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Maximum Likelihood (ML) decision

Minimum probability of error or MAP decision rule is given by:
(Cii = 0 and Cij = 1, i 6= j)

PmΛm(~R) ≷not Hk
not Hm

PkΛk(~R)

- decision: max[k] PkΛk(~R).
If a priori probabilities i.e. Pi’s are not known, one option would be to assume equally probable hypotheses; i.e.
Pi = 1

M , i = 0, 1, · · · ,M − 1.
For this choice of a priori probabilities, the test becomes

Λm(~R) ≷not Hk
not Hm

Λk(~R)

or pM (~R) ≷not Hk
not Hm

pK(~R)

- decision: max[k] pk(~R) i.e. choose the hypothesis that yields the largest pk(~R) or Λk(~R). This receiver is known
as the maximum likelihood (ML) receiver or detector.
We showed that the decision threshold in the binary hypothesis testing, i.e.

Λ(~R) ≷select H1
select H0

P0(C10 − C00)
P1(C01 − C11)

, η

depends on the a priori probability P0.

Thus the statistic used for the decision making, i.e. Λ(~R) is invariant in a priori probability P0. This implies
that the sufficient statistic is unaffected for the ML detector. Only the threshold η varies with P0.

Minimax detector

This is also used for the case of unknown a priori probabilities.
For a given channel, the risk is a function of Pi ∀ i = 0, 1, · · · ,M − 1.
We can inspect all possible risk functions R(~P ) in the domain of ~P . We then choose the ~P values that maximize
the risk function (worst case scenario), and set up the decision based on that a priori vector.

- decision: min[max~P R(~P )] = min[~R(~Pmax)].

- example: Binary decision

Λ(~R) ≷select H1
select H0

η =
P0(C10 − C00)
P1(C01 − C11)

For minimax detector, use

Λ(~R) ≷select H1
select H0

η∗ =
P ∗0 (C10 − C00)
P ∗1 (C01 − C11)

where P ∗1 = (1− P ∗0 )

Consider:
H0 : ri

iid∼ N(0, σ2
0)

H1 : ri
iid∼ N(0, σ2

1)



where i = 1, · · · , N and σ1 > σ0. Observation pdf under HK , K = 0, 1 is:

p(~R
∣∣HK) =

1
(
√

2πσK)N
exp

[
−

∑N
i=1 r2

i

2σ2
K

]

Likelihood function:

λ(~R) =
p(~R

∣∣H1)

p(~R
∣∣H0)

=
(

σ0
σ1

)N
exp

[
1
2 ( 1

σ2
0

+ 1
σ2
1
)
∑N

i=1 r2
i

]
≷select H1

select H0
η

Log-likelihood function:

ln λ(~R) = N ln
(σ0

σ1

)
+

[
1
2

(
1
σ2

0

+
1
σ2

1

) N∑

i=1

r2
i

]
≷select H1

select H0
ln η

Thus the sufficient statistic can be expressed via:

l(~R) =
1
N

N∑

i=1

r2
i

︸ ︷︷ ︸
R

2

≷select H1
select H0

ln η + N ln σ1
σ0

N
2

(
1

σ2
0
− 1

σ2
1

) , γ

Test: General Bayes decision
R

2 ≷select H1
select H0

γ

The r.v. l(~R) = R
2

is central chi-square distributed with N degrees of freedom. The distribution is central since
ri’s have zero mean.
E(R

2∣∣HK) = σ2
K , for K = 0, 1. Variance of R

2
decreases as N increases.

