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A New Algorithm to Optimize Barker Code Sidelobe
Suppression Filters

Binary coding waveform sidelobe reduction after matched
filtering is an active research topic both in radar system and, in
some cases, spread spectrum communication applications. The
authors suggest a new algorithm and present a rather general
method, by which optimized sidelobe suppression filters for Barker
codes can be obtained with the peak output sidelobe 2.62 dB lower
than the results found in the literature (for 13 bit Barker code).
This optimization algorithm is promising also for other binary
(PN) es

1

coding waveforms, such as truncated pseud

and concatenated codes.

I. INTRODUCTION

Because of their unique autocorrelation properties,
some binary codes, such as Barker codes, are often
found in modern pulse radars. They yield a pulse
compression waveform by which the radar can achieve
a relatively high range resolution with low average
power. Barker coding waveforms are sometimes used
also in spread spectrum communication, especially in
asynchronous direct sequence systems [2] because of
the simplicity to implement their correlation.

The following characteristic features for a pulse
suppression filter are important: the output peak
sidelobe level (PSL), the output mean square sidelobe
level (MSSL), the loss in signal-to-noise ratio as
compared with the matched filter (LSNR), and the
complexity of hardware structure. In the application
of high resolution synthetic aperture radars the mean
square sidelobe level should be as low as —25 to —30
dB and the moving target indicator (MTI) radars
require a sidelobe level performance at least as good
as the synthetic aperture radars, in order to assure
certain low reflectivity or “blind zone”. The pulse
doppler (PD) radars require the maximum sidelobe to
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be lower than —30 dB to prevent a sidelobe of a strong
echo from masking the main lobe of a weak echo.
Unfortunately, after matched filtering the peak
sidelobes for 11 bit and 13 bit Barker codes are —20.83
dB and —22.28 dB, respectively, far from the required
level of —30 dB or lower. In order to further suppress
the sidelobes, there are generally two methods which
have currently often been used: one is utilizing an
additional weighting network after the matched
filter. One possibility is the R-G sidelobe reduction
filters which were first introduced by A. W. Rihaczek
and R. M. Golden in [3], and synthesized in the
frequency domain. They offer a simple structure and
an acceptable performance. But the method suggested
in [3] cannot be applied to binary code waveforms with
negative sidelobes. Further analysis has also shown
that the R-G filters in [3] are not optimized from the
viewpoint of minimum range sidelobes. Another way
to reduce the sidelobes is to design a mismatch filter
directly, as presented in [5 and 6], instead of adding a
weighting network after the matched filter. S. Zoraster
has shown how to get minimum peak sidelobes with
a linear programming (LP) algorithm [5]. When the
length of the weighting sequence of the LP filters
becomes long enough, the peak sidelobes and the
MSSLs can reach a satisfactory value. But the price
is complexity of the filter hardware and greater loss in
signal-to-noise ratio at the output, as shown in Fig. 4.
Here the author tries to bring forward a new
general way which combines the advantages of the
two methods introduced above. It is deduced that
no matter of which polarity, negative or positive, the
sidelobes of the autocorrelation function are, the
transfer function of the sidelobe suppression filter can
be fitted with a polynomial expansion series in the
frequency domain, which consists of some unknown
expansion coefficients. With these coefficients the
transfer function of the filter can be approximated
by a limited number of polynomial terms. Then by
applying the inverse Fourier transformation and LP
in the time domain, the unknown coefficients can be
determined. Substituting the unknown coefficients in
the filter transfer function by the determined ones,
an optimized R-G filter, here called (R-G)qpy filter,
is obtained. The output peak sidelobe of (R-G)gp is
much lower than in the corresponding R-G filter. For
example, the peak sidelobe of (R-G-2)op is 2.62 dB
lower than that of an R-G-2 filter. It is quite clear that
this method can be applied to sidelobe suppression in
other binary coding waveforms too.

Il.  SIDELOBE REDUCTION OPTIMIZATION IN TIME
DOMAIN

A. Linear Programming Filters

Let us first consider the way to design the LP
mismatched filters [5], the structural diagram of which
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(C)

Fig. 1.

