2.5. Use the convolution integral to find the response y(t) of an LTI system with impulse response h(t) to input x(t):

(a)
$$x(t) = \exp[-t]u(t)$$
 $h(t) = \exp[-2t]u(t)$
(b) $x(t) = t \exp[-t]u(t)$ $h(t) = u(t)$
(c) $x(t) = \exp[-t]u(t) + u(t)$ $h(t) = u(t)$
(d) $x(t) = u(t)$ $h(t) = \exp[-2t]u(t) + \delta(t)$

(e)
$$x(t) = \exp[-at]u(t)$$
 $h(t) = u(t) - \exp[-at]u(t-b)$

(f)
$$x(t) = \delta(t-1) + \exp[-t]u(t)$$
 $h(t) = \exp[-2t]u(t)$

2.6. The cross correlation of two different signals is defined as

$$R_{xy}(t) = \int_{-\infty}^{\infty} x(\tau) y(\tau - t) d\tau = \int_{-\infty}^{\infty} x(\tau + t) y(\tau) d\tau$$

(a) Show that

$$R_{xy}(t) = x(t) * y(-t)$$

- (b) Show that the cross correlation does not obey the commutative law.
- (c) Show that $R_{xy}(t)$ is symmetric $(R_{xy}(t) = R_{yx}(-t))$.

2.7. Find the cross correlation between a signal x(t) and the signal y(t) = x(t-1) + n(t) for B/A = 0, 0.1, and 1, where x(t) and n(t) are as shown in Figure P2.7.

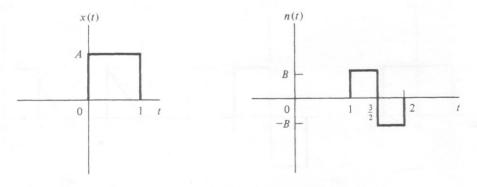


Figure P2.7

2.8. The autocorrelation is a special case of cross correlation with y(t) = x(t). In this case,

$$R_{x}(t) = R_{xx}(t) = \int_{-\infty}^{\infty} x(\tau)x(\tau + t)d\tau$$

(a) Show that

$$R_{\nu}(0) = E$$
, the energy of $x(t)$

(b) Show that

$$R_r(t) \le R_r(0)$$
 (use the Schwarz inequality)

(c) Show that the autocorrelation of z(t) = x(t) + y(t) is

$$R_{r}(t) = R_{r}(t) + R_{r}(t) + R_{rr}(t) + R_{rr}(t)$$