Minimum probability of error as a function of the a priori probabilities

In general, probability of error Pe is given as:

Pe = P0.PF + P1.PM

= P0.PF + (1− P0).PM

= PM + P0(PF − PM )

This expression indicates that the probability of error Pe is a linear function of P0 if both PF and PM are
invariant in P0.
Note that in a Bayes decision rule, the threshold and as a result PF and PM are functions of P0 and nonlinear
as shown in figure 1.
In a general Bayes rule problem, PF and PM are defined as:

PF =
∫∞

γ(P0)
p(l

∣∣H0)dl

PM =
∫ γ(P0)

−∞ p(l
∣∣H1)dl

Minimum probability of error as a function of a priori probabilities is given by:

Pe = P0.P [l > γ(P0)
∣∣H0] + (1− P0)P [l < γ(P0)

∣∣H1]

where γ(P0) , g[η(P0)] = g( P0
1−P0

).
η(P0) = P0

1−P0
with C00 = C11 = 0 and C10 = C01 = 1.
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Figure 1. Plot of P0 vs. Pe for Bayes decision rule
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Figure 2. Plot of P0 vs. Pemin

Suppose Pemin takes on its maximum value at P0 = P ∗0 (i.e. minimax detector with unitary cost) as shown in
figure (2)
Select the the threshold based on P0 = P ∗0 .
Therefore, η(P ∗0 ) = P∗0

1−P∗0
and γ(P ∗0 ) = g( P∗0

1−P∗0
). Once a threshold is selected based on P0 = P ∗0 , then the

resultant probability of error for the actual P0 is:

P ∗e (P0) = P0.P
∗
F + (1− P0).P ∗M

= P ∗M + P0(P ∗F − P ∗M )

which is a linear function of P0.
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Figure 3.

Consider the curve for P ∗e to be as shown in figure 3. We know that Pemin(P0) should always yield the
minimum probability of error. But from figure 3, we have Pemin(α) > P ∗e (α) which is not possible. Thus the
distribution of the line P ∗e (P0) should be above the curve Pemin(P0) at every point except one where the two
curves touch each other. In other words, the line for P ∗e (P0) is a tangent to the latter curve as shown in figure 4.
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This implies that P ∗e (P0)=constant, i.e. not varying with P0

Therefore
P ∗e (P0) = P ∗M + P0 (P ∗F − P ∗M )︸ ︷︷ ︸

=0

⇒ P ∗F = P ∗M

at the minimax point.

Neyman Pearson criterion

We wish to construct the decision problem based on the detection and false alarm probabilities.
- Criterion: Fix PF = α and maximize PD.
- Solution: Define the Lagrange:

L = PD − λ(PF − α)

where λ is the Lagrange multiplier. - Substitute for PD and PF based on the pdf’s and the decision threshold.

L =
∫
Z1

p(~R
∣∣H1)d~R− λ

[ ∫
Z1

p(~R
∣∣H0)d~R− α

]

= λα +
∫
Z1

[
p(~R

∣∣H1)− λ(~R
∣∣H0)

]
d~R

Case 1: λ < 0
In this case, the integrand

[
p(~R

∣∣H1)− λ(~R
∣∣H0)

]
is always positive. Thus the function L is maximized when the

integration is done over the largest possible region for Z, i.e Z1 = Z.
⇒ choose H1 for all ~R, which is not an acceptable solution.
Case 2: λ > 0
To achieve maximum L, we should integrate over the region in Z where the integrand is positive. i.e.[
p(~R

∣∣H1)− λ(~R
∣∣H0)

]
> 0 for ~R ∈ Z1.

This yields the following decision rule:

p(~R
∣∣H1) ≷select H1

select H0
λp(~R

∣∣H0)

or Λ(~R) =
p(~R

∣∣H1)

p(~R
∣∣H0)

≷select H1
select H0

λ

This is the Bayes decision rule with

λ , η =
P0(C10 − C00)
P1(C01 − C11)

To find λ (the threshold), we use the fact that PF = α, implying

PF =
∫ ∞

λ

p(Λ
∣∣H0)dΛ

Therefore, we vary λ until PF = α is achieved.

Receiver Operating Characteristics (ROC)

ROC is simply a plot of PD vs PF for a given receiver (decision rule) as a function of the parameter of interest.
Likelihood ratio test (LRT):

λ =
p(~R

∣∣H1)

p(~R
∣∣H0)

≷select H1
select H0

η

yields PF and PD as functions of parameters such as additive noise variance or average SNR, signaling type
(unipolar, bipolar) etc.