Tapped delay line LP filter.

is shown in Fig. 1. The transmitted binary-coded
waveform is represented by the real elements {D;}
with D; = +1and 1 <i < N. The M filter weights are
represented by W; with M > N. For both symmetry
and mathematical simplicity M is assumed to be odd
if N is odd, and even if N is even. Then consider the
following LP problem:

M
J= maxZI'ViDi—(M—N/Z)

i=1

(Di=0,i<0ori>N)

(1a)
subject to the inequality:
M
Y _WiDi| <1,
i=1
1-N<k<M-1, k# (M—;NQ (1b)
The constraints above can be rewritten as
M
Y WiDix<1
i=1
and
M
- ZWiDi—k >1,
i=1
M—-N
1-N<k<M-1, k;é(—z—). )

So, we have a linear objective function with M
variables and 2(M + N — 2) linear inequality
constraints. It can be solved in a finite number of steps
by an iterative and monotonic simplex algorithm to
obtain M weights {W;}. In order to meet the need for
an at most —30 dB peak sidelobe, the tapped delay line
of Fig. 1 is longer than 30 taps, resulting in a rather
complicated structure.

B. Optimized R-G Filters

Next we try to find a more practical alternative
way to implement Barker code sidelobe reduction
filters. Because the R-G filters presented in [3] have
simpler hardware structures, we use this advantage and
try to enhance their performance by an optimization
algorithm to meet our needs. For simplicity, we

consider an 11 bit Barker code, which possesses the
autocorrelation function R(¢). Note that R(¢) can also
be rewritten as two subfunctions, R,,(¢) and R,(z),
representing the contributions of the main lobe and
the sidelobes, respectively. Each subfunction has its
own known Fourier transform pair. The convolution of
the subfunctions yields R(z):

R(t) = Ru(t)*RA(2). )

By using the Fourier transformation in (3), we obtain
the energy density spectrum of an 11 bit Barker code:

E(f) = En(N)Es(f) (4a)
where
.2
En(f) = T (40)
Es(f)=N+l—Sin(27rfNT) ()

21fT

and E, (f) and E(f) represent the spectrum
contribution of the main lobe and the sidelobes,
respectively. It is obvious that if we could find a
network which has a transfer function 1/E;(f), then
the sidelobes in every range cell would vanish. Often
it is rather difficult to synthesize a filter with a transfer
function exactly equal to 1/E;(f). But the closer the
transfer function of the filter approximates 1/E(f),
the lower the peak output sidelobe will be. From (4c)
we obtain for the required transfer function:

1 1
H({) = E(f) N 41 SnCrfNT)" )
2 fT

For any f, the following inequality is always true,

1 sin27fNT)
— <L 6
N+1 25T < ©)
So (5) can be expanded into a convergent exponential
series. For simplicity, only the first four terms of the
series are retained in H(f). That is,

N sin2nfNT)
H(f)~A+B B
sin2rfNT)\? sin27fNT)\?
re ) o )

™

where A4, B, C, and D are unknown coefficients

and are determined later. If we let 4, B#0, C =

D =0, then H(f) will be a first-degree polynomial
approximation, resulting in an (R-G-1)y filter; if

A, B, C #0, and only D =0, then H(f) will be

a second-degree approximation, resulting in an
(R-G-2)op filter, and so forth. Obviously, the higher
the degree of the approximating polynomial, the lower
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the peak output sidelobe will be, and, of course, the
more complicated the filter structure will be.

In order to utilize the LP algorithm to solve the
unknown coefficients 4, B, C, and D above, we
transform H(f) to its impulse response by an inverse
Fourier transformation. We note that

. (N-1)/2
sin(2rfNT) Z
—— 6@t —2nT). ®)
2nfT e o2

So the impulse response corresponding to H(f) is of
the form

(N-1/2
h(ty~ AS@)+B ) &(t—2nT)
n=—(N-1)/2
N-1
+C ) (N-|n])é@—2nT)
n=—N+1

N-1
+D< > (N—|n|)t$(t—2nT))
n=~N+1

N-1)/2
* > é@-2mT)|. ©)
m=—(N-1)/2

We see that A(f) is a delta function sequence and can

be sampled every T seconds. The sampled sequence is
a discrete set {;} (i =0,+1,%2,...). We let the input

signal be the discrete autocorrelation sequence of the

Barker code {R;}. It is for an 11 bit Barker code:

