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1 Abstract

In this paper a technique is developed for the generation of filters
for pulse compression sidelobe reduction. This technique has two
advantages over the standard Wiener filtering technique. Firstly, it
minimizes sidelobe energy over multiple input sequences, and secondly
it can shape the sidelobe energy through the application of a weighting
function that indicates which sidelobes are most important to reduce.
Two example applications are provided, showing the effectiveness of
this technique in generating filters for orthogonal code pairs and in
generating filters for compressions with low sidelobes near the main
peak.

2 Introduction

Biphase pulse compression is widely used in radar systems. In biphase
compression a transmit signal is phase-modulated with a binary code,
i.e. the phase of the transmit signal is 0 degrees relative to a local
reference for a “+1” in the binary code, and 180 degrees for a “—17.
In general the compressed waveform is obtained by correlating the
received signal with the binary code that was used to modulate the
phase of the transmit signal. This is referred to as matched filtering.

The correlation function for a biphase code is invariably contam-
inated with range sidelobes. Several techniques exist that generate
mismatched filters to minimize these range sidelobes. The sidelobe
reduction available through the use of mismatched filtering varies de-
pending on the code and type of mismatched filter being used, and
also varies depending on the length of the filter (the code and filter
may be of different lengths.) Several techniques [1, 2, 3, 4, 5] minimize
the total energy in the range sidelobes (the integrated sidelobe level,
or ISL, of the compressed pulse). Linear programming techniques
have been applied to the problem of minimizing the peak sidelobe {6].

The technique described in this paper uses an approach similar
to that of the integrated sidelobe level reduction techniques, but gen-
erates a filter that minimizes sidelobe energy for multiple input se-
quences, and allows for specification of the importance of reducing
specific range sidelobes.

3 Definitions

Biphase pulse compression relies on the correlation function:
P
si=Y ziaii, i=-p,..p, 1)
i=0

where s; is the correlator output at bin number i, z; is code bit 7,
and q; is filter bit j. Here it is also assumed that p is an integer
representing the greater of the code and filter lengths, and that the
code is zero-padded to the same length as the filter. The term biphase
is used to indicate that the transmit code bits (z;) are either +1 or
-1; indicating either 0 degrees or 180 degrees phase shift relative to
a local reference. A polyphase signal is one for which the phase may
assume values other than 0 and 180 degrees.

A significant problem inherent in biphase pulse compression is that
the correlation of the receive signal and its matched filter does not
yield a perfect impulse; i.e., it does not yield s; = 0 for all ¢ # 0 as it
ideally might. Any s; term for ¢ # 0 is referred to as a range sidelobe.
The zero-offset correlation value (so) is referred to as the main peak.
The difference between a pulse compression waveform and a simple
pulse waveform may be found primarily in the existence and values
of these sidelobes. The size of the main peak of an autocorrelation
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is a measure of the signal-to-noise (S/N) ratio improvement that is
attained through the use of the given code. The longer the code, the
better the S/N ratio improvement. The sidelobes can greatly limit
the usefulness of a code regardless of the strength of the main peak.
This is because the sidelobes are effectively “self-noise” which may
be much larger than system noise, and nullify many of the benefits of
using pulse compression in the first place. Codes are usually chosen for
a given application based on their length (for $/N ratio and resolution
improvements) and their sidelobe levels.

There are two frequently used sidelobe measures. The first is the
peak sidelobe level, or PSL. The peak sidelobe is simply the largest
sidelobe in the correlation of a code and its filter. The peak sidelobe
level is usually expressed as a ratio of the peak sidelobe to the main
peak and is expressed in decibels. The second measure is the inte-
grated sidelobe level, or ISL. This refers to the total energy in all of
the sidelobes. It is usually expressed as a ratio of the total sidelobe
energy to main peak energy and is expressed in decibels. The main
peak will be degraded when mismatched filtering is used.

As mentioned above, when mismatched filtering is used, the main
peak will not be as large as it would have been with matched filtering.
This loss is referred to as the loss in processing gain, or LPG. LPG

is expressed in decibels as the ratio of the mismatched peak to the
matched peak.

4 Weighted Sidelobe Reduction Filtering

In this section the mathematical basis for weighted sidelobe reduc-
tion filtering will be given. The derivation is a generalization of the
derivations given in [4] for Wiener filters and in [7] for Optimal ISL
filters. Figure 1 illustrates standard Wiener filtering. The input to
the filter is z(n); the filter weights are a(n); the desired output is
d(n); and the error is e(n) = d(n) — [z(n) * a(n)]. Wiener filtering
minimizes the expected error 3, |e(n)|2.

