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Maximum Likelihood (ML) decision

Minimum probability of error or MAP decision rule is given by:
(C” =0 and Oij = 1, ) 7&])
Pl (R) 2001 575, Peli(F)
- decision: max[k] PkAk(é)
If a priori probabilities i.e. P;’s are not known, one option would be to assume equally probable hypotheses; i.e.
Pi=4,i=01,--,M-1
For this choice of a priori probabilities, the test becomes
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- decision: maxp pk(ﬁ) i.e. choose the hypothesis that yields the largest pk(ﬁ) or Ak(ﬁ). This receiver is known
as the maximum likelihood (ML) receiver or detector.
We showed that the decision threshold in the binary hypothesis testing, i.e.
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depends on the a priori probability Py.

Thus the statistic used for the decision making, i.e. A(R) is invariant in a priori probability Py. This implies
that the sufficient statistic is unaffected for the ML detector. Only the threshold 7 varies with P.

Minimax detector

This is also used for the case of unknown a priori probabilities.

For a given channel, the risk is a function of P, Vi=20,1,---, M — 1.

We can inspect all possible risk functions 9%(]3) in the domain of P. We then choose the P values that maximize
the risk function (worst case scenario), and set up the decision based on that a priori vector.

- decision: min[maz 3R(P)] = min[R(Praz)].
- example: Binary decision
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For minimax detector, use
A(R) Zote e Py (Cio0 — Coo)
selec 0 PI*(C()l _ Cll)

where P = (1 — Py)

Consider:
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where i = 1,---, N and o1 > 0g. Observation pdf under Hg, K = 0,1 is:
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Thus the sufficient statistic can be expressed via:
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Test: General Bayes decision
E >select Hyp v
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The r.v. I(R) = R’ is central chi-square distributed with N degrees of freedom. The distribution is central since
r;’s have zero mean.
—2 =2
E(R’|Hk) = 0%, for K =0,1. Variance of R~ decreases as N increases.

Minimum probability of error as a function of the a priori probabilities

In general, probability of error P, is given as:

P, = Py.Pp + P,.Py
— Py.Pr+ (1 — Py).Py
= Py + Po(Pr — Punr)

This expression indicates that the probability of error P. is a linear function of Py if both Pr and Py, are
invariant in Pp.
Note that in a Bayes decision rule, the threshold and as a result Pr and P, are functions of Py and nonlinear
as shown in figure 1.
In a general Bayes rule problem, Pr and Py, are defined as:

Pr = f zyHo
P
[ = fjio°>p(l|H1)dz
Minimum probability of error as a function of a priori probabilities is given by:

P. = Py.P[l > v(Py)|Ho] + (1 — Py)P[l < (Py)|Hi]

where (o) = g[n(Po)] = g(5;).
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Figure 1. Plot of Py vs. P. for Bayes decision rule
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Figure 2. Plot of Py vs. Pe
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Suppose P, . takes on its maximum value at Py = P (i.e. minimax detector with unitary cost) as shown in
figure (2)

Select the the threshold based on Py = Fj.

Therefore, n(Fy) = :—‘}Dg and v(P}) = g(lf—;gg). Once a threshold is selected based on Py = Py, then the

resultant probability of error for the actual Py is:

min

Pr(Py) = Po.Pp + (1 — o). Py
= P}, + Po(P — Pjy)

which is a linear function of Pj.
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Figure 3.

Consider the curve for PF to be as shown in figure 3. We know that P, _, (P) should always yield the
minimum probability of error. But from figure 3, we have P. , (a) > P}(«) which is not possible. Thus the

distribution of the line PS(P)

should be above the curve P,

(Py) at every point except one where the two

€min

curves touch each other. In other words, the line for P*(Pp) is a tangent to the latter curve as shown in figure 4.
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Figure 4.



This implies that P} (Py)=constant, i.e. not varying with Py

Therefore
P;(Ry) = Py + Po (P — Pyy)
=0
= Pp =Py

at the minimax point.