N i=0
Ri={-1 i=+214,. 410 (10)
0 e w.
The discrete convolution between {#;} and {R;}
{yi} = {Ri}*{h:}, i=0,+1,%+2,... (11)

is the output waveform of the sidelobe suppression
filter. For the sake of convenience, we discard the
fourth term in (9), i.e,, let D = 0. By (11) we will
get an LP model for an (R-G-2), filter. The output
waveform of (11) is shown in Fig. 2, in which Fig. 2(a)
shows the convolution between the first term in (9)
and R(z), Fig. 2(b) that between the second term in (9)
and R(z), and Fig. 2(c) that between the third term and
R(2).

From the sum of the three waveforms in Fig. 2 we
obtain the following LP model, in which the objective
function is

J = max(114 + B +41C) (12a)
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Fig. 2. (R-G-2)op filter output waveform for 11 bit Barker code

(only right half plotted because of symmetry).

subject to the constraints

|-A+2B+30C| <15
|-A+3B+21C| <15
|-A+4B +14C| <15
|—A+5B+9C| <15
[—A+6B+6C|<15
|-SB+5C|<15
|-4B +3C| <15
|-3B|<15
| -2B—-4C| <15
|-B-9C|<15
|-15C| <15,

A,B,C >0. (12b)

It can again be solved in a limited number of
successive steps by an iterative monotonic simplex
algorithm to get the coefficients A4, B, and C. Inserting
the resulting 4, B, and C into (7), the optimized
sidelobe reduction filter (R-G-2),y is obtained. Fig. 3
shows its structural diagram, from which it can be seen
that there are only two independent weights, B/ A4 and
C/A, and six delay elements. As compared with Fig. 1,
it is much easier to implement.

ill.  PERFORMANCE ANALYSIS OF OPTIMIZED
FILTERS
Using the algorithm above, we obtain the
coefficients for (R-G-1)opt, (R-G-2)opt, and (R-G-3)op,
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TABLE 1 Filter length
Optimized Coefficients of (R-G)op Filters for 11 and 13 Bit Barker B A B Y BV 4o e on T o4
Codes " I T T T T Y I T
(R-G-T)opt (R-G-2)opt (R-G-3)opt 7 -
11 13 11 13 11 13 s 77 > &
2 2
4 10 250 440 3666 1721 49530 2“7 F* 2
B 10 -1.0 4.0 -27.4 875 —4203 PR BN L
c 00 0.0 1.0 10 00 28.48 *
D 00 0.0 0.0 00 0729 -0.88 © — - b s
N T Y [ O W Wy
TABLE II 13 17 21 25 29 33 37 4 45 49 53 51 6
Performances of (R-G),, Filters for 11 and 13 Bit Barker Codes Filier length
@
Mean Fiter length
Peak Mean S(luam 13 17 21 s N 37 9 LI 1 57
sidelobe  FZPL* sidelobe sidelobc LSNR** TS O A O O
10 [~ -
R-G-Dypqy —2450 7975 3507 -3240 —034 o] |
(R-G-1),,y3  ~3395  —7649 —44.42 4213  —015
(R-G-2)gpyy —3105 6885 -39.76 -37.54  —059 g ™7 e )
(R-G2)yqy —4642 7786 -5850 —5542  —014 3 w0 | o ;;i
(R-G3)ypq; —3575 —6080 —4563 —4313  —106 = .
R-G-3)ypq3 —5390 6132 —6938 6535 —190 R DU ~ .
Note: *FZPL, the sidelobe Level on First Zero Point beside the
mainlobe, which will affect radar ranging resolution. w LA A A A A S A A *
**LSNR, the Loss in Signal-to-Noise Ratio.
Fiter length
(b)
Filter length
117N 28 29 33 37 4l 45 49 53 5T 61
D T T T Y Y
a8 (R-G-2opt 13
02 3 f— 02
03 ) 13bic T
. 04 — b— 04 _
@ 05 p— 05 5
g 06 — b~ 06 g
~ 07 — — 07 -
08 — }— 08
09 — et p— 09
Fig. 3. Block diagram for (R-G-2)op filter. " ~
"TTrorIrorrrrrroror ot
1B 17 21 25 29 33 37 4l 45 49 53 ST &)
shown in Table I. It should be emphasized that what Filter Length
is important in Table I is the ratio between the (©

coefficients, not their absolute values.

