CE 407 Notes

Multicomponent distillation performance models

General comments

Really good book: Doherty MF, Malone MF. 2001. Conceptual design of distillation systems. McGraw-Hill, New York.

Any distillation process always has 4 degrees of freedom (things you can choose); once they are chosen the distillation is completely specified/determined

Design model/calculation

"Boundary value design method," what you have always done until now

Choose x_D , x_B , R = L/D and optimal feed location (suboptimal feed location is possible)

Graphical calculation of N (might not come out to be an integer); N and feed tray number $\rightarrow N_r$ and N_s ; 'nuff sed...

Performance model/calculation

This is a prediction of what will emerge from a completely specified distillation column. It is what is usually done by a process simulator.

Examples:

Choose
$$R$$
, D/F , N_r and N_s
Choose R , V/B , N_r and N_s

Equivalent because D/F and \overline{V}/B are directly related:

Guess x_D ; calculate x_B ; construct Mc-Cabe-Thiele diagram; step from top to bottom of column; check whether last step ends at x_B ; repeat

Let's do this!

Let's do a performance calculation!

Total Condenser

 $N_{\rm r}=2$ ideal stages in the rectifying section and $N_{\rm s}=2$ ideal stages in the stripping section (i.e., 4 ideal stages with feed entering on ideal stage 3 counting down from the top), and a high-quality reboiler. Suppose feed enters as saturated liquid with composition as given in the following table. The column is operated with reflux ratio R=1.0 and distillate to feed ratio D/F=0.50. What are the temperatures and compositions of the distillate and bottom product streams emerging from the column?

Component	x_{Fi}	_	
<i>n</i> -butane	0.00	-	
<i>n</i> -pentane	0.00		
n-hexane	0.50	_	Good thing this is a binary mixture!
<i>n</i> -heptane	0.00		Good tilling tills is a offiary fillxture.
n-octane	0.50		
<i>n</i> -nonane	0.00		
n-decane	0.00		

Data for n-hexane + n-octane at 1 atm

Guess $x_D = 0.96 \rightarrow x_B = 0.04$ by overall mass balance (0.96, 0.96) $F x_F = D x_D + B x_B$ $x_F = (D/F) x_D + [1 - (D/F)] x_B$ (050, 0.50) $x_B = [x_F - (D/F) x_D] / [1 - (D/F)]$ = 0.480

 \rightarrow x_B = 0.06 by stepping (tray-to-tray calculations) Don't match \rightarrow guess again

Guess $x_D = 0.95 \rightarrow x_B = 0.05$ by overall mass balance (0.95, 0.95) $F x_F = D x_D + B x_B$ $x_F = (D/F) x_D + [1 - (D/F)] x_B$ $x_B = [x_F - (D/F) x_D] / [1 - (D/F)]$ 0.475 0(0.05,0.05)

 $\rightarrow x_B = 0.05$ by stepping (tray-to-tray calculations) Perfect match \rightarrow guess was correct!

Remarks

Both design and performance calculations involve either graphical or algebraic/computational tray-to-tray calculations

Performance model involves an outer loop for adjusting the distillate composition $(x_{D,i} \text{ for } i = 1, ..., I-1)$ until a certain set of conditions is satisfied, namely $x_{B,i}$ by mass balance $= x_{B,i}$ by tray-to-tray calculations for i = 1, ..., I-1

Design and optimization of a distillation column involves a further outer loop whereby parameters/specs. of a performance model are adjusted until an optimum design is reached