EE 631: Estimation and Detection
Part 5

Dr. Mehrdad Soumekh

Parameter Estimation (contd.)
In the last lecture, it was shown that the efficiency of an unbiased estimator is defined by:
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The lower bound on the information inequality is achieved if the correlation between V(E;a) and a(R) is +1 or
—1, i.e they are perfectly correlated.
In this case, the score can be expressed as a linear function of the estimate:

V£ fi(a).a(R) + f3(a)

where V = 6% In p(R;a) and both f{(a) and f4(a) are invariant in R and non-random.
Integrate both sides with respect to the variable a:

Inp(F;a) = fi(a).a(R) + fala) +  fs(R)
——
const. w.r.t. a

Thus the channel pdf can be expressed via the following model:
p(R;a) = exp [f1(a).a(R) + fa(a) + f5(R)]
that belongs to the exponential family of distributions. For example: Consider the Gaussian pdf

\/2170 exp {—(7"2 ;QM)Q]

p(r) = N(p,0?) :

Fix o and let a = pu.

s fala) = F& —Inv2ro
f3(r) :%-22

fila).fu(r) =152
Conclusion If an efficient estimator exists, then the channel pdf has to belong to the exponential family of
distribution.

Relation to the ML estimator

We know that the ML estimator is achieved when p(E&;a) attains its maximum, i.e.

1) -
KP(RQ a) =0
a a=anr
or, since [n is a monotone transformation,
) "
— Inp(R;a) =0
oa a=anr




If a(R) is an efficient estimator, we showed that

V = f{(a).a(R) + f}(a)

i.e. Vis a linear function of d(ﬁ)
Evaluate the above at a = ar:

We also note that the mean value of the score is zero, i.e.

E(V) = E[fi(a).a(R)+ f5(a)] =0
= f{(a)B[a(R] + fs(a) =0

s fila).a+ fyla) =0
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For a = aysy,, this yields
(L)
= aML = — 5~ 2
ML F(@arz) (2)

Comparing 1 and 2, we obtain: .
a(R) = anr
Thus the ML estimate is an efficient estimate if one exists= pdf p(ﬁ; a) belongs to the exponential family.

Note: If p(ﬁ; a) is not from the exponential family, then the ML estimate cannot be efficient; in fact, there is no
efficient estimate in that case.

Multiparameter estimation

Ak w1 is the unknown parameter and R is the observation vector.

1. Random vector A, i.e. p(A) is given.
Define the estimator error as:

(a) MMSE estimator:

The solution is the conditional mean of the parameter Ayargp = E(A|R)
(b) Maximum a posteriori (MAP) estimate is located at the global maximum of p(A|R).
R) =0

A=Apap

Vi p(A
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2. Non random parameter estimation (a priori pdf p(A) is not available).
ML estimator is given by:

vi p(BA) =0
A=An1L




Cramer Rao Bound for multiparameter estimation

Definition: An unbiased estimator has an expected value that is equal to the unknown parameter:
Ez[A(R)] = 4

Cramer Rao bound on the variance of an unbiased estimate of A:
The variance of the estimate of a;, i.e. G;(R) is bounded by

afzJi

where J? is the ith diagonal element of J~' and J is known as the Fisher information matrix whose (i,j)th
element is defined by the following;:

E[5fli 1np(]:f; _')'52]- 1np(]:f; A')] = _E[(Sa(j;aj np(]-:f; E)]
Proof: Define the ith score via
V; & % Inp(R; A)
where i = 1,2,---, K. The (4, j)th element of the Fisher information matrix is given by:
JY = E(V:V))
Also, the error for the ith element is defined by:
ei(R) 2 a;(R) — a;
Define the following vector:
€ €&
\'a 5o Inp(R; A)
[ 2| V2 | =] m; Inp(R; A)
Vi o 1n1'o(R', A)

We know that:

form=12-- K.
If A(R) is an unbiased estimate, then E(e;) =0 fori =1,2,---, K.
Thus for the vector f, we have:
€
A%
El Y2 |=p()=0

Vi



Construct the covariance matrix of I:

Q =E[[I7]

(K4+1)x(K+1)

which gives:

Q(K+1),1 ........................

where ¢;; = ¢j; = E(e;Vj_1) for j = 2,3,---, (K + 1), and J is called the Fisher Information matrix whose
(n,m)th component is E(V,,)V,,.