Example
H0 : ri = A0 + ni i = 1, 2, ..., N
H1 : ri = A1 + ni

where (A0, A1) are constants and ni
i.i.d∼ (0, σ2

n).
We showed that

Λ(~R) =
p(~R

∣∣H1)

p(~R
∣∣H0)

= exp

[PN
i=1(ri−A0)

2−(ri−A1)
2

2σ2
n

]

For general ASK signaling, we have:

l(~R) =
N∑

i=1

(S1i − S0i)ri

︸ ︷︷ ︸
( ~S1− ~S0)T . ~R

≷select H1
select H0

ln η.σ2
n +

1
2

N∑

i=1

(S2
1i − S2

0i)

For this example, we have S0i = A0 and S1i = A1, ∀ i = 1, 2, ..., N . Thus the test becomes:

l(~R) =
N∑

i=1

(A1 −A0)ri ≷select H1
select H0

ln η.σ2
n +

N

2
(A2

1 −A2
0)

Redefine the sufficient statistic by normalizing it as:

l(~R) ,
∑N

i=1 ri√
Nσn

≷select H1
select H0

ln η.σn√
N(A1 −A0)

+
√

N(A1 + A0)
2σn

We have the following distributions which are also shown in figure 5:

l
∣∣H0 ∼ N

(√
NA0
σn

, 1
)

l
∣∣H1 ∼ N

(√
NA1
σn

, 1
)

Figure 5.



Define d ,
√

N(A1−A0)
σn

and D ,
√

N(A1+A0)
σn

. Therefore, the LRT becomes:

l(~R) ,
∑N

i=1 ri√
Nσn

≷select H1
select H0

ln η

d
+

D

2

Note: For unipolar ASK where A0 = 0 and D = d, the quantity representing average bit energy under P0 =
P1 = 1

2 becomes:

Eb =
1
2
(A− 12 + A2

0) =
σ2

n

4N
(D2 + d2)

Thus, with (d,D), we identify two important features of this form of data transmission.
a) Separation of the two hypotheses in the l domain;
b) Average energy of the transmitter with respect to the noise power.

Performance probabilities:
PF =

∫∞
ln η

d + D
2

p(l
∣∣H0)dl

=
∫∞

ln η
d + D

2

[
1
2π e

{
− (l−

√
NA0
σn

)2

2

}]
dl

= erfc∗
(

ln η
d + D

2 −
√

NA0
σn

)

Similarly
PD =

∫∞
ln η

d + D
2

p(l
∣∣H1)dl

= erfc∗
(

ln η
d + D

2 −
√

NA1
σn

)

Property: The threshold η for the likelihood ratio test is given by:

η =
dpD

dPF

at the operating point of interest. Proof:

PD =
∫∞

η
p(Λ

∣∣H1)dΛ

=
∫
Z1

p(~R
∣∣H1)d~R

But, we know:

Λ(~R) =
p(~R

∣∣H1)

p(~R
∣∣H0)

or
p(~R

∣∣H1) = Λ(~R).p(~R
∣∣H0)

We substitute this in the expression for PD:

PD =
∫

Z1

Λ(~R).p(~R
∣∣H0)d~R

Rewrite the above in terms of Λ
∣∣H0:

PD =
∫ ∞

η

Λ.p(Λ
∣∣H0)dΛ



PD

PF1

1

0

PD = 1-PF along this line

or PM=PF , the minimax criterion

Hence, this line is called the minimax line

(Always the right decision)

Performance gets worse

Figure 6.

We also have:
PF =

∫ ∞

η

p(Λ
∣∣H0)dΛ

Therefore, using Leibnitz rule of differentiation (refer to Papoulis & Pillai, page: 181)

dPD

dη = −ηp(η
∣∣H0)

dPF

dη = −p(η
∣∣H0)

Finally:
dPD/dη
dPF /dη

=
−ηp(η

∣∣H0)

−p(η
∣∣H0)

= η

⇒ dPD

dPF
= η


