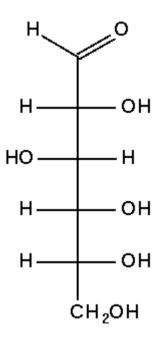


By Kisar Bittar

CE 435 Dr. Alexandridis

Outline:

- Introduction
- The Structure of Cellulose
- Polymerization
- Cellulose and Industries
- Summary

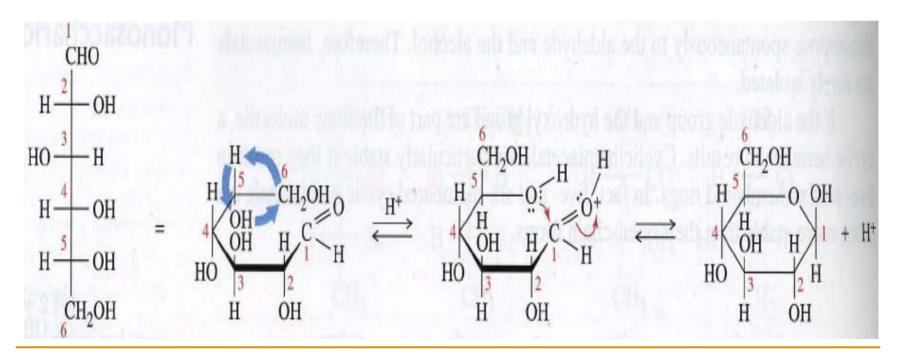

Introduction:

- Carbohydrates are chemical compounds that consist of carbons, hydrogen and oxygen atoms, giving the general formula Cm(H2O)n
- Carbohydrates are classified by the by the number of sugar units into monosaccharide, disaccharide, and polysaccharides
- Plants synthesize carbohydrates through photosynthesis
- 6CO2 + H2O → 6O2 + C6H12O6 (glucose) → starch, cellulose + H2O
- Animals can store energy by forming glycogen

Introduction: (con't)

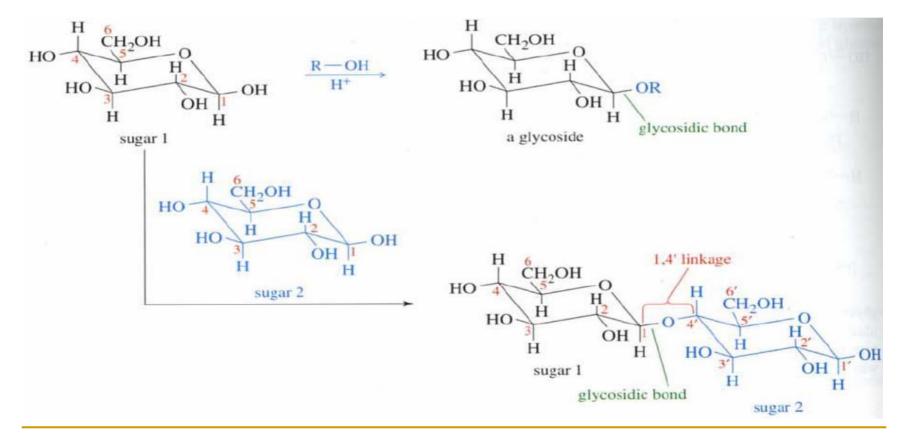
- Cellulose is a complex carbohydrate, or polysaccharide consisting of 3,000 or more glucose units
- Cellulose + H3O+ + heat → over 1000 glucose molecules
- The most abundant organic compounds on earth
- The basic structural component of plants cell walls 33% vegetable
 90% cotton
 50% wood

- Structure of Cellulose:
- The Cellulose is composed D-glucose unite linked by β-1, 4 glycoside bonds
- Cellulose is poly(1,4-β-D-glucopyranoside)



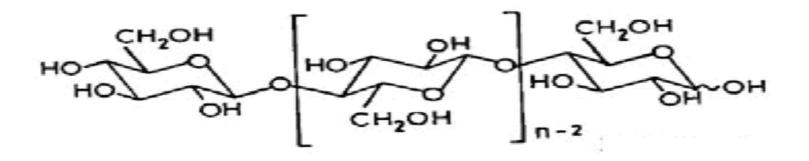
Polymerization:

1. Drawing Cyclic Monosaccharides:


The repeating unit in cellulose is actually made up of two glucose units with each glucose unit in the linear chain being "turned over".

Polymerization: (con't)

2. Anionic Polymerization:

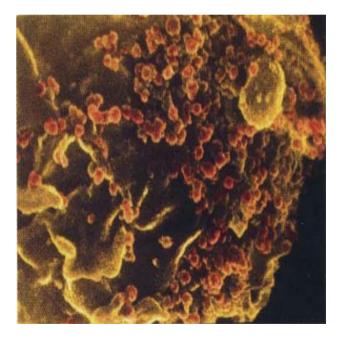


Polymerization: (con't)

- 2. Anionic Polymerization:
- 1,4-B-D-glucopyranoside

Cellulose and Industries:

- 1. Cotton:
- Cotton is composed of 87 -90% cellulose with the cotton fibers containing polymer chains in both amorphous and crystalline forms
- It is stiff and has a high tensile strength
- Absorbs water without feeling wet
- Absorbs heat
- Clothes, dyes, building materials, and papers



Cellulose and Industries: (con't)

2. Pharmaceuticals:

 Medicines are derived from plants and, many of those that are not, are chemicals synthesized to mimic active principles originally purified from plants and used medicinally (cellulose acetate phthalate)

Cellulose and Industries: (con't)

3. Cellophane

- Can be obtained when a viscous cellulose reacts with acid (sulfuric acid) to produce cellophane, further treatment such as washing and bleaching
- Highly impermeable to dry gases and bacteria

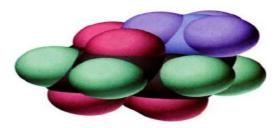
Cellulose and Industries: (con't)

4. Bombs

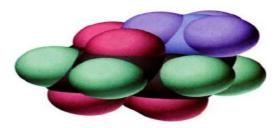
Cellulose trinitrate is used as a propellant for bullets due the fact that nitrate –OH group can be explosive

Cellulose and Industries: (con't) 6. Energy Drinks:

Glucuronolacton, vitamins, and carbohydrates



Cellulose and Industries: (con't) 7. Industrial Sugar



Things to Remember:

- Cellulose is a complex carbohydrates
- Glucose is the monomer C6H12O6
- The special properties of cellulose result from the association of the long chain
- Be careful with its isomers
- Cellulose is very insoluble in water
- Unlike the animals, the human cannot metabolized cellulose

References:

- L.G. Wade, jr. Organic chemistry, 4th edition, 1999
- Anti-HIV <u>www.biomedcenteral.com</u>
- Water structure <u>www.lsbu.as.uk</u>
- Cellulose and its Structure <u>www.courseworkbank.com</u>
- Cellulose <u>www.bio.plaisley.ac.uk</u>
- Cellulose <u>www.en.wikipedia.org</u>
- Cellulose acetate <u>www.plastiquarian.com</u>
- Plants <u>www.wits.ac.za</u>