The improved performances of (R-G)op are shown
in Table II, in which we can see that, as compared
with the results given in [3], the filters obtained
here achieve an optimum performance in sidelobe
reduction. For example, (R-G-2), filter for a 13 bit
Barker code can give a peak sidelobe output of —46.4
dB, 2.62 dB better than the R-G-2 filter suggested
in [3] with the same complexity of the structure.

To compare the LP filters with the (R-G)op filters,
the performance of the LP filters versus the length
of the filter is plotted in Fig. 4, from which we can
conclude that with the length of the filter increased,
the peak output sidelobe and mean square sidelobe

will decrease, but the LSNR will increase. From Fig, 4,

we also note that with a much simpler hardware
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Fig. 4. LP filter performances versus length of filter. (a) Peak
sidelobe versus length. (b) Mean square sidelobe versus length.
(c) Loss in §/N ratio versus length.

(shown in Fig. 3) the (R-G-2), filter for a 13 bit
Barker code is almost equal in performance to a 45
taps long LP filter, which has a far more complicated
structure than the (R-G-2)p filter.

IV. CONCLUSIONS

The analysis above has revealed the fact that
the transfer function of a Barker code sidelobe
reduction filter can be further optimized in the time
domain with an LP algorithm, in which the benefits
of the methods suggested in [3 and 5] are combined.



Obviously this new approach can readily be applied
to sidelobe reduction filter design for other binary
coding waveforms, such as truncated PN sequences,
concatenated codes, etc., which often find their
applications in radar systems and spread spectrum
communication systems [1, 2].
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Additional Results on “Reducing Geometric Dilution
of Precision Using Ridge Regression”

Reference [1] presented preliminary results on the feasibility

of using ridge regression to reduce the effects of geometric dilution
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of precision (GDOP) error inflation in position-fix navigation
systems. Recent results indicate that the ridge technique will not
reduce bias inflation due to the effects of GDOP in applications
where bias-like measurement errors persist for time periods
which greatly exceed the response time of the aircraft’s guidance
loop. This conclusion will preclude the use of ridge regression on
navigation systems whose dominate error sources are bias like.
This applies in particular to the Global Positioning System (GPS)
selective availability error source. All the simulation results,
however, given in [1] are valid for the conditions defined.
Although ridge regression has not yielded a satisfactory
solution to the general GDOP problem it has illuminated the role
that multicollinearity plays in navigation signal processors such
as the Kalman filter. After a background discussion, four topics
are discussed: bias inflation, initial position guess errors, ridge

parameter selection methodology and the recursive ridge filter.

BACKGROUND

Hoerl [2] in 1970 developed ridge regression to
reduce variance inflation when the predictor matrix is
nearly collinear. This author [1] has proposed using his
technique to combat the effects of GDOP in navigation
systems and also extended Hoerl’s results to include
bias inflation. The purpose of this correspondence is to
document recent results for the case when the model
has unknown bias measurement errors.

Following the notation in [1] let the measurement
model have two error components, a bias term and a
random term given by

e=ey+AB 1)

where Efe] = AB, the unknown n x 1 bias vector.
Also, E[ey] = 0 and cov[e] = E[ege}] = 021 where I
is the n x n identity matrix. The linear model is

Y =HpB +ey+ AB. (2)
The least squares (LS) estimate of (1) is
Bois =B+ (HTHY 'HTAp + (HTH) 'H . (3)
The expectation of 3015 is
E[Bois] =B+ (H'H) 'HTAB
while the bias of Boys is
bias[Bors] = (HTH)"'H'AB “4)
and its variance is
var[Bois] = o2(H H)™ 1. ()
Thus, geometric dilution of precision (GDOP) as
exhibited by (HTH)~! can amplify the bias given by
(4) when the angle v between the lines of position is

small, i.e., ¥ ~ 1° as given in [1, Fig. 2].
The ridge estimate of (2) is

Br =G HTHB +G.H'AB+G.H'  (6)
where G, = (Pr + HTH)" 1.
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