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Linear MMSE estimation

Consider an unknown message m(t) which is estimated from the measured signal r(t). Let the estimator be a
linear system given by h(t,u)). The output of the estimator is given by:

f(t) = /T h(t, w)r(u)du

e(t) = m(t) —m(t)

Our aim is to design an optimum filter that minimizes

& = / e2(t)dt
T
and satisfies the orthogonality condition
Ele(t).r*(u)]=0 V t,uec[0,T]

Estimator error is given by:

Estimator equation
Substitute for the error in the orthogonality condition via:

e(t) =m(t) —m(t)

=m(t) — [ h{t,\)r(X)dX
This yields:

fT d)‘} ( ) =0
= E[m( fT [r(A)r*(u)]dA
= Rpnr(t,u) = [ h( (A, u)dA

The construction of the filter is based on solving for h( , ) from the above using the knowledge of R;,.(.,.) and
R.(.,.).
Special case:

r(t) = m(t) + n(t)

where m(t) and n(t) are orthogonal to each other. In this case:

Rpe(t,u) =E [m(t)r*(u)}

= E[m(O 1+ v (0]

= R (t,u)

Also
R.(t,u) = Rp(t,u)+ Rp(t, u)

Therefore, the estimator equation becomes:

= [ h(t, )[R (X, u) + Rn (A, u)]dA



Spectral solution via KL representation

Model:
r(t) = m(t) + n(t)

where m(t) and n(t) are general non-stationary signals that are orthogonal and uncorrelated to each other.
Suppose the autocorrelation of both signals possess a common set of eigenfunctions that are denoted by:

¢ ={i(t); ;i=1,2,---}
Thus,
Ry (t,u) =30, Amiti() o ()

Ru(t,u) =320 Anichi(t) ¢ (u)
We consider the following decomposition for the optimal filter:
ht,u) =22 higi ()67 (u)

Also, we have:

Re(t,u) =22 Aridhi(t)¢5 ()
= 3 (Ami + Ani) i ()65 ()

We now use the spectral representations in the estimator equation:

Ron(t,u) = [ h(t, \)Rp (A, u)dA

Z AmiPi (t)@* (u) = fT Zi higi (t)@* ()‘) Ej()‘"w' + )‘n])¢]()‘)¢; (U)d)‘

= S By + A ) ()65 () [ / ¢3<A>¢j<x>dx}
5”-

Due to the uniqueness of the spectral coefficients,

Ami = hi(Ami + Ani) ¥V 1=1,2,...

Ami
=>hi=——"—
’ >\mi + )\nz
which is known as the general Weiner filter. The stationary equivalent of the above is given by:
Sm

Sm(w) + Sp(w)
Note that:

b) Ami L Api = hi =0

The estimate:
The estimate is constructed via the following:



We consider the spectral decomposition for the measurement:
mit) = midi(t)
n(t) =32 nidi(t)
=r(t) =3;ridi(t) i =mi+n;
Using this and the spectral representation of for h(t,u) in 1(t), we get:

mt) = [p 30 higi(t)d; (u) 32,76, (u)du

=55 hirgon0)| [ ots0a]

6»;]'

=3 hirigi(t)
—m(t) =, migi(t)

AmiTi
AmitAni
Estimator error energy:
Point error:

where ’Iﬁz = hﬂ"i =

= R (t,t) — E[fT h(t, u)r(u)dum*(t)}
= Ry (t,t) — [ h(t,u) E[r(u)m*(t)] du
=R, (u,t)
= Rm(tv t) - fT h(tv ’LL)Rm(U, t)du
= Ry (1) — [ 30 haobi(8)d7 (w) 305 Amj 5 (w) @ () du
— Bt.0) = £, 5 hmgn0650) | [ 610160001
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- Z (/\mz T Mmit A +)\ mz>¢z( )Qb;k(t)

_ Ami
—Zi( nm;)!@ 1
Interval error:

& = fT 5p<t)dt
)\’VTllA’Vll 2
= I 5 (R ol ar
=2 < éﬂfi‘;) / j:(1)|at
=& =X <A§Zf§ii)
Detection in additive white Gaussian noise
Under the mth hypothesis, the received signal is :
H,, : r(t) = sm(t) + n(t)
where n(t) is the white Gaussian noise and the transmitted signals are:

SL {sp(t); m=0,1,---,M—1}

The linear signal subspace can be represented by (e.g using the Gram Schmidt procedure) by N < M orthonormal
basis functions given by:
:q):{¢l(t)v 'L:]-?vNSM}

Irrelevant data: L
The finite signal subspace S = ® cannot be a CON set. Therefore, we identify the set:

Se2{gi(t); i=N+1,- 00}

such that [S, §¢] forms a CON set.
Once this signal set is identified, we can construct:

1. Projection of S,,(t) into S:

Sml
bnd S’I’TL2
Sm = .
SmN
where S,,; =< Sy, ;> V i=1,2,---,N.
Clearly, < Sy, >=0 V i=N+1,---,00
2. Projection of r(t) into S:
1
- T2

H
|

N



where m; =< R, ¢; > vV i=1,2,---,N.

Under H,, : 78 =Smi+n; ;i=12,..N,
where n; =< n, ¢; >.

Furthermore, V ¢ = N +1,---, 00, we also have r; = n;, i.e. no signal component.
TN+1
- TN+2
Ry =
Too

Therefore, the total measurement vector is given by:

1
]

TN
TN+1
TN+2

=

Il

Il
=

Too

Under H,,:
Sm1 + N1
Sm2 + N2

SmN + NN
NN+1
NN+2

Noo

Since Ry has only noise components, it is called redundant data.
Noise variance:

Bnf] =%

Elnni] =0 ;i#j

= n;’s are i.i.d. ~ N(0, %) R, and R, are independent of each other. i.e.
p(é|Hrn) = p(R_'l |Hm)p(R_'2|Hm)

Since, Ry does not depend on H,,, .
p(Ra|Hpm) = p(R2)

The likelihood ratio test: . .
. H H,
A () = BB m) _ pUF1 [ H)
p(R|Ho)  p(Ri|Ho)

i.e. Ry is sufficient statistic. Ro on the other hand is irrelevant data and does not influence decision.
Statistic on Rj:
R; is multivariate normal. Under H,,, its mean is S,, and its covariance matrix is % X InNxnN-



