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Linear MMSE estimation
Consider an unknown message m(t) which is estimated from the measured signal r(t). Let the estimator be a
linear system given by h(t, u)). The output of the estimator is given by:

m̂(t) =
∫

T

h(t, u)r(u)du

Estimator error is given by:
e(t) = m(t)− m̂(t)

Our aim is to design an optimum filter that minimizes

ξI =
∫

T

e2(t)dt

and satisfies the orthogonality condition

E[e(t).r∗(u)] = 0 ∀ t, u ∈ [0, T ]

Estimator equation
Substitute for the error in the orthogonality condition via:

e(t) = m(t)− m̂(t)

= m(t)− ∫
h(t, λ)r(λ)dλ

This yields:

E

[
[m(t)− ∫

T
h(t, λ)r(λ)dλ]r∗(u)

]
= 0

⇒ E[m(t)r(u)] =
∫

T
h(t, λ)E[r(λ)r∗(u)]dλ

⇒ Rmr(t, u) =
∫

T
h(t, λ)Rr(λ, u)dλ

The construction of the filter is based on solving for h(t, u) from the above using the knowledge of Rmr(., .) and
Rr(., .).
Special case:

r(t) = m(t) + n(t)
where m(t) and n(t) are orthogonal to each other. In this case:

Rmr(t, u) = E

[
m(t)r∗(u)

]

= E

[
m(t)[m∗(u) + n∗(u)]

]

= Rm(t, u)

Also
Rr(t, u) = Rm(t, u) + Rn(t, u)

Therefore, the estimator equation becomes:

Rm(t, u) =
∫

T
h(t, λ)

[
Rm(λ, u) + Rn(λ, u)

]
dλ



Spectral solution via KL representation

Model:
r(t) = m(t) + n(t)

where m(t) and n(t) are general non-stationary signals that are orthogonal and uncorrelated to each other.
Suppose the autocorrelation of both signals possess a common set of eigenfunctions that are denoted by:

Φ = {φi(t); ; i = 1, 2, · · ·}

Thus,
Rm(t, u) =

∑
i λmiφi(t)φ∗i (u)

Rn(t, u) =
∑

i λniφi(t)φ∗i (u)

We consider the following decomposition for the optimal filter:

h(t, u) =
∑

i hiφi(t)φ∗i (u)

Also, we have:
Rr(t, u) =

∑
i λriφi(t)φ∗i (u)

=
∑

i(λmi + λni)φi(t)φ∗i (u)

We now use the spectral representations in the estimator equation:

Rm(t, u) =
∫

T
h(t, λ)Rr(λ, u)dλ

∑
λmiφi(t)φ∗i (u) =

∫
T

∑
i hiφi(t)φ∗i (λ)

∑
j(λmj + λnj)φj(λ)φ∗j (u)dλ

=
∑

i

∑
j hi(λmj + λnj)φi(t)φ∗j (u)

[ ∫

T

φ∗i (λ)φj(λ)dλ

]

︸ ︷︷ ︸
δij

∴
∑

i λmiφi(t)φ∗i (u) =
∑

i hi(λmi + λni)φi(t)φ∗i (u)

Due to the uniqueness of the spectral coefficients,

λmi = hi(λmi + λni) ∀ i = 1, 2, ...

⇒ hi =
λmi

λmi + λni

which is known as the general Weiner filter. The stationary equivalent of the above is given by:

H(ω) =
Sm(ω)

Sm(ω) + Sn(ω)

Note that:

a) λmi À λni ⇒ hi ≈ 1

b) λmi ¿ λni ⇒ hi ≈ 0

The estimate:
The estimate is constructed via the following:

m̂(t) =
∫

T

h(t, u)r(u)du



We consider the spectral decomposition for the measurement:

m(t) =
∑

i miφi(t)

n(t) =
∑

i niφi(t)

⇒ r(t) =
∑

i riφi(t) ; ri = mi + ni

Using this and the spectral representation of for h(t, u) in m̂(t), we get:

m̂(t) =
∫

T

∑
i hiφi(t)φ∗i (u)

∑
j rjφj(u)du

=
∑

i

∑
j hirjφi(t)

[ ∫

T

φ∗i (u)φj(u)du

]

︸ ︷︷ ︸
δij

=
∑

i hiriφi(t)

→ m̂(t) =
∑

i m̂iφi(t)

where m̂i = hiri = λmiri

λmi+λni

Estimator error energy:
Point error:

ξp(t) = E

[
[m(t)− m̂(t)][m∗(t)− m̂∗(t)]

