1.1. Find the fundamental period T of each of the following signals:

~

7

cos(mt), sin (2mt), cos (3mt), sin (4mt), cos (372_ t), sin (% t),

(éﬁ t) si (iﬁll t) S(E t) sin (2—1T t) cos (?’jL t)
cosz,n3,co4,3, 5

1.2. Sketch the following signals:
Ve

yrf x(t) = sin (%t + 20°)
by x()=t+e* 0=1=2
t+ 2 t= -2
@ x(t)=140 —2=t=2
t—2 2=t
(d) x(¢) =2exp[—t], O0=<t=1, and x(r+ 1)=x(¢)forall:

}J‘L Let

x(t)= -1+ 1, —-1l=t<9
1, O=¢r<2
2, 2=r=<I3
0, otherwise

(a} Sketch x(s).
) \
(b) Sketch x(¢ — 2), x(z + 3), x(—3 - 2), and x(gr + %) and find the analytical expres-

sions for these functions.

yl/:’s. Sketch the following signais:
g‘ x (1} = () + Sulr — 1) - 2u{t — 2)
) 1) = (1) = r(t — 1) — ulr - 2)
() x3(r) = exp[—ju(r)
(d) x,(r) = 2u(r) + 8¢ — 1)

1.21, The probability that a random variable x is less than a is found by integrating the proba-
bility density function f(x) t¢ obtain

Plx =a) = fﬁ F(x) dx

Given that
F(x) =028(x + 2) + 0.38(x) + 0.28(x - 1) + O.1[u(x —~ 3} — u(x — 6)]

find

() Plx<-3)
b Plx =15
{c) Pix=4)
(dy P{x = 8a)



2.1. Determine whether the systems described by the following input/output relationships are
linear or nonlinear, causal or noncausal, time invariant or time variant, and memoryless
or with memory.

@y v({t) = 2x{t) + 3

®) y(1) = 2x°(r) + 3x(1)
(c) y{1) = Ax(r)

(d} v{(r) = Arx(s)

, > 0
le} y(t) = {i(;}(r). :{ 0

@ y(r) = j x(v)ds

@ y() = f x(t)dr. =0
1]

(h) y(r) = x{(t — 5)
(D) y(r) = exp[x{r)]
G () =x(yx(r—2)

1 r+ /2
@ y(1) = }-J' x(1)dx
t—Ti2

+2y(1) = 2x(r)

dy

2.3. Evaluate the following convolutions:
ta} vect{r — aja) » &(t — b}
(b) rect{t/a) * rect(1/a)
{(¢) tect(s/a) * uit)
(d) rect(t/a) * sgn(r)
(ey u(t)*ult)
(B tlu(ey —u(t — D] *u()
(g) rectiefa)y *r{t)
thy riz) * {sgn(t) + u(—1 — 1]
G) (e + 1) = w(t ~ 1))sgn(e) * ue)
) u(e) = 5(r)



2.4. Graphically determine the convolution of the pairs of signals skown in Figure P2.4.

x(r} Ay x{t) Afry
1 mr== 1
-1
=1 0 1 ¢ ¢ 1t ) 1 ¢ =1 0 1t
{a) (b}
x(1) h{t) x(1) h(t}
2
1
r 1
-1 0 21t -1 g 11t -1 0 t
(¢) (d)

Figure P2.4

2.6. The cross correlation of iwo different signals is defined as

= e

R. ()= J x(T)yi(r - t)dr = J x(r + )yy(v)dr

(a) Show that
R (1) =x(r) * y(—t)

(b} Show that the cross correlation does not obey the commutative law.
(¢) Show that R, (¢) is symmetric (R, (1) = R, (—1)}.

2.10. The input to an LTI system with impulse response A(r) is the complex exponential
exp [Jwt]. Show that the corresponding cutput is

y(t) = expjwi} H{w)

where
H{w) = Jﬂ h{r) exp[— juwt]dr

3.8. The signal shown in Figure P3.8 i1s created when a cosine voltage or current waveform is
rectified by a singie diode, a process known as half-wave rectification. Deduce the expo-
nential Fourier-series expansion for the half-wave rectified signal.



3.10. The signal shown in Figure P3.10 is created when a sine voltage or current waveform is
rectified by a a ¢ircuit with two diodes, a process known as full-wave rectification. Deduce

the exponential Fourier-series expansion for the full-wave rectified signal.

x(t)
1
=5t -2 3 R PR
2 2 2 2 2 2
Figure P3.8
x{f)
1
—-2r - 0 | r ¢
Figure P3.16

3.12. Find the exponential Fourier-series representations of the signals shown in Figure P3.12.
Plot the magmtude and phase spectrum for each case.
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Figore P3.12

4.1. Find the Fourier transform of the followin
forrn of x{¢).

@ x(~1}

g signals in terms of X{w). the Fourier trans-

x(e) ¥ x(=1)
2

x(1) —x(=1)
i 2

(b} x,(1) =

© x,() =

(d) x*(r)
+ #*
(e) Refx(r)] = x() jfﬂ

il

x(z) — x*e)
2

[

M Imix(e)) =



4.5,

4.9,

4.15.

