearly show 
a Pareto frontier which has the exact same meaning as that for the 
previous bi-objective problem.  As the grid is discretized to a finer 
resolution, we see that the greater number of available bins for points 
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to fall in results in a smoother visual representation of the Pareto frontier. This type of visualization can clearly 
provide a valuable means for enabling designers to determine which of the Pareto points obtained should be 
investigated further for an ultimate optimal solution based on designer preferences.   
 

 
Figure 10a. F1F2 on X-axis, F3F4 on 
Y-axis, number of points on Z-axis 
(Grid of 15 for all four objectives) 

 
Figure 10b. F1F2 on X-axis, F3F4 on 
Y-axis, number of points on Z-axis 
(Grid of 15 for all four objectives) 

 
Figure 10c. F1F2 on X-axis, F3F4 on 
Y-axis, number of points on Z-axis 
(Grid of 40 for all four objectives) 
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Additionally, the approach of using HSDC in the design space to evaluate functions for approximate Pareto 
frontier visualization is also implemented.  A grid is created in the design space, just as we did for the previous 
problem. Subsequently the function values for all the objectives are evaluated at each of the grid points. The 
maximum and minimum values for each objective are calculated to determine the ranges. The ranges obtained are 
then divided to form the bins. It should be noted that while creating bins for the various objectives we also associate 
indices with increasing order of their values. The next step is to use the HSDC method on the indexes of the 
objective bins to collapse the four objectives on to the horizontal plane, two each on the X and Y-axes. Each index 
on the X and Y-axes would be associated with a combination the indices of the bins of two objectives using the 
Hyper-Space Diagonal Counting. In reality, we can have as many objectives on one axis as we need by creating a 
path through the indices of the bins created for each objective. 
 
      The design space pertaining to each objective is 
shown in Figure 11. The red points are the infeasible 
points. Feasible points are shown in green and the blue 
points are the non-dominated points. The performance 
space plot for the four objective problems using the 
HSDC method is shown for a discretization of 10 in Fig. 
12 and for a discretization of 15 in Figure 13. 
      It can be readily seen from these figures that the non-
dominated points form an approximate Pareto frontier 
along the indices of the objective bins which have low 
objective function values. The more the number of bins 
along the objectives, the better is the distribution of non-
dominated points along the indexed performance space. 
But it should be noted that there is a trade-off in having 
a greater number of bins, as we would need to compare 
the values of the non-dominated points with more and 
more numbers of ranges of these bins. This results in an 
associated computational cost which grows incredibly 
fast with more objective functions and increased 
discretizations. 

 

 
Figure 11. X1 and X2 on X&Y-axis, and Objective 

functions F1, F2, F3, and F4 on Z-axis 

 

 
Figure 12. F1F2 on X-axis, F3F4 on Y-axis, number of 
points on Z-axis (Grid of 10 for all four objectives) 

 
Figure 13. Two views of F1F2 on X-axis, F3F4 on Y-
axis, number of points on Z-axis (Grid of 15 for all 

four objectives) 
 

V.  Conclusions 
 

In this paper, we presented a powerful new approach for visualizing the Pareto frontier for problems with more 
than three objectives. The results presented here clearly demonstrate that the HSDC method is a feasible and usable 
approach for visualizing the Pareto frontier for MOPs with more than three objectives. While the question of 
scalability to larger MOPs is of issue, the method can theoretically visualize n-objectives meaningfully.  The HSDC-
based Pareto frontier visualization capability described here is particularly important for large-scale multiobjective 
optimization problems.  The method presented overcomes the issues of awkwardness and dimension fixing so 
prevalent in the existing visualization strategies.  The HSDC-based approach is a lossless representation, in which 
every single dimension is represented in a 2- or 3-D visual representation which is intuitive and easy to understand.  
This method represents a significant breakthrough for visualizing the Pareto frontier for multi-objective optimization 
methods with more than three objective functions. 
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