EE 631: Estimation and Detection Part 5

Dr. Mehrdad Soumekh

Parameter Estimation (contd.)

In the last lecture, it was shown that the efficiency of an unbiased estimator is defined by:

$$eff(\hat{a}) = \frac{\frac{1}{I_{\vec{R}}(a)}}{var(\hat{a})} \le 1$$

The lower bound on the information inequality is achieved if the correlation between $\mathbb{V}(\vec{R}; a)$ and $\hat{a}(\vec{R})$ is +1 or -1, i.e they are perfectly correlated.

In this case, the score can be expressed as a linear function of the estimate:

$$\mathbb{V} \triangleq f_1'(a).\hat{a}(\vec{R}) + f_2'(a)$$

where $\mathbb{V} = \frac{\delta}{\delta a} \ln p(\vec{R}; a)$ and both $f_1'(a)$ and $f_2'(a)$ are invariant in \vec{R} and non-random. Integrate both sides with respect to the variable a:

$$\ln p(\vec{R}; a) = f_1(a).\hat{a}(\vec{R}) + f_2(a) + \underbrace{f_3(\vec{R})}_{\text{const. w.r.t. a}}$$

Thus the channel pdf can be expressed via the following model:

$$p(\vec{R}; a) = \exp \left[f_1(a) \cdot \hat{a}(\vec{R}) + f_2(a) + f_3(\vec{R}) \right]$$

that belongs to the exponential family of distributions. For example: Consider the Gaussian pdf

$$p(r) = N(\mu, \sigma^2) : \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(r-\mu)^2}{2\sigma^2}\right]$$

Fix σ and let $a = \mu$.

$$\therefore f_2(a) = \frac{-\mu^2}{2\sigma^2} - \ln \sqrt{2\pi}\sigma$$

$$f_3(r) = \frac{-r^2}{2\sigma^2}$$

$$f_1(a).f_n(r) = \frac{\mu}{\sigma}.\frac{r}{\sigma}$$

<u>Conclusion</u> If an efficient estimator exists, then the channel pdf has to belong to the exponential family of distribution.

Relation to the ML estimator

We know that the ML estimator is achieved when $p(\vec{R}; a)$ attains its maximum, i.e.

$$\left. \frac{\delta}{\delta a} p(\vec{R}; a) \right|_{a = \hat{a}_{ML}} = 0$$

or, since ln is a monotone transformation,

$$\left. \frac{\delta}{\delta a} \ln p(\vec{R}; a) \right|_{a = \hat{a}_{ML}} = 0$$

If $\hat{a}(\vec{R})$ is an efficient estimator, we showed that

$$V = f_1'(a).\hat{a}(\vec{R}) + f_2'(a)$$

i.e. \mathbb{V} is a linear function of $\hat{a}(\vec{R})$. Evaluate the above at $a = \hat{a}_{ML}$:

$$V|_{a=\hat{a}_{ML}} = f_1'(\hat{a}_{ML}).\hat{a}(\vec{R}) + f_2'(\hat{a}_{ML}) = 0$$

$$\Rightarrow \hat{a}(\vec{R}) = -\frac{f_2'(\hat{a}_{ML})}{f_1'(\hat{a}_{ML})}$$
(1)

We also note that the mean value of the score is zero, i.e.

$$E(\mathbb{V}) = E\left[f'_1(a).\hat{a}(\vec{R}) + f'_2(a)\right] = 0$$
$$= f'_1(a)E\left[\hat{a}(\vec{R}) + f'_2(a)\right] = 0$$
$$\therefore f'_1(a).a + f'_2(a) = 0$$
$$\therefore a = -\frac{f'_2(\hat{a})}{f'(\hat{a})}$$

For $a = \hat{a}_{ML}$, this yields

$$\Rightarrow \hat{a}_{ML} = -\frac{f_2'(\hat{a}_{ML})}{f_1'(\hat{a}_{ML})} \tag{2}$$

Comparing 1 and 2, we obtain:

$$\hat{a}(\vec{R}) = \hat{a}_{ML}$$

Thus the ML estimate is an efficient estimate if one exists $\equiv pdf \ p(\vec{R};a)$ belongs to the exponential family. Note: If $p(\vec{R};a)$ is not from the exponential family, then the ML estimate cannot be efficient; in fact, there is no efficient estimate in that case.

Multiparameter estimation

 $\vec{A}_{K\times 1}$ is the unknown parameter and \vec{R} is the observation vector.