Neyman Pearson criterion

We wish to construct the decision problem based on the detection and false alarm probabilities.
- Criterion: Fix Pr = a and maximize Pp.
- Solution: Define the Lagrange:

,SZPD—)\(PF—Q)

where A is the Lagrange multiplier. - Substitute for Pp and Pr based on the pdf’s and the decision threshold.

£ = [, p(R|Hy)dR - \[ [, p(R|Ho)dR — o]

=Xa+ [, [p(R|Hy) - A(E|Ho)]dR

Case 1: A <0

In this case, the integrand [p(E|H:) — A(E|Ho)] is always positive. Thus the function € is maximized when the
integration is done over the largest possible region for Z, i.e Z1 = Z.

= choose H; for all E, which is not an acceptable solution.

Case 2: A >0

To achieve maximum £, we should integrate over the region in Z where the integrand is positive. i.e.

[p(R|H1) — A(R|Ho)] > 0 for R € Z.

This yields the following decision rule:

p(R|H:) Z i Ap(R|Hoy)

=
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or A(R) = Ho) Zselect H(l) A

p(

=

This is the Bayes decision rule with
_ Py(Cio — Cop)

~ Py(Co1 — C11)
To find A (the threshold), we use the fact that Pr = «, implying

)

Pr = / p(A| Ho)dA
A
Therefore, we vary A until Pr = « is achieved.

Receiver Operating Characteristics (ROC)

ROC is simply a plot of Pp vs P for a given receiver (decision rule) as a function of the parameter of interest.
Likelihood ratio test (LRT):
_ p(R|Hy)
p(R|Hp)
yields Pr and Pp as functions of parameters such as additive noise variance or average SNR, signaling type
(unipolar, bipolar) etc.
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Example
Hy: rp=A4+n;, i=1,2,..,N
Hy: ri=A1+n;

where (A, A;) are constants and n; ~' (0,02).

‘We showed that B
A() = P

p(R|Ho)
= exp {Zg\fl(ri_gz?g_(ri_’ql)2}
For general ASK signaling, we have:
53 Y select H 2 1 Y 2 2
UR) = ;(Su = Soi)ri Ziee 1l nn.op, + 3 ;(su —S6:)

(S1-80)T.R
For this example, we have Sy; = Ag and S1; = A1, Vi=1,2,...,N. Thus the test becomes:
al N
(R) =) (A1 = Ao)ri 2205 i oy, + (A — A7)
i=1

Redefine the sufficient statistic by normalizing it as:

é Zfil ri >select Hy 1nn'0n \/N(Al + AO)
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We have the following distributions which are also shown in figure 5:
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Figure 5.



Define d £ M and D = M. Therefore, the LRT becomes:

)
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Note: For unipolar ASK where Ay = 0 and D = d, the quantity representing average bit energy under Py =
P = % becomes:

D
2

1 2 2\ _ U’r2l 2
Eb—Q(A 1 +A0)—4N(D2+d)

Thus, with (d, D), we identify two important features of this form of data transmission.
a) Separation of the two hypotheses in the ! domain;
b) Average energy of the transmitter with respect to the noise power.

Performance probabilities:
Pr = fﬁ,’%Jr%p(l’Ho)dl
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Similarly
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Property: The threshold 7 for the likelihood ratio test is given by:

_ dpp
= ape

at the operating point of interest. Proof:

Pp = [ p(A|H1)dA

= le p(ﬁ|H1)dﬁ

But, we know:

or



P, o0,=0 n =20

/ (Always the right decision) /

P, = 1-Py along this line

or PM=PF , the minimax criterion

Performance gets worse . Hence, this line is called the minimax line
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Figure 6.

We also have: -
n

Therefore, using Leibnitz rule of differentiation (refer to Papoulis & Pillai, page: 181)

G = —np(n| Ho)

APE _ (| Hy)

Finally:
dPp /dn
dPp [dn
_ —np(n‘Ho) _
—p(n|Ho)
d
= 420 —