Let X{w) = rect[(w — 1)/2}. Find the transform of the following functions, using the
properties of the Fourier transform:
(ay x(—1)
(b} ix{r)
{cy x(¢t+1})
) x(-2r+4)
(e (¢ — Lx(r +1)
dx(t)
4] i
dx{t)
gy 1=~
{h) x(2¢ - 1) exp[—j2t]
(i) x(t)yexp[—j2]
() () exp{—j2t]

4.6. Let x(r) = exp[~2t]u(s) and et Y} =x(t + 1) + x(+ - 1). Find Y {w).

A -

T o

Find the energy of the following signals, using Parseval's theorem.
(@) x() = exp[—2t]u(r)

b} x(2) = ult) - u(r — 5)

(e} x{z) = A(t/4)

@ x() = 224

A signal has Fourier transform

X{w) = _w2 + jdw + 2"
YT et jhe + 3

Find the transforms of each of the following signals:
(a x(—2t+ 1)
(b} x(t) exp[—ji]

dx{r)
() dt

(d) x(z) sin(=r)
(®) x(1)y*8(r - 1)
0 x()*x{t - 1)



4.26. As discussed in Section 4.4.1, AM demodulation consists of multiplying the received sig-
nai y(t) by a replica, Acos g/, of the carrier and low-pass filtering the resulting signal z ().
Such a scheme is called synchronous demodulation and assumes that the phase of the car-
rier is known at the receiver. If the carrier phase is not known, z (¢) becomes

z(1) = y{t) Acos(wer + &)

where 8 is the assumed phase of the carrier.
(a) Assume that the signal x(¢) is band limited to @,,, and find the output x(1) of the
demodulator.
{b) How does ¥{t) compare with the desired output x{¢)?
4.27. A single-sideband, amplitude-modulated signal is generated using the system shown in
Figure P4.27,
{a) Sketch the spectrum of y{t} for w; = w,,.
(b) Write a mathematical expression for h(¢). Is it a realizable filter?

M
() H (e
x () ! Fiiter w w
4 m(1) niie) [ 20 - ’Iﬂ} k-
~w, 0 wyw
©os gt “wp 0wy @
Figure P4,27

4,28, Consider the system shown in Figure P4.28(a). The systems A, (¢} and h,{¢) respectively
have frequency responses



Miw)

(2}
Figure P4.28(a)

Hy0) = 3 [Hy(o = ) + How + o)
and
-1
Hy(w) = Zj_ [Hy(w — wy) — Hylw + wp)]

{a) Sketch the spectrum of »(8).
(b) Repeat part (a) for the Hy(w) shown in Figure P4.28(b).

Hg (w)

N

TUp TWm Ty O W wptum w
(b} Figure P4.28(b)

4.30. In natural sampling. the signal x (/) is multiplied by a train of rectangular pulses, as shown
in Figure P4.30.

(a) Find and sketch the spectrum of x ().
(b} Can x(7) be recovered without any distortion?

2
Xi{w)

x(1) x4 ' H
A | | | L
-7 -T 0 T T 14
—w, 0w, w

pin

Figure P4.30



Example 5.5.1

Suppose we want to find the Laplace transform of
(A + Bexp[-btl)u(r)

From Table 5.1, we have the transform pair

1
ufty & g and exp[—bt]u(i) « Tt D

Thus, using linearity, we obtain the transform pair

A_ B _(A+B)s+Ab
Au(t) + - s stk
U@ + Bexp[~brju(®) o =+ s(s + b)

The ROC is the intersection of Rels} > —b and Rels} > 0, and, hence, is given by
Rels) = max{—h, 0).

Example 5.5.2
Consider the rectangular pulse x{t} = rect((t — 4)/2a). This signal can be written as
rect({r — a)/2a) = u(t} — uit — 2a}
Using linearity and time shifting, we find that the Laplace transform of x{f} is

1 1 1 — exp[—2as
X(s)=  — exp[~2as) _ = -27[].

: Rels} >0

It should be clear that the time shifting property holds for a right shift only. For exam-
ple, the Laplace transform of x (¢ + #), for ¢, > 0, cannot be expressed in terms of the
Laptace transform of x(¢}. (Why?)

Example 5.5.3
From eniry 8 in Table 5.1 and Equation (5.5.3), the Laplace transform of

x(t) = A exp{—ar] cos{wyt + 0)ult)

is
X(s) = P1A exp[ - at](coswyt cos® — sinwy! sin@)u(7))
= &|A exp[—ar] cosmyi cosd u(z)) — FL[A exp[-at] sinwyt sind 1(1)}

_ fi(s -f_a_} cos@ _{1__(.;0 sin @

(s +ay + w2 (s+ a)z____-i—__a

_ A[{s + a)cos8 — w,sinb)
B s+ a)? + w) !

Rels} > -a



Example 5.5.13

Suppose that the input x(¢) = exp[—2r]u(r) is applied to a relaxed (zero initial conditions)
LTI system. The output of the system is

y(©) = J(expl—1] + expl~21] — exp[~H])uo)

Then
1
X(s) = s+ 2
and
2 2 2

YO =+ T35+ 3653

Using Equation (5.5.14), we conclude that the transfer function & (s) of the system is

_2.26+2)  2s+2)
O =34 3671) " 36 +9)

_2sP e+ 7)
3+ DG +3)

2 1 1
= — + ——
3[1 s+1+s+3J

from which it follows that

h(r) = %6(1') + % [exp{—1) + exp[— 3t u(r)