1. Random vector \vec{A} , i.e. $p(\vec{A})$ is given. Define the estimator error as:

$$\vec{\epsilon}_{\hat{A}} = A - \hat{\vec{A}}(\vec{R})$$

(a) MMSE estimator:

$$\underbrace{\min_{\hat{A}} E\left[\vec{\epsilon}_{\hat{A}}^{T}.\vec{\epsilon}_{\hat{A}}\right]}_{\hat{A}} = \underbrace{\min_{\hat{A}}}_{\hat{A}} \left[\sum_{i=1}^{K} \{a_{i} - \hat{a}_{i}(\vec{R})\}^{2}\right]$$

The solution is the conditional mean of the parameter $\hat{A}_{MMSE} = E(\vec{A}|\vec{R})$

(b) Maximum a posteriori (MAP) estimate is located at the global maximum of $p(\vec{A}|\vec{R})$.

$$\nabla_{\vec{A}} p(\vec{A}|\vec{R}) \bigg|_{\vec{A} = \hat{A}_{MAP}} = 0$$

2. Non random parameter estimation (a priori pdf $p(\vec{A})$ is not available). ML estimator is given by:

$$\nabla_{\vec{A}} p(\vec{R}; \vec{A}) \Big|_{\vec{A} = \hat{A}_{ML}} = 0$$

Cramer Rao Bound for multiparameter estimation

Definition: An unbiased estimator has an expected value that is equal to the unknown parameter:

$$E_{\vec{R}}[\vec{\hat{A}}(\vec{R})] = \vec{A}$$

Cramer Rao bound on the variance of an unbiased estimate of \vec{A} :

The variance of the estimate of a_i , i.e. $\hat{a}_i(\vec{R})$ is bounded by

$$\sigma_i^2 \geq J^2$$

where J^i is the *i*th diagonal element of \vec{J}^{-1} and \vec{J} is known as the Fisher information matrix whose (i, j)th element is defined by the following:

$$E\left[\frac{\delta}{\delta a_i} \ln p(\vec{R}; \vec{A}). \frac{\delta}{\delta a_j} \ln p(\vec{R}; \vec{A})\right] = -E\left[\frac{\delta^2}{\delta a_i \delta a_j} \ln p(\vec{R}; \vec{A})\right]$$

Proof: Define the ith score via

$$\mathbb{V}_i \triangleq \frac{\delta}{\delta a_i} \ln p(\vec{R}; \vec{A})$$

where $i = 1, 2, \dots, K$. The (i, j)th element of the Fisher information matrix is given by:

$$J^{ij} = E(\mathbb{V}_i \mathbb{V}_i)$$

Also, the error for the ith element is defined by

$$\epsilon_i(\vec{R}) \triangleq \hat{a}_i(\vec{R}) - a_i$$

Define the following vector:

$$\vec{I}_{(K+1)\times 1} \triangleq \left[\begin{array}{c} \epsilon_i \\ \mathbb{V}_1 \\ \mathbb{V}_2 \\ \vdots \\ \mathbb{V}_K \end{array} \right] = \left[\begin{array}{c} \epsilon_i \\ \frac{\delta}{\delta a_1} \ln p(\vec{R}; \vec{A}) \\ \frac{\delta}{\delta a_2} \ln p(\vec{R}; \vec{A}) \\ \vdots \\ \frac{\delta}{\delta a_K} \ln p(\vec{R}; \vec{A}) \end{array} \right]$$

We know that:

$$E(\mathbb{V}_m) = \int_{\mathbb{Z}} \left[\frac{\delta}{\delta a_m} \ln p(\vec{R}; \vec{A}) \right] p(\vec{R}; \vec{A}) d\vec{R}$$

$$= \int_{\mathbb{Z}} \left[\frac{\frac{\delta}{\delta a_m} p(\vec{R}; \vec{A})}{p(\vec{R}; \vec{A})} \right] . p(\vec{R}; \vec{A}) d\vec{R}$$

$$= \frac{\delta}{\delta a_m} \int_{\mathbb{Z}} \underbrace{p(\vec{R}; \vec{A})}_{=1} d\vec{R}$$

$$= 0$$

$$\Rightarrow E(\mathbb{V}_m) = 0$$

for $m = 1, 2, \dots, K$.

If $\vec{A}(\vec{R})$ is an unbiased estimate, then $E(\epsilon_i) = 0$ for $i = 1, 2, \dots, K$.

