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Random Processes

Definitions:

A random process is a family of random variables indexed by a parameter , where  is called the index
set.

Experiment outcome is , which is a whole function . this real-valued function is called a
sample function. The set of all sample functions is an ensamble.
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Statistics of Random Processes

I. Distributions and Densities

Random process . For a particular value of , say , we have a random variable . The
distribution function of this random variable is defined by

, and is called the first-order distribution of .

The corresponding first-order density function is .

For  and , we get two random variables  and . Their joint distribution is called the
second-order distribution:

, with corresponding second-order density function

.

The nth-order distribution and density functions are given by

, and

.
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II. Statistical Averages (ensamble averages)

The mean  of  is defined by .

The autocorrelation of  is defined by

.

The autocovariances  of  is defined by

The nth joint moment  of  is defined by

III. Stationarity

Strict-Sense Stationarity

A random process  is called strict-sense stationary (SSS)  if the statistics are invariant w.r.t. any time
shift, i.e.

It follows  for any ,hence first-order density of a SSS  is independent of time
: . Similarly, .

By setting , we get . Thus, if  is SSS, the joint density of the
random variables  and  is independent of  and depends only on the time difference .
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Wide -Sense Stationary

A random process  is said to be wide-sense stationary (WSS)  if its mean is constant (independent of
time) , and its autocorrelation depends only on the time difference .

As a result, the auto covariance of a WSS process also depends only on the time difference :

.

Setting  in  results in . The average power of a WSS
process is independent of time , and equals .

An SSS process is WSS, but a WSS process is not necessarily SSS.

Two processes  and  are jointly wide-sense stationary (jointly WSS) if each is WSS and their cross-
correlation depends only on the time difference :

 Also the cross-covariance of jointly WSS  and  depends
only on the time difference :

.

IV. Time Averages and Ergodicity

The time-averaged mean  of a sample function  of a random process  is defined as

, where the symbol  denotes time-averaging.

Similarly, the time-averaged autocorrelation of the sample function  is
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.

Both  and  are random variables since they depend on which sample function resulted
from experiment. then if is stationary:

.

The expected value of the time-averaged mean is equal to ensamble mean.

Also ,

 the expected value of the time-averaged autocorrelation is equal to the ensamble autocorrelation.

A random process  is ergodic  if time-averages are the same for all sample functions, and are equal to
the corresponding ensamble averages.

In an ergodic process, all its statistics can be obtained from a single sample function.

A stationary process  is called ergodic in the mean  if ,

and ergodic in the autocorrelation  if .

Correlations and Power Spectral Densities

Assume all random processes WSS:

I. Autocorrelation RXX(τ):

.

Properties of : , , .
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II. Cross-Correlation RXY(τ): .

Properties of : , , .

III. Autocovariance CXX(τ):

IV. Cross-Covariance CXY(τ): .

Two processes are (mutually) orthogonal  if , and uncorrelated  if .

V. Power Spectrum Density SXX (ω):

The power spectral density SXX (ω) is the Fourier transformof RXX(τ) . Thus

.

Properties: real, , even fn. ,

(Parseval’s type relation) .

VI. Cross Spectral Densities

, .

Therefore: , .

Since , then .
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Random Processes in Linear Systems

I. System Response:

LTI system with impulse response , and output .

II. Mean and Autocorrelation of Output:

.

If input is WSS then , the mean of the output is a cons.

, :Y WSS

III. Power Spectral Density of Output:

,

. Average power of output is:
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Special Classes of Random Processes

I. Gaussian Random Process:

II. White Noise:

A random process  is white noise if . Its autocorrelation is .

III. Band-Limited White Noise:

A random process  is band-limited white noise if .

Then .
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IV. Narrowband Random Process:

Let  be WSS process with zero mean. Let its power spectral density  be nonzero only in a
narrow frequency band of width 2W which is very small compared to a center frequency , then we have a
narrowband random process. When white or broadband noise is passed through a narrowband linear filter,
narrowband noise results. When a sample function of the output is viewed on oscilloscope, the observed
waveform appears as a sinusoid of random amplitude and phase. Narrowband noise is conveniently
represented by , where  are the envelop function and phase
function, respectively. From trigonometric identity of the cosine of a sum we get the quadrature
representation of process:

where

To detect the quadrature component , and the in-phase component  from  we use:
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Properties of  and :

1- Same power spectrum:

2- Same mean and variance as :

3-  and  are uncorrelated:

4- If input process is gaussian, then so are the in-phase and quadrature components.

5- If  is gaussian, then for a fixedt, V(t) is a random variable with Rayleigh distribution, and  is a random
variable uniformly distributed over .
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