Sample Mean

Sample Mean

How to estimate from experimental measurements the statistical mean of a R.V.

Example: β -decay of radioactive source. On physical grounds: $p_K(k) = \frac{1}{k!}\lambda T^k e^{-\lambda T}$, k = 0, 1, 2, ..., but how to determine λ ? $E[K] = \lambda T$, where λ is mean # of carbon atoms that decay per unit time. How to estimate?

Example: A product with a time to failure pdf $f_T(t) = \lambda e^{-\lambda t} u(t)$, how to estimate λ ? $E[T] = 1/\lambda$. Consider a R.V. X. Assume \overline{X} exists, and variance = σ_X^2 .

Experiment: make *n* independent measurements or observations of \overline{X} . Let X_1 be the first measurement, X_2 the second,..., X_n the nth measurement.

Define *Sample Mean* by $M_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. This is a R.V. Is it a good estimate of \overline{X} ?

$$E[M_n] = \frac{1}{n} \sum_{i=1}^n E[X] = \frac{n\overline{X}}{n} = \overline{X}$$
. Then M_n is an *unbiased estimate* of \overline{X} .

Also
$$var(M_n) = var\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = n\frac{\sigma_X^2}{n^2} = \sigma_X^2/n$$
. Then $\sigma_{M_n} = \frac{1}{\sqrt{n}}\sigma_X$, and Relative Error $= \frac{\sigma_{M_n}}{\overline{M_n}} = \frac{1}{\sqrt{n}}\frac{\sigma_X}{\overline{X}}$