Sample Points and Sample Spaces

Random Experiments and Outcomes:

Define an experiment and specify all its possible outcomes.

Sample Space:

The mutually exclusive and exhaustive set of all outcomes of a random experiment.

Examples of Experiments, Outcomes, and Sample Spaces:

TABLE 1.

Experiment
Toss Coin
Toss Coin Twice
Toss Coin until Head Comes Up

Toss Die
Sample Fraction of CO in Air Sample
Measure Ampl. and Phase of Sin. Wave

```
Sample Space
S={H,T} or S = {H,T,E}
    S ={(H,H),(H,T),(T,H),(T,T)}
    S ={H,(T,H),(T,T,H),\ldots,(T,T,\ldots,T,H)} or
    S={1,2,3,\ldots}, the number of times until head is recorded
    S={1,2,3,4,5,6}
    S={x:0\leqx\leq1}
    S={(a,\phi):0\leqa<\infty,0\leq\phi<2\pi}
```


Events:

An event is a subset of a sample space.

Examples:

Ex. 1: $S=\{1,2,3,4,5,6\}$. Events: $A=\{2\}$, elementary event or sample point, $B=\{2,3,4\}, C=\{2,4,6\}$.
Set Notation: $s \in S, \quad s \in B, B \subset S$. If $X \subset S$ and $s \subset S$, then we say X occurred if $s \subset X$.
Trivial events: Certain event $A=S$, Impossible event $A=\{\varnothing\}=$ empty set.
Ex. 2: Toss pair of dice. $S=\{(1,1),(1,2), \ldots,(6,6)\}$. Events: $A_{2}=\{(1,1)\}, A_{3}=\{(1,2),(2,1)\}$, $A_{n}=$ sample points or outcomes that add to n each, $A_{12}=\{(6,6)\}$.

Ex. 3: Take samples of water and count Ecoli cells. $S=\{0,1,2,3, \ldots\}, A=\{n: n \geq 10\}$
Ex. 4: Measure amplitude and phase of sin. wave. $S=\{(a, \phi): 0 \leq a<\infty, 0 \leq \phi<2 \pi\}$.

Algebra of Sets (Boolean Algebra)

$S=$ sample space (universal set).
$A \subset S \quad A$ is a subset of S.
$x \in S \quad x$ is a member of S.
$x \in A \quad x$ is a member of A.
$A \subset B \quad A$ is a subset of B. If A occurs then B occurs. An event in A is also an event in B.

Set Union: $A \cup B$ or $A+B$.

Set Intersection: $A \cap B$ or $A B$.
Empty Set: If A and B have no common element (disjoint) then $A \cap B=\varnothing$.
Compliment: If $A \subset S$, then $A^{c}=\{x: x \notin A\} . A^{c}$ is the event that $A \operatorname{did}$ not occur.

$$
\begin{aligned}
& A \cup A^{c}=S \\
& A \cap A^{c}=\varnothing \\
& S^{c}=\varnothing \text { and } \varnothing^{c}=S \\
& A^{c c}=A
\end{aligned}
$$

De Morgan's Rules:

A. $(A \cup B)^{c}=A^{c} \cap B^{c}$
B. $(A \cap B)^{c}=A^{c} \cup B^{c}$

Ex: $\left(A^{c} \cup B\right)^{c}=A \cap B^{c}$
C. Principle of Duality:

If the following symbols are interchanged in an expression, provided equality and complementation are left unchanged, then a new correct, dual expression results.

```
\cup \Leftrightarrow \cap
C }\quad
\(S \Leftrightarrow \varnothing\).
```


Partitioning Sample Space

Divide s into a collection of mutually exclusive and exhaustive subsets:
$A_{1} \cup A_{2} \cup A_{3} \ldots \cup A_{N}=S, A_{i} \cap A_{j}=\varnothing, i \neq j$