We use the derivative identity



Put X =¢,Y = p(é; A).
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We know that the determinant of a covariance matrix is always non negative; thus
Q>0

However . . )
Q| =02|J|+0+0+---+ (=1)l.cofactor(Ji;) + 0+ ---+0>0

—(=1)*1.cofactor(Ji;)
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where J is the (i,7)th element of J~!. Therefore: ’CR bound : o? > J%

The bound is achieved when |G| = 0.
This occurs if the components of I are linearly dependent. i.e.

€ = ZJK:1 f{,ij(A)Vj + f2/1(A>

-,

= Y05 fli(A) 5 mp(B; A) + fai(4)




For the random case of A

-,

Inp(R; A) = Inp(R|A) + Inp(A)

Thus there will be two Fisher information matrices viz. J; 514 and J i
The same procedure as the non-random case will be followed to show that

2 i
o; > Jr

where J# is the (i,7)th element of J' and

is the total Fisher information matrix.

Composite Hypotheses

H;: p(R|H;;6;)
where 9_; depends on H; and is unknown.

Objective: We are interested in deciding among H; without actually caring about 6;.
example: Data communication via FSK.

Hy: r(t) = Acos(wot + 6) + n(t)
Hy: r(t) = Acos(wit+60) + n(t)

where 6 (phase) is unknown and we are interested in deciding Hy or Hy (or wg or wy). 6 is called the unwanted
parameter.

Case 1: Random parameter:
A priori pdf p(6;|H;) is known.
Generalized likelihood ratio test (GLRT) is constructed via

_Jy, p(RIHi,0:)p(6:|Hi)db;
B feo p(R|Ho,00)p(00|Ho)dbo

Ay(R)

Case 2: Non-random parameter:
A priori pdf is unknown. To construct the LRT, use the ML estimate of ;.

maxgip(ﬁ\Hi,Gi)
mazg,p(R|Ho,00)

Az(ﬁ) -

General Gaussian problem

- For a detection problem p(R|H;) is a multivariate Gaussian.
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For an estimation problem p(E|A) is a multivariate Gaussian.
Let M be the mean of R and A b

e its covariance matrix.

Myyx1 2 E(R)

Anxn 2 E[(R - M) (R~ M)T)



where R is a multivariate normal distribution and its pdf is given by:
p) _ 1 1B \YAN-1(Pp T
p(R) = Wexp[— 3(B— M)A~ (R~ M)"]
Any linear transformation of a Gaussian vector is also Gaussian.

Spx1 = ApxnENxi

where L < N and A is a deterministic matrix with rank L. In this case, S is also multivariate Gaussian with

E(S) =AM
cov(S) = AN.AT
2 Ag

Objective: Identify a linear transformation of R that yields uncorrelated (independent) r.v.’s

R’ nx1 = WnxnRnx1

Solution:
We write:
T
D,
W= :
- T
Oy

For R’ to have uncorrelated components, the cov(ﬁ”) should be a diagonal matrix.

CO’U(R'”) _ E[(R” 7]\;[’77)(R’77 _ MW)T]

o2 0 0
a 0 o3 0
0 %

where

Substitute for &’ in the above covariance:

cov(R”)
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The (i, j)th element in cov(R") is

0 i#J

For above to be true, the ®;’s should be chosen to be the eigenvectors of the A matrix. The o?s are the eigen
values of A. These eigenvectors and eigenvalues are the solutions of

If we need, equal variances, e.g. unit variances, we can define the following ”scaled” transformation of R”.
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where
1/o1 0 0
ca_| 0 Vo o0
0 1/0’N
or
g1 0 0
= 1 0 g9 0
S . .
Hi:l g :
0 ON
Covariance of ' is cov(R') = Inxn.
cov( R' =51 cov( R” »-1T
1/01 0 0 o2 0 - 0 1/o1 0 0
1/02 0 0 o2 -~ 0 0 1/o9 - 0
1/on 0o - % 0 1/on
=T
The overall transformation is: o .
R = YW R
—_—

Note that if R is a sufficient statistic, so is R’ since there is no loss in dimensionality. In general, we can treat a
Gaussian detection/estimation problem as passing the received vector through a linear transformation
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and then designing a receiver based on R.



