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Continuous Distillation — Enthalpy Balances

McSH pp 694-701, pp 679, 682 eq 21.1 and 21.2
* How much energy does one need to remove via condenser and add via reboiler?

ol Volw CONDENS
e Condenser — etelba._ SOMBEMSEL
— C>uDENSIR. H_! R _— |
* Control Volume o _,_< TC E. il
D, Hp_ ¢ i
around condenser 410+ —

Lo, Mo \ Hya, V,
N y ' ———
. Heat added = Enthalpy out — enthalpy in

—q. = DHp + LOHx,O - VlHy,l
=D+ Lo)Hyo— V1H,y 4
* Note: g, Is defined as the amount of heat REMOVED via the condenser and is a
positive number. The enthalpy balance is the amount of heat added, therefore the q_

term appears as —q. in the equation. The fact that —q., is therefore a negative
term is consistent with the fact that we are removing heat to affect a phase \

change from vapor to liquid rd X
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Enthalpy Balances: Condenser, continued

+ —q.= (D+ Ly)Hyo— VqH,, Codteod Vobie.  COMNDENSER
c 0/4%x,0 11y1 . ) — __:_Q __‘__‘;
* But from mass balance we know thatV, =D + L, bR —] C et
I | TC. > ‘, _‘—‘.CQLI:,*‘;,,
—q.= (D+ Lo)Hyo— (D + Lo)Hy 4 D, Hp :_"______f_j‘ e
* And from definition of reflux ratio L, =D R i A LYV
— — S ' —

—q. =D+ R)(H,o—H,,)

* It's not as simple as just looking at Heats of VVaporization

* You have the temperature changing from Dew Point to - ‘ Sir Vaper
. EnT¥RS
Bubble Point T %N, | Cowoewser.
* Heats of Vaporization are defined for a pure material ata ="~ S EENTR o
given temperature (usually the normal boiling . *&‘; :
temperature for pure material) and we are condensing - A
%3 i ‘h 3 .
over a range of temperatures v = & AN
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Enthalpy Balances: Reboller

Set up Control Volume around entire column
Heat added = Enthalpy out — enthalpy in
‘ qr —q. = DHp + BHp — FHp

g, Is defined as heat ADDED via the Reboiler and is a positive
number

We will need to determine the temperature of each stream in
order to calculate enthalpies
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Enthalpy Balances

* We have the temperature and composition of all streams
» Calculate enthalpy of each stream
« Start with enthalpy balance around condenser
» Solve for g,

* Next evaluate enthalpy balance around entire column
« Solve for q,
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Enthalpy Balances — Heat Loads
Condenser

* Use q.to determine rate of cooling water required for condenser

dc = mcwC%)HzO(Tout — Tin)

Where m,,, is mass flow rate of cooling water

CIL, H,o 'S the heat capacity of liquid water
L cal

« Typically C; g,0 = 1 7°C

T;, is the incoming temperature of the cooling water

T ,.: 1S the outgoing temperature of the cooling water

» this may be limited by thermal pollution concerns

« of course, you don’t want this stream to reach a boiling temperature
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Enthalpy Balances — Heat Loads
Reboller
* Use q, to determine rate of steam consumption required for reboiler

_ 3 vap
qdr = Mgieam AH H,0

 Where Mgieqm 1S Mass flow rate of steam
* AH, ' is the heat of the steam phase change

* This equation assumes steam enters as saturated vapor and exits as saturated steam — consult
steam tables for enthalpy change of steam that has varying quality values

T (°0) Pifo (kPa) e (M
Hz 0 kg

100 101.3 2257 %
~150 # steam 188 1200 1986 7
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Continuous Distillation — Tower Design ',

McSH pp 701-712

Design of Sieve Plate Trays AR

* Pressure increases as you progress down the tower > 4 . : '*,"‘;:-['.ﬁ‘——
| | | i o AW
* The pressure is needed to motivate the vapor through the holes in the S L
tray and through the liquid held up on the tray ) V=+‘

* Due to the AP, a column of liquid is held up in the downcomer (similar to
a monometer) of height Z

* The text discusses methods for calculating Z, but we won't touch on it at
this point

* The important point is that if Z exceeds the distance to the weir on the :
plate immediately above then the column experiences FLOODING and b T
the plates won't function properly

* The diameter of the column must be specified such that the vapor
velocity does not exceed the “Flooding Velocity” %
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~looding
* Figure 21.26 in McSH: Note that this is a log-log graph!
* Choose curve corresponding to your tray spacing
L 07 I Plate s;:’cicingv
e Calculate -™=/Pv/, 0s —3sim LT TT
Vmass « 04 24'in. "“~~__‘~
5 18 in, B 5 ol e
* Note that L and V are MASS flow rates S [ izm S—_—
- Note that py and p,, are MASS densities 5 ____Zlg____dL__._____\SQ‘:\:?\
i & 1 11 LUIRET™A R WO
 L/V we have used in the past were molar flows 3 o \5 N
; f 0.07 \‘\§§\\\
* Find Ky from chart 060 -{ I— TSN
0.04 =
* Use equatlon 2168 to CaICUIate ﬂOOdIng VeIOCIty 0.0:(3).03 0.02 003 005007 0.1 0.2 03 05 07 1.0 2.0
L/ Vipy/p)°*
"= _ K PL—PV(U)O'Z
C flooding % oy 20
: o . : Q