The Wiener filtering technique will now be modified to generate
a single filter that minimizes the energy in the difference between
the desired output of the correlation of a set of codes with the filter
and the actual correlator output. A weighting function is included
so that errors in definable regions of the correlation sidelobes of cer-
tain codes with the filter may be counted more heavily than other
sidelobes. Figure 2 shows a diagram for Weighted Mismatched Fil-
tering. The changes as compared with Figure 1 are the additional
dimensions for the sequences z, d, and e, and the energy weighting
function w(n,m). The terms z(n,m), d(n,m), e(n,m), and a(n) are
all complex; w(n,m) is real. The only unknown is the sequence a(n).

The problem now is to minimize
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where [ is the row dimension of z, i.e. the number of codes, p is
the length of the code, and e* is the complex conjugate of e. The
summation over n = —p,—p+ 1,...,p — 1,p encompasses all range
sidelobes, and the summation over m = 1,...,m encompasses the
multiple input sequences. Note that the error term may be expressed
as
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Figure 1: Standard Wiener Filtering
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Figure 2: Weighted Mismatch Filtering
P
e(n,m) = w(n,m) [d(n, m)— Z z(i,m)a(i — n)} . (3)
i=0

The problem is to find a(n), for all n, such that E will be a mini-
mum. The method is to set agl'i =0 for k=0,...,p. The real and
imaginary parts may be workez separately; thus, set

9E  9E
da, (k) ~ dai(k)

k=0,...,p, (4)

where a, is the real part of a, and g; is the imaginary part. Taking the

partial derivative with respect to a,(k) of both sides of Eq. 2 gives:
3

Z Z[ e(n, m)aa( e*(n,m)+

m=1n=—p

aa (k)
e*(n, m)me(n,m) ]. (5)

Eq. 3 may be used to calculate the derivatives of e(n, m) and e*(n,m):

)
e(n,m) = w(n,m) [d(n, m)— 2 z(i,m)a(i — n):| (6)
i=0
= w(n,m) [d(n, m) =Y a(i, m)la.(i — n) + jai(i - n)]:l
=0
s0 2
Ws(n, m) = —w(n,m)z(n+ k,m) (7)
and 3
me*(n, m) = —w(n,m)z*(n + k,m). (8)
So Eq. 5 becomes
OF ] P

pam - 2 2|

e(n, m)w(n, m)z*(n + k,m) +

e*(n,m)w(n,m)z(n+k,m)}. (9)
Since one term in the summation is the complex conjugate of the

other, and the terms are added together, Eq. 9 may be simplified as:

OFE
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Similarly, for the imaginary part:
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and s
—aa’_(k)e(n, m) = —jw(n, m)z(n + k)®(n + k, m) (12)
and R
met(n,m) = jw(n,m)z*(n + k,m). (13)
So Eq. 11 becomes
OE L2
BB = 2 2 | Telmmetnm(nt kym) -

je*(n,m)w(n,m)z(n + k,m)]. (14)

Since one term in the summation is the complex conjugate of the
other, and the second term is subtracted from the first, Eq. 14 may
be simplified as:

OE L&
Ba(h) = =23 3" Sle(n,m)w(n, m)z"(n+ k,m).  (15)

m=1ln=-p

Remembering that the partials are set to zero, adding Eq. 10 to Eq. 15
gives

i P
Z Z e(n,m)w(n,m)z*(n + k,m) = 0. (16)
m=1n=—p

Substituting Eq. 3 into Eq. 16 gives

! P |4
3 Y win,m)z*(n+ k,m) |d(n,m) - Z:z(i,m)a(i —n)
m=1ln=-p i=0 (17)
which can be written as
I P 4
E z w(n, m)z*(n+ k, m)w(n,m)z z(i,m)a(i — n) =
m=1n=-p =0
[
S Z w¥(n,m)e™(n + k, m)d(n, m). (18)

m=1n

Since there are p + 1 unknowns (the filter weights) and p + 1 linear
equations in the unknowns a(k) (one equation for each k in Eq. 4,
and therefore in Eq. 18), this may be rewritten in matrix form as
RA =Y, where Ry is the coefficient of a(!) in equation k. Then,
Ri, and Y}, are given by:

w?(n, m)z*(n + k,m)z(l + n,m) (19)
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The values for the filter weights, a(i), may be obtained by multiplying
= (Yi) by the inverse of R.

5 Tracking Waveform Filters

Weighted Mismatched Filtering may be used to generate filters that
produce relatively sidelobe-free regions within the correlation. Such
filters may be of use in tracking applications or in target recognition
systems, where it may be particularly desirable to have low sidelobes
close to the main peak. By appropriately choosing a weighting func-
tion to represent this requirement, very low close-in sidelobes may be
achieved at the expense of higher sidelobes farther out.

