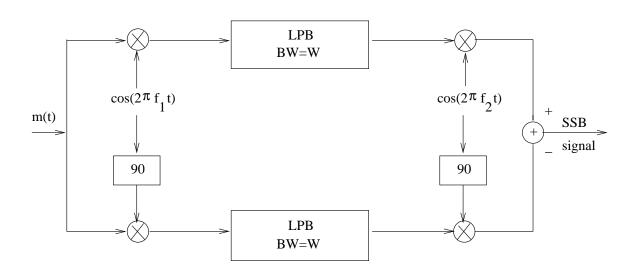
EE 483 Communications Systems I Homework Set 4

1. (10/100) In a DSB system the carrier is $c(t) = A\cos(2\pi f_c t)$ and the message signal is given by $m(t) = (\operatorname{sinc}(t) + \operatorname{sinc}^2(t))$. Find the frequency domain representation and the bandwidth of the modulated signal.

Hint: The Fourier transform of

$$\Lambda(t) = \begin{cases} t+1, & -1 \le t < 0 \\ -t+1, & 0 \le t \le 1 \\ 0, & otherwise \end{cases}$$


is $sinc^2(f)$ and the Fourier transform of the rectangular pulse is sinc(f).

2. (20/100, equally weighted parts) An AM signal has the form

$$u(t) = (20 + 2\cos(3000\pi t) + 10\cos(6000\pi t))\cos(2\pi f_c t)$$

where $f_c = 10^5$ Hz.

- a. Sketch the (voltage) spectrum of u(t).
- b. From the spectra determine the power of the sidebands.
- 3. (35/100) Exercise 2.12 from your Textbook.
- 4. (35/100) Weaver's SSB modulator is illustrated in the following figure. By taking the input signal as $m(t) = \cos(2\pi f_m t)$, where $f_m < W$ demostrate that by proper choice of f_1 and f_2 the output is a SSB signal.

