
MAE334 - Introduction to Instrumentation and Computers

Midterm Examination

October 25, 2006

• For each question, choose <u>**THE BEST ANSWER**</u> and mark the corresponding answer on the scoring sheet.

The terms *lab 1* and *lab 2* refer to: Lab 1 Basics of A to D Conversion and Lab 2 Thermocouple, Static and Dynamic Calibration

The last page of the exam has the "Student-t Distribution Table" and the "Probability Values for Normal Error Function $z_1 = \frac{x_1 - x'}{\sigma}$ "

- 1. The static sensitivity of a thermistor is constant over all temperatures.
 - a. True
 - b. False
- 2. In lab 2 the thermocouple response was linearized by taking the natural log of

the function, $\left[\frac{(T_{\infty} - T(t))}{(T_{\infty} - T_0)}\right]$, where *t* is time and *T*, is temperature.

- a. True
- b. False
- 3. Repeated measurements of a static temperature reading will
 - a. Have a normal distribution
 - b. Show the bias error
 - c. Can be used to determine the measurement system precision
 - d. All of the above
 - e. None of the above
- 4. An 8 bit ADC with an ±12.8 volt input signal range subjected to a 4.1 volt signal will output a value.
 - a. 4
 - b. 41
 - c. 82
 - d. 8
 - e. None of the above

A temperature sensor is to be selected to measure the fluctuating temperature within a cylinder of an internal combustion engine. It is suspected that the temperature will behave as a periodic waveform with a frequency around 180 radians/second. (Rotating at 1800 rpm). Several size sensors are available, each with a known time constant.

- 5. What percent reduction in output/input signal magnitude would you expect at the 1800 cycle/minute frequency from a thermocouple with a 1/9 of a second time constant? (assume $\pi = 3$ and static sensitivity, K=1)
 - a. 5%
 - b. 30%
 - c. 70%
 - d. 95%
 - e. None of the above
- 6. If you were required to maintain a dynamic error of less than 29.3%

 $(M(\omega) \ge 70.7\% = 1/\sqrt{2})$ for the internal combustion engine temperature measurement described above what would be an acceptable thermocouple time constant?

- a. 1/180 seconds
- b. 1/90 seconds
- c. 1/60 seconds
- d. 1/30 seconds
- e. None of the above

- 7. Thermistors are normally not as sensitive as RTDs, but are much less expensive to manufacture.
 - a. True
 - b. False
- 8. An inclined manometer with an indicating leg at 30° containing colored water (specific weight, $\gamma = 1.0$) is used to measure pressure. What is the static sensitivity of the manometer in (Pressure in Inches of Water/Inches of Deflection)?
 - a. 0.5
 - b. 1.0
 - c. 1.5
 - d. 2.0
 - e. None of the above
- 9. A strain-gauge equipped diaphragm pressure transducer is a null device with a dynamic behavior described as a second-order system.
 - a. True
 - b. False
- 10. An under damped second order system will *always* oscillate with a greater amplitude than the forcing when the input forcing is at the natural frequency.
 - a. True
 - b. False
- 11. The precision error associated with the ADC used in our lab can not be less than
 - a. 10/200/2¹² Volts
 - b. 20/200/2¹² Volts
 - c. 20/2¹² Volts
 - d. None of the above
- 12. It is known that the statistics of a normally distributed temperature signal are x' = 20 °C and σ^2 = 4 °C². What is the probability that a measurement will yield a value greater than 24 °C?
 - a. 5%
 - b. 32%
 - c. 34%
 - d. 48%
 - e. 52%
- 13. The input impedance of a deflection device such as a Bourdon Tube pressure gauge is inversely proportional to the static sensitivity.
 - a. True
 - b. False
- 14. An extraneous variable in an experiment usually refers to *all possible* unaccounted for or uncontrollable variables that can affect the value of the measured variable.
 - a. True
 - b. False

Table 1. Sample data set with a normal distribution, a mean value of 1.0 and a standard deviation of 0.15 and a plot of the data set with a linear curve fit added.