Figures 3 and 4 show a twenty bit MPS (minimum peak sidelobe)
code correlated with its matched filter and with a 32-bit Optimal ISL
filter. Figure 5 shows the compression of the 20 bit MPS code through
a 32 bit tracking filter designed for a 30 bin null region around the
peak. The weighting function weighted the peak by a value of 0.5,
sidelobes near the peak by 1.0, and outer sidelobes by 0.001. The
sidelobes near the peak are effectively eliminated over a 30 bin region,
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Figure 5: 20 Bit MPS Code, 30 Bin Tracking Filter

though the peak sidelobe has risen by about 6 dB. The LPG is 0.5 dB
for the Optimal ISL filter and 1.2 dB for the tracking filter. The width
of the achievable null region is limited; if the specified null region is
too wide, then it is impossible to achieve zero sidelobes over the full

region, and the resulting filter will be very similar to the Optimal ISL
filter.

6 Orthogonal Filtering

In this report, the term Orthogonal Filter refers to a filter that cor-
relates well with one code and is relatively “blind” to another code.
That is, the peak value of either code’s correlation with its respec-
tive filter should be substantially greater than the peak of the cross-
correlation of either of the codes with the other code’s filter. For two
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codes to be considered truly orthogonal, the cross-correlation of the
two codes should be identically zero. Orthogonal coding may be of
use in polarimetrics, where the polarization scattering matrix might
be generated on a single pulse if the two polarization channels are
coded orthogonally. Orthogonal coding may also be of use in com-
munication systems for channel multiplexing, or in radar scenarios
where more than one radar may be using the same frequency in a
given arena.

Weighted Mismatched Filtering offers a chance of generating a
filter that minimizes the energy in the sidelobes of the correlation of
the code for which good compression is desired plus the energy in the
correlation of filter with the code for which orthogonality is desired.
To this end, let the number of codes { = 2 and z(n,1) = c1(n) be
a code for which a large peak and low sidelobes are desired and let
z(n,2) = ¢ca(n) be a code for which the filter is to be as orthogonal
as possible; i.e. ¢; correlated with the filter should be near zero at all
taps. The weighting function may be set to unity for all n for both
m =1 and m = 2, and d(n,m) may be set to zero everywhere but
the peak of the first code; i.e., d(n,m) =0forn # 1 or m # 1, and
d(0,1) = 1.

In previous work (8, 9], MPS codes with good orthogonality were
discovered. Figure 6 shows the autocorrelation of one of a pair of 17
bit MPS codes that were noticed for their natural orthogonality. This
code will be referred to as code A. Figure 7 shows the cross-correlation
of code A with its counterpart, code B.

The weighting function described above was used to generate a
filter that compressed well with code A and was as orthogonal as
possible to code B. Figures 8 and 9 show the correlations of codes A
and B, respectively, with the Optimal Orthogonal Filter. Though not
obvious from the plots, the overall sidelobe energy (the sum of the
sidelobe energy in Figure 8 and the total energy in Figure 9) drops
by about one decibel for the Optimal Orthogonal Filter. Since the
length of the filter is 51 bits, it is not expected that a much longer
filter would improve the results significantly. Further analysis showed
that the Optimal Orthogonal Filter was negligibly. better than the
Optimal ISL filter in terms of total sidelobe energy. Analysis for other
codes showed some variation in performance, though no codes were
found for which the Optimal Orthogonal Filter showed significant
improvement over Optimal ISL filtering.

Given the disappointing results for orthogonality using the weight-
ing function described above, a weighting function was defined for gen-
erating filters that minimized sidelobes in a region of the compressed
waveforms rather than over the full sidelobe extent. The weighting
function was set equal to 1.0 for the 8 sidelobes closest to the peak
of the correlation of the filter and code A, and the 8 sidelobes at the
center of the correlation of the filter and code B. This proved to be
more effective. Figures 10 and 11 show the compressions of code A
and code B with the filter generated with this new weighting function.
The sidelobe energy in the eight bins around the peak are essentially
zero for both code A and code B. Note that the peak for code A has
dropped by about three dB from the matched filter. An orthogonal
filter was also generated to provide good compression with code B
and low correlation with code A. The results are not shown here but
are similar to that shown in Figures 10 and 11.

Preliminary attempts to enlarge the null region for these particular
codes were not successful, though it may be possible to obtain a larger
null region for longer codes and filters.

7 Summary

The weighted mismatched filtering described in this paper makes it
possible to generate filters that minimize the sidelobes in specific re-
gions of the correlation of a number of input codes. This general-
ization of other optimal mismatched filtering techniques allows the
sidelobe energy to be shaped rather than simply reduced.

Weighted Mismatched Filtering has been applied to two different
applications. It proved to be very effective at producing filters for
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Figure 11: Code B Compression, 8 Bin Null Region Orthogonal Filter

tracking waveforms by producing wide null regions around the main
peak. These filters may also be of use in high range resolution sig-
nature measurements if the codes and filters utilized are sufficiently
long to permit null regions significantly wider than the target extent.

The results for orthogonal filtering were poor when orthogonality
was desired over all range bins, but was very effective at producing
null regions near the compression peak. These null regions, and larger
null regions for longer codes, if attainable, may be utilized for single
pulse measurement of the polarization scattering matrix or for channel
multiplexing in communications systems.
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