* o s the surface tension in dyn/cm, u is in ft/s on this graph
* Agiven chart will correspond to u in ft/s or m/s: be sure you know which 9

it is! // “x
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~looding
L
« Calculate == /Pv/,
Vmass
 Note that L and V are MASS flow rates -
. 0.7 I Plate spacing
* Note that py and p; are MASS flow densities os [—3¢in LT TT
. o 04 24'in. i =
 L/V we have used in the past were molar flows % ,,[__1sn -—-\gt .
S 12 in. — B |
B: 0.2 9 in. \\\QQ\ N
- & 6i"'—.-.-—-.4 ——— By, i \\\
o lmass _ LMW, B Tk
— — S o1 i, N
|4 VMW - NN O
mass |4 . :: 007 ~\§§\\\
« When we are evaluating at the top of the tower  « 3% i i 0 TN
the flows are often close to pure light o
MATYA7 ~ MIAT 0.0 0.02 003 0.05007 0.1 02 03 05 07 1.0 2.0
component and MW; ~ MWy, P
L L
 Therefore /= = p
mass
L R L
e — = ——can be used for /= as long as we are Q
|4 R+1 mass N
aware that it only applies when MW; ~ MWy
10 .« A
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~looding, Continued

* Now we have a value for the a vapor velocity that will cause flooding.

* We will add a safety factor because we don't want to operate on the
edge of flooding conditions
* Various sources use different factors, let's choose u =~ 0.7uf;04

* Most of the plate is covered by holes

2
e A =Total Area = %

 Downcomer, etc cover 15% of total area ﬂ‘e‘;\,)
 Net area for flow = 0.85A
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~looding, Continued

V=ud,—

Molar vapor flow = (volumetric flow) * (moles/volume)

From ideal gas law PV = nRT you get I:;T _ n_ moles

%4 Volume
In this context V is just a volume
nD?
e A,=0. BST net area for flow

 Steps
 Calculate uy;404 and apply safety factor
» Use molar flow rate V to calculate A,
» Calculate required column diameter

* Note: Column is most susceptible to flooding at the top A
of the tower. Use conditions corresponding to the top
of the tower in this evaluation! 12 #F A%



University at Buffalo

Department of Chemical

and Biological Engineering

School of Engineering and Applied Sciences

~looding Example

We have a distillate flow rate of 3259 mol/minute of CCL, (light) and CgH,4 (heavy)
* Xp=0.859

Reflux ratio = 2.55, Tray Spacing = 24”

Flooding velocity is calculated at TOP of tower

Problem Statement indicates that we should assume denisites of the liquid and vapor to be that of
pure CCL,

. Liquid density:  p, = 1490 ~Z

Vapor density: By the Ideal Gas Law we can calculate molar volume

bar cm3

83.14 (273.15+76.75) k 3
V= = ——mak = 2.872 « 10* -
P 1.013 bar mol
« Then the mass density can be calculated as "
1mol 153.823 k 106¢m3 k
T e 9y 29  IOM _53429 “
2.872* 104 cm3 mol 1000 g m3 m3
- MW CCl, = 153.823 13« AL
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~looding Example

* Near the top of the tower (where the mole fractions are near 1.0), the average molecular weight of
the liquid and the vapor are approximately equal at any location

. Lygss _ LxMW; L _ R _ 255
At the top of the tower T Vmwe SV T Rel o Zssel s 0.718
0.7 [~ Plate : ci :
kg os -_--3‘:;:-9 -

Linass |PV _ 534? o & G 24 in. I -"'“‘~~s__s
e /= [—=0.718 e = 0.043 g == B g

Vinass \| PL 1490m S 03 T T S

3 o2 9 in. \\‘\‘;‘ :
0.2 g T N |5 e g NI
20 ) ——— N e e .
.« Ky =u, / v (Z) = 037 £ NN
PLpy \o RN
n O BN
. . ¥> 0.06 -~
* Unless your surface tension is very ! I TN
. 04
different from water, the surface 0.03
. . 0.01 0.02 003 0.050.07 0.1 02 03 05 07 1.0 2.0
tension factor can be ignored Vool Q
| 5
pL — PV 1490-5.34 ft N
* U.=1U ma = K, =0.37/—=6.17—
c flooding |4 oy 5.34 S 14 ;5
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~looding Example

Vapor volumetric flow rate:

« Vmolarflowrate V=L +D = (R + 1)D = 3.55 % 3259 ™% — 11,569 ™%
min min
: P 1.013 bar mol 10° cm3 mol
e Molar densi =—= = 3482 % 107> — * = 34.82 —
W v RT  g314 bfrfo";’f (273.15+76.75) k cm?® m? m?
mol
11,569 2 3 , 3 3 3
¢+ Q=—=—"Hh=3322 0 B 554"« (L) = 1953
pv 34_82W min 60 S 0.305m S
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~looding Example

Column diameter:
2
Q=A,*u= 0.85%*u
* (Volumetric flow rate = Area * velocity)
Column is to operate at 50% of flooding velocity:
t t
1= 0.5 * Upgooqing = 05 % 617 L =3.09 &

D2

3
0 =195325 = 08572 «3.09 £ = 2.06 L « D2

ft
D2 = "5 = 9467 ft?
2061 '
D=9.7ft



