Examples

5.1 In the switching network shown, the switches operate independently. Each switch closes with probability p, and remains open with probability $1-p$.
a- Find the probability that a signal at the input will be rec in
b- Find the conditional probability that switch E is open, g

5.2 In a certain Village 20\% of the population has disease D. A test is administered which has the property that if a person has D, the test will be positive 90% of the time, and if he does not have D, the test will be positive 30% of the time. All those whose test is positive are given a drug which invariably cures the disease, but produces a characteristic rash 25% of the time. Given that a person picked at random has the rash, what is the probability that he actually had D to begin with?

(Cumulative) Distribution Function

I. Discrete R. V.

Discrete R. V. X. pmf: $p_{X}\left(x_{i}\right)=P\left(\left\{X=x_{i}\right\}\right)$
Define CDF $F_{X}(x)=P(\{X \leq x\})=\sum_{x_{i} \leq X} p_{X}\left(x_{i}\right)$
Properties of $F_{X}(x)$:
1- $\lim _{x \rightarrow \infty} F_{X}(x)=1$
2- $\lim F_{X}(x)=0$
3- $\stackrel{x}{P}(\{a<X \leq b\})=F_{X}(b)-F_{X}(a)$, i.e. $F_{X}(x)$ is a nondecreasing function.

II. Continuous R. V.

Define $F_{X}(x)=P(\{X \leq x\})$, and $f_{X}(x)=\frac{d}{d x} F_{X}(x)=$ Probability Density Function.
$P(\{a<X \leq b\})=F_{X}(b)-F_{X}(a)=\int_{a}^{b} f_{X}(x) d x$.
Properties of $f_{X}(x)$:
1- $f_{X}(x) \geq 0$
2- $\int_{-\infty}^{\infty} f_{X}(x)=1$

Bernoulli Random Variable:

Experiment: "Bernoulli Trial" $S=\{$ Success, Failure $\}=\{s, f\} . P(\{s\})=p, P(\{f\})=1-p$.
Bernoulli R.V. $X(\{$ Success $\})=1, X(\{$ Failure $\})=0 \cdot p_{X}(1)=p, p_{X}(0)=1-p$.

Binomial R.V. (Repeated Trials):

Experiment: N independent Bernoulli trials. $S=\{(s, s, \ldots, s),(s, s, \ldots, s, f), \ldots,(f, f, \ldots, f)\} .2^{\mathrm{N}}$ sample points. Define the Binomial R. V. by mapping each sample point into an integer (subset of reals) equal to the number of successes. How many points are there with n successes and N-n failures? $\mathrm{N}!/ \mathrm{n}!(\mathrm{N}-\mathrm{n})$! Therefore $p_{X}(n)=\frac{N!}{(N-n)!n!} p^{n}(1-p)^{N-n}=\binom{N}{n} p^{n}(1-p)^{N-n}$, where $\binom{N}{n} \equiv C(N, n)=\frac{N!}{(N-n)!n!}$.
Binomial Theorem: $(a+b)^{N}=\sum_{n=0}^{N}\binom{N}{n} a^{n} b^{N-n}$.
Binomial R.V. $X: p_{X}(n)=\binom{N}{n} p^{n}(1-p)^{N-n}, n=0,1, \ldots, N$.
Then $\sum_{n=0}^{N} p_{X}(n)=\sum_{n=0}^{N}\binom{N}{n} p^{n}(1-p)^{N-n}=(p+(1-p))^{N}=1$.
$\binom{N}{n}=$ number of ways of having n successes and $N-n$ failures.
Then $\sum_{n=0}^{N}\binom{N}{n}=$ total number of sample points $=(1+1)^{N}=2^{N}$.

For Ex. 2, $\{X=1\}=\{H\},\{X=5\}=\{T, T, T, T, H\},\{X<3\}=\{(H),(T, H)\}$.
$p_{X}(1)=1 / 2, p_{X}(2)=1 / 4, \ldots, p_{X}(N)=1 / 2^{N}$.
For Ex. 3, $\{X=3\}=\{(H, H, H, T),(H, H, T, H),(H, T, H, H),(T, H, H, H)\},\{X=0\}=\{T, T, T, T\}$.
$p_{X}(0)=1 / 16, p_{X}(1)=1 / 4, p_{X}(2)=6 / 16=3 / 8, p_{X}(3)=1 / 4, p_{X}(4)=1 / 16$. For $p_{X}(2)$, the number of sample points with two heads is $4 \times 3 / 2!=6$, we have total of 2^{4} sample points of equal probability, hence the $6 / 16$ answer.

For Ex. 4, $S=\{X=2\}+\{X=3\}+\ldots+\{X=12\}$, a partition. Then $P(S)=p_{X}(2)+p_{X}(3)+\ldots+p_{X}(12)=1$.
Definition: A random variable that has only discrete experimental values (finite or countably infinite) is called a Discrete Random Variable.

Probability Mass Function (Probability Distribution):

Let X be a discrete R.V., and x be an experimental value. Define $p_{X}(x)=P\{X=\mathrm{x}\}$ as the probability mass function.
A general property of probability mass function $(p m f)$: $\sum_{\text {all } \mathrm{X}} p_{X}(x)=1$.

Random Variables

Definition:

A random variable, X, is a real-valued function defined on a sample space S. It is a mapping from S into \Re.

Examples:

Ex. 1: Toss coin. $S=\{H, T\}$. Define X such that $X(H)=1, \quad X(T)=0$.
Ex. 2: Toss coin until head comes up. $S=\{H,(T, H),(T, T, H), \ldots,(T, T, \ldots, T, H)\}$.
Define $X(H)=1, \quad X(T, H)=2, \quad X(T, T, H)=3, \ldots$.
Ex. 3: Toss a coin 4 times for each experiment: $S=\{(H, H, H, H),(H, H, H, T), \ldots,(T, T, T, T)\}$. Define X to be number of heads in sample point, e.g. $X(H, H, T, H)=3$.

Ex. 4: Toss two dice: $S=\{(n, m): 1 \leq n, m \leq 6\}$, define $X((n, m))=n+m$.

Events Defined From Random Variables:

Let X be a R.V. on $S, S=\left\{s_{1}, s_{2}, \ldots\right\}$, defined by $X(s)=x$.
Let $\{X=1\}$ define the event $\{s \in S: X(s)=1\}$, similarly
let $\{X=a\}=\{s \in S: X(s)=a\}$, and
$\{a \leq X<b\}=\{s \in S: a \leq X(s)<b\}$.
For Ex. 1, $\{X=1\}=\{H\}$, therefore $p_{X}(1)=1 / 2 .\{X=0\}=\{T\}$, therefore $p_{X}(0)=1 / 2 .\{X=2\}=\varnothing,\{X=\sqrt{3}\}=\varnothing$, $\{0 \leq X<1\}=S$.