		-		
I	Xi	1	Xi	1.40 -
1	0.98	14	1.02	
2	1.07	15	0.94	1.30
3	0.86	16	1.11	◆ y = -0.0019x + 1.0276
4	1.16	17	0.99	$R^2 = 0.008$
5	0.96	18	0.78	
6	0.68	19	1.06	
7	1.34	20	0.96	
8	1.04	21	0.99	1.00
9	1.21	22	1.02	
10	0.86	23	1.10	0.90
11	1.02	24	0.98	
12	1.26	25	0.97	
				0.70
40	4.00			0 5 10 15 20 25
13	1.08			

- 15. Given the data set in Table 1, what is the probability of recording a value within the range of 1.0 ± 0.30
 - a. 50%
 - b. 90%
 - c. 95%
 - d. 99%
 - e. None of the above
- 16. Given the data set in Table 1, give an estimate of the true mean value of the measurand at 99% probability
 - a. $x' = \overline{x} \pm (2.787 \times 0.03)$
 - b. $x' = \overline{x} \pm (2.797 \times 0.03)$
 - c. $x' = \overline{x} \pm (2.787 \times 0.15)$
 - d. $x' = \overline{x} \pm (2.797 \times 0.15)$
 - e. None of the above
- 17. The line fit to the data set in Table 1 has how many degrees of freedom?
 - a. 25
 - b. 24
 - c. 23
 - d. None of the above
- 18. The correlation coefficient, R^2 value of 0.008, indicates a high quality fit to the data in Table 1.
 - a. True
 - b. False

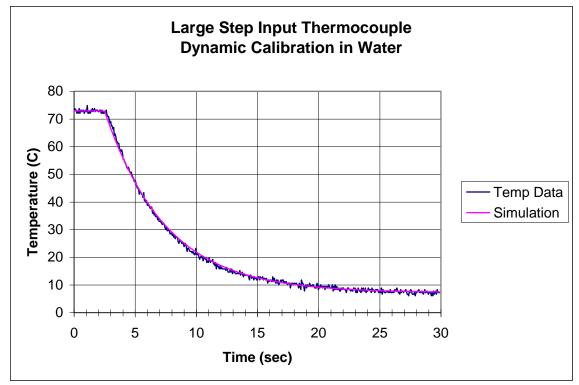


Figure 1. Data set from Lab 2 dynamic calibration.

- 19. The approximate time constant, τ , of the thermocouple response plotted in Figure 1 is:
 - a. 2 seconds
 - b. 5 seconds
 - c. 7 seconds
 - d. 10 seconds
 - e. 23 seconds
- 20. If a thermocouple is more sensitive (the static sensitivity is larger) the dynamic response would be faster (the time constant would be smaller).
 - a. True
 - b. False
- 21. The ADC used in the lab would output what binary value corresponding to -4?
 - a. 111111111100
 - b. 10000000100
 - c. 00000000100
 - d. 111111111011

						·

- e. None of the above
- 22. The ADC used in our lab has what type of architecture?
 - a. Flash
 - b. Pipelined
 - c. Successive approximation
 - d. Sigma-delta

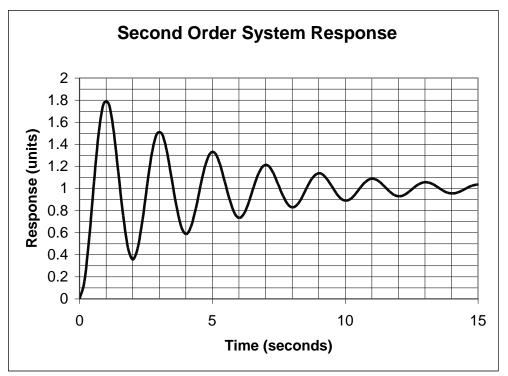


Figure 2. Pressure transducer time response to a step input function.

- 23. The rise time in seconds of the pressure transducer plotted in Figure 2 is approximately
 - a. 0.5
 - b. 1.0
 - c. 10.
 - d. None of the above
- 24. The natural frequency of the pressure transducer plotted in Figure 2 is very close to
 - a. 0.5 Hz
 - b. 1.0 Hz
 - c. 10 Hz
 - d. None of the above
- 25. The ADC architecture normally associated with the best resolution is
 - a. Flash
 - b. Pipelined
 - c. Successive approximation
 - d. Sigma-delta
- 26. A 55 Hz sine wave sampled at 100 Hz will result in a sampled data set with what frequency
 - a. 45 Hz
 - b. 55 Hz
 - c. 5 Hz
 - d. none of the above

	Table 2.	Student-	t Distribut	ion
ν	t ₅₀	t ₉₀	t ₉₅	t ₉₉
15	0.691	1.753	2.063	2.947
16	0.690	1.746	2.052	2.921
17	0.689	1.740	2.043	2.898
18	0.688	1.734	2.035	2.878
19	0.688	1.729	2.027	2.861
20	0.687	1.725	2.021	2.845
21	0.686	1.721	2.015	2.831
22	0.686	1.717	2.010	2.819
23	0.685	1.714	2.005	2.807
24	0.685	1.711	2.000	2.797
25	0.684	1.708	1.996	2.787

Table 2 Student-t Distribution

Table 3. Probability Values for Normal Error Function $z_1 = \frac{x_1 - x'}{\sigma}$

г		0								
	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990