Thus for the vector \vec{I} , we have:

$$E \begin{bmatrix} \epsilon_i \\ \mathbb{V}_1 \\ \mathbb{V}_2 \\ \vdots \\ \mathbb{V}_K \end{bmatrix} = E(\vec{I}) = \vec{0}$$

Construct the covariance matrix of \vec{I} :

$$Q = E[\vec{I}.\vec{I}^T]$$

$$= E\left\{ \begin{bmatrix} \epsilon_i \\ \mathbb{V}_1 \\ \mathbb{V}_2 \\ \vdots \\ \mathbb{V}_K \end{bmatrix} . [\epsilon_i \mathbb{V}_1 \cdots \mathbb{V}_K] \right\}_{(K+1)\times(K+1)}$$

$$= \begin{bmatrix} E(\epsilon_i^2) & E(\epsilon_i\mathbb{V}_1) & \cdots & E(\epsilon_i\mathbb{V}_K) \\ \vdots & \vdots & & \{E(\mathbb{V}_n\mathbb{V}_m)\} & \vdots \\ E(\epsilon_i\mathbb{V}_K) & \cdots & & \vdots \end{bmatrix}$$

which gives:

$$Q \ = \left[\begin{array}{ccccc} \sigma_i^2 & q_{1,2} & & \cdots & & q_{1,(K+1)} \\ & & \cdots & & & \cdots & & \cdots \\ \vdots & \vdots & & \vec{J} = \{E(\mathbb{V}_n \mathbb{V}_m)\} & & \vdots \\ & \vdots & & & & \vdots \\ q_{(K+1),1} & \cdots & & \cdots & \cdots & \cdots \end{array} \right]$$

where $q_{i,j} = q_{j,i} = E(\epsilon_i \mathbb{V}_{j-1})$ for $j = 2, 3, \dots, (K+1)$, and \vec{J} is called the Fisher Information matrix whose (n, m)th component is $E(\mathbb{V}_n)\mathbb{V}_m$.

$$\begin{split} q_{i,(j+1)} &= E(\epsilon_i, \mathbb{V}_j) & \forall j = 1, 2, ..., K \\ &= E[\epsilon_i \frac{\delta}{\delta a_j} \ln p(\vec{R}; \vec{A})] \\ &= E\left[\frac{\epsilon_i \frac{\delta}{\delta a_j} p(\vec{R}; \vec{A})}{p(\vec{R}; \vec{A})}\right] \end{split}$$

We use the derivative identity

$$\mathbf{X}.\mathbf{Y}' = (\mathbf{X}\mathbf{Y})' - \mathbf{X}'\mathbf{Y}$$

Put
$$\mathbf{X} = \epsilon_i$$
, $\mathbf{Y} = p(\vec{R}; \vec{A})$.

$$\begin{split} \Rightarrow & = \epsilon_i \frac{\delta}{\delta a_j} p(\vec{R}; \vec{A}) \\ & = \frac{\delta}{\delta a_j} [\epsilon_i p(\vec{R}; \vec{A})] - \frac{\delta}{\delta a_j} \epsilon_i p(\vec{R}; \vec{A}) \\ & = E \left[\frac{\frac{\delta}{\delta a_j} [\epsilon_i p(\vec{R}; \vec{A})]}{p(\vec{R}; \vec{A})} \right] - E \left[\frac{\frac{\delta}{\delta a_j} \epsilon_i p(\vec{R}; \vec{A})}{p(\vec{R}; \vec{A})} \right] \\ & = \int_{\mathbb{Z}} \left[\frac{\frac{\delta}{\delta a_j} [\epsilon_i p(\vec{R}; \vec{A})]}{p(\vec{R}; \vec{A})} \right] . p(\vec{R}; \vec{A}) d\vec{R} - \int_{\mathbb{Z}} \epsilon_i p(\vec{R}; \vec{A}) d\vec{R} \\ & = \frac{\delta}{\delta a_j} \underbrace{\int_{\mathbb{Z}} \epsilon_i p(\vec{R}; \vec{A}) d\vec{R}}_{=0 \text{ since estimate is unbiased}} - \int_{\mathbb{Z}} \frac{\delta}{\delta a_j} [\hat{a}_i - a_i] p(\vec{R}; \vec{A}) d\vec{R} \\ & = \frac{\delta}{\delta a_j} 0 - \int_{\mathbb{Z}} (-\delta_{ij}) p(\vec{R}; \vec{A}) d\vec{R} \\ & = \delta_{ij} \int_{\mathbb{Z}} p(\vec{R}; \vec{A}) d\vec{R} = \delta_{ij} \end{split}$$