]

= E

[
e(t)[m∗(t)− ∫

T
h(t, u)r∗(u)]du

]

= E[e(t)m∗(t)]− ∫
T

h(t, u) E[e(t)r∗(u)]︸ ︷︷ ︸
=0 due to orthogonality

du

⇒ ξp(t) = E[e(t)m∗(t)]

= E

[
[m(t)− m̂(t)]m∗(t)

]

= Rm(t, t)− E

[ ∫
T

h(t, u)r(u)dum∗(t)
]

= Rm(t, t)− ∫
T

h(t, u) E[r(u)m∗(t)]︸ ︷︷ ︸
=Rm(u,t)

du

= Rm(t, t)− ∫
T

h(t, u)Rm(u, t)du

= Rm(t, t)− ∫
T

∑
i hiφi(t)φ∗i (u)

∑
j λmjφj(u)φ∗j (t)du

= Rm(t, t)−∑
i

∑
j hiλmjφi(t)φ∗j (t)

[ ∫

T

φ∗i (u)φj(u)du

]

︸ ︷︷ ︸
δij



⇒ ξp(t) =
∑

i λmiφi(t)φ∗i (t)−
∑

i hiλmiφi(t)φ∗i (t)

=
∑

i

(
λmi − λmi

λmi+λni
λmi

)
φi(t)φ∗i (t)

=
∑

i

(
λmiλni

λmi+λni

)∣∣φi(t)
∣∣2

Interval error:

ξI =
∫

T
ξp(t)dt

=
∫

T

∑
i

(
λmiλni

λmi+λni

)∣∣φi(t)
∣∣2dt

=
∑

i

(
λmiλni

λmi+λni

) ∫

T

∣∣φi(t)
∣∣2dt

︸ ︷︷ ︸
=1

⇒ ξI =
∑

i

(
λmiλni

λmi+λni

)

Detection in additive white Gaussian noise

Under the mth hypothesis, the received signal is :

Hm : r(t) = sm(t) + n(t)

where n(t) is the white Gaussian noise and the transmitted signals are:

~S , {sm(t); m = 0, 1, · · · ,M − 1}
The linear signal subspace can be represented by (e.g using the Gram Schmidt procedure) by N ≤ M orthonormal
basis functions given by:

~S = ~Φ = {φi(t); i = 1, · · · , N ≤ M}
Irrelevant data:
The finite signal subspace ~S = ~Φ cannot be a CON set. Therefore, we identify the set:

~Sc , {φi(t); i = N + 1, · · · ,∞}
such that [~S, ~Sc] forms a CON set.
Once this signal set is identified, we can construct:

1. Projection of Sm(t) into ~S:

~Sm =




Sm1

Sm2

...
SmN




where Smi =< Sm, φi > ∀ i = 1, 2, · · · , N .
Clearly, < Sm, φi >= 0 ∀ i = N + 1, · · · ,∞

2. Projection of r(t) into ~S:

~R1 =




r1

r2

...
rN






where ri =< R,φi > ∀ i = 1, 2, · · · , N .

Under Hm : ri = Smi + ni ; i = 1, 2, ...N ,
where ni =< n, φi >.
Furthermore, ∀ i = N + 1, · · · ,∞, we also have ri = ni, i.e. no signal component.

~R2 =




rN+1

rN+2

...
r∞




Therefore, the total measurement vector is given by:

~R =




r1

r2

...
rN

rN+1

rN+2

...
r∞




=
[

R1

R2

]

Under Hm:

~R =




sm1 + n1

sm2 + n2

...
smN + nN

nN+1

nN+2

...
n∞




Since R2 has only noise components, it is called redundant data.
Noise variance:

E
[|ni|2

]
= N0

2

E[nin
∗
j ] = 0 ; i 6= j

⇒ ni’s are i.i.d. ∼ N(0, N0
2 ). R1 and R2 are independent of each other. i.e.

p(~R|Hm) = p( ~R1|Hm)p( ~R2|Hm)

Since, R2 does not depend on Hm,
p( ~R2|Hm) = p(R2)

The likelihood ratio test:

Λm(~R) =
p(~R|Hm)

p(~R|H0)
=

p( ~R1|Hm)

p( ~R1|H0)

i.e. ~R1 is sufficient statistic. R2 on the other hand is irrelevant data and does not influence decision.
Statistic on R1:
R1 is multivariate normal. Under Hm, its mean is Sm and its covariance matrix is N0

2 × ~IN×N .