Thus the covariance matrix becomes:

$$\vec{Q} = \begin{bmatrix} \sigma_i^2 & 0 & 0 & \cdots & (i+1)st \\ 0 & \cdots & & 1 & 0 & \cdots & 0 \\ 0 & \cdots & & & & \ddots & \vdots \\ \vdots & \vdots & & & & & \vdots \\ (i+1)st & 1 & \vdots - - & --- & --- & J_{ii} & & \vdots \\ \vdots & \vdots & & & & & \vdots \\ 0 & \cdots & & & & & \vdots \end{bmatrix}$$

We know that the determinant of a covariance matrix is always non negative; thus

$$|\vec{Q}| \ge 0$$

However

$$|\vec{Q}| = \sigma_i^2 |\vec{J}| + 0 + 0 + \dots + (-1)^i 1.cofactor(J_{ii}) + 0 + \dots + 0 \ge 0$$

$$\Rightarrow \sigma_i^2 \ge \frac{-(-1)^i 1.cofactor(J_{ii})}{|\vec{J}|}$$

$$\triangleq J^{ii}$$

where J^{ii} is the (i,i)th element of \vec{J}^{-1} . Therefore: CR bound : $\sigma_i^2 \geq J^{ii}$

The bound is achieved when $|\vec{Q}| = 0$.

This occurs if the components of \vec{I} are linearly dependent. i.e.

$$\begin{aligned} \epsilon_i &= \sum_{j=1}^K f'_{1,ij}(\vec{A}) \mathbb{V}_j + f'_{2i}(\vec{A}) \\ &= \sum_{j=1}^K f'_{1,ij}(\vec{A}) \frac{\delta}{\delta a_i} \ln p(\vec{R}; \vec{A}) + f_{2i}(\vec{A}) \end{aligned}$$

For the random case of \vec{A}

$$\ln p(\vec{R}; \vec{A}) = \ln p(\vec{R}|\vec{A}) + \ln p(\vec{A})$$

Thus there will be two Fisher information matrices viz. $\vec{J}_{\vec{R}|\vec{A}}$ and $\vec{J}_{\vec{A}}$. The same procedure as the non-random case will be followed to show that

$$\sigma_i^2 \geq J_T^{ii}$$

where J_T^{ii} is the (i,i)th element of J_T^{-1} and

$$J_T = \vec{J}_{\vec{R}|\vec{A}} + \vec{J}_{\vec{A}}$$

is the total Fisher information matrix.

Composite Hypotheses

$$H_i: p(\vec{R}|H_i; \vec{\theta_i})$$

where $\vec{\theta_i}$ depends on H_i and is unknown.

Objective: We are interested in deciding among H_i without actually caring about $\vec{\theta_i}$. example: Data communication via FSK.

$$H_0: \quad r(t) = A\cos(\omega_0 t + \theta) + n(t)$$

$$H_1: \quad r(t) = A\cos(\omega_1 t + \theta) + n(t)$$

where θ (phase) is unknown and we are interested in deciding H_0 or H_1 (or ω_0 or ω_1). θ is called the unwanted parameter.

Case 1: Random parameter:

A priori pdf $p(\theta_i|H_i)$ is known.

Generalized likelihood ratio test (GLRT) is constructed via

$$\begin{split} \Lambda_i(\vec{R}) &= \frac{\int_{\theta_i} p(\vec{R}|H_i,\theta_i) p(\theta_i|H_i) d\theta_i}{\int_{\theta_0} p(\vec{R}|H_0,\theta_0) p(\theta_0|H_0) d\theta_0} \\ &= \frac{p(\vec{R}|H_i)}{p(\vec{R}|H_0)} \end{split}$$

Case 2: Non-random parameter:

A priori pdf is unknown. To construct the LRT, use the ML estimate of θ_i .

$$\Lambda_i(\vec{R}) = \frac{\max_{\theta_i} p(\vec{R}|H_i, \theta_i)}{\max_{\theta_0} p(\vec{R}|H_0, \theta_0)}$$

General Gaussian problem

- For a detection problem $p(\vec{R}|H_i)$ is a multivariate Gaussian. For an estimation problem $p(\vec{R}|\vec{A})$ is a multivariate Gaussian. Let M be the mean of \vec{R} and $\vec{\Lambda}$ be its covariance matrix.

$$\vec{M}_{N \times 1} \triangleq E(\vec{R})$$

$$\vec{\Lambda}_{N \times N} \triangleq E[(\vec{R} - \vec{M})(\vec{R} - \vec{M})^T]$$

where \vec{R} is a multivariate normal distribution and its pdf is given by:

$$p(\vec{R}) = \frac{1}{(\sqrt{2\pi})^N |\vec{\Lambda}|^{1/2}} \exp \left[-\frac{1}{2} (\vec{R} - \vec{M}) \vec{\Lambda}^{-1} (\vec{R} - \vec{M})^T \right]$$

Any linear transformation of a Gaussian vector is also Gaussian.

$$\vec{S}_{L\times 1} = \vec{A}_{L\times N} \vec{R}_{N\times 1}$$

where $L \leq N$ and \vec{A} is a deterministic matrix with rank L. In this case, S is also multivariate Gaussian with

$$\begin{split} E(\vec{S}) &= \vec{A} \vec{M} \\ cov(\vec{S}) &= \vec{A} . \vec{\Lambda} . \vec{A}^T \\ &\triangleq \vec{\Lambda}_S \end{split}$$

Objective: Identify a linear transformation of \vec{R} that yields uncorrelated (independent) r.v.'s

$$\vec{R}"_{N\times 1} = \vec{W}_{N\times N} \vec{R}_{N\times 1}$$

Solution:

We write:

$$ec{W} = \left[egin{array}{c} ec{\Phi_1}^T \ dots \ ec{\Phi_N}^T \end{array}
ight]$$

For \vec{R} " to have uncorrelated components, the $cov(\vec{R})$ should be a diagonal matrix.

$$\begin{aligned} cov(\vec{R}") &= E \begin{bmatrix} (\vec{R}" - \vec{M}")(\vec{R}" - \vec{M}")^T \end{bmatrix} \\ \triangleq \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_N^2 \end{bmatrix} \end{aligned}$$

where

$$\vec{M}$$
" = $E(\vec{R}$ ") = $\vec{W}\vec{M}$

Substitute for \vec{R} " in the above covariance:

$$\begin{aligned} cov(\vec{R}") &= E \big[\vec{W} (\vec{R} - \vec{M}) (\vec{R} - \vec{M})^T \vec{W}^T \big] \\ &= \vec{W} \big[(\vec{R} - \vec{M}) (\vec{R} - \vec{M})^T \big] \vec{W}^T \\ &= \vec{W} \vec{\Lambda} \vec{W}^T \\ &\triangleq \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_N^2 \end{bmatrix} \end{aligned}$$

The (i, j)th element in $cov(\vec{R}^n)$ is

$$\vec{\Phi}_i^T \vec{\Lambda} \vec{\Phi}_j = \begin{cases} \sigma_i^2 & ; i = j \\ 0 & ; i \neq j \end{cases}$$

For above to be true, the Φ_i 's should be chosen to be the eigenvectors of the $\vec{\Lambda}$ matrix. The σ_i^2 s are the eigenvalues of $\vec{\Lambda}$. These eigenvectors and eigenvalues are the solutions of

$$|\vec{\Lambda} - \sigma^2 \vec{I}| = 0$$

If we need, equal variances, e.g. unit variances, we can define the following "scaled" transformation of \vec{R} ".

$$\vec{R'} = \vec{\Sigma}^{-1} \vec{R},$$

where

$$\vec{\Sigma}^{-1} = \begin{bmatrix} 1/\sigma_1 & 0 & \cdots & 0 \\ 0 & 1/\sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & & 1/\sigma_N \end{bmatrix}$$

or

$$\vec{\Sigma} = \frac{1}{\prod_{i=1}^{N} \sigma_i} \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_N \end{bmatrix}$$

Covariance of \vec{R}' is $cov(\vec{R}') = \vec{I}_{N \times N}$.

$$\begin{aligned} cov(\vec{R'}) &= \vec{\Sigma}^{-1}cov(\vec{R''})\vec{\Sigma}^{-1T} \\ &= \begin{bmatrix} 1/\sigma_1 & 0 & \cdots & 0 \\ 0 & 1/\sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1/\sigma_N \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_N^2 \end{bmatrix} \begin{bmatrix} 1/\sigma_1 & 0 & \cdots & 0 \\ 0 & 1/\sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1/\sigma_N \end{bmatrix} \\ &= \vec{I} \end{aligned}$$

The overall transformation is:

$$\vec{R}' = \underbrace{\vec{\Sigma}^{-1} \vec{W}}_{\vec{H}: \text{transformation matrix}} \vec{R}$$

$$\Rightarrow E(\vec{R}') = \vec{H}.\vec{M}$$
$$cov(\vec{R}') = \vec{I}$$

Note that if \vec{R} is a sufficient statistic, so is \vec{R}' since there is no loss in dimensionality. In general, we can treat a Gaussian detection/estimation problem as passing the received vector through a linear transformation

$$\vec{H} = \vec{\Sigma}^{-1} \vec{W}$$

and then designing a receiver based on \vec{R}' .