CE407 SEPARATIONS

Lecture 01

Instructor: David Courtemanche

Separations

- In the chemical industry we often have homogenous mixtures of chemicals that cannot be separated by mechanical means
 - Mechanical means are things like filters
- This course will look at methods that exploit thermodynamic equilibrium to separate materials
- Motivation
 - 1. Purify a product by removing impurities
 - 2. Extract the product from a mixture
 - 3. Remove potentially harmful agents before releasing a stream to the atmosphere

Terminology

- Solute
 - This is the component you are trying to transfer, either because
 - It is the product you want in a purified form or
 - It is a contaminant you want to eliminate
- x typically refers to a mole fraction in a liquid phase
- y typically refers to a mole fraction in a vapor phase (gas phase)
- Do NOT confuse the term vapor as referring to a mist or steam in this course it means a gaseous phase
- Mole Fractions are typically used when we are working through the physics
- Mass Fractions or ratios are sometimes used when we are using experimental data
 - Leaching and Liquid-Liquid Extraction

Mole Fractions

Defined as:

$$x_i = \frac{\text{\# of moles of component i in liquid phase}}{\text{total \# of moles in liquid phase}}$$

$$x_i = \frac{\text{\# of moles of component i in liquid phase}}{\text{\# of moles of component i in liquid phase} + \text{\# of moles of carrier in liquid phase}}$$

- Similar definition for y_i
- i refers to the component
 - Component 1 versus component 2, etc

Gas Absorption

Typically occurs in a cylindrical tower

- We will symbolically depict this as this side view:
- a is the top of the tower and b is the bottom
- The gas goes up the tower and the liquid flows down
 - That is actually what happens due to gravity!
- The flows are not actually one phase going down the left hand side and the other phase going up the right hand side
- Flows go over or through trays or packing to maximize contact

Gas Absorption – What's Happening?

- We have a mixture of components that cannot be mechanically separated
 - Benzene vapor in air
- We introduce another material which in a different phase (liquid versus gas)
- If the solute is in a lower energy state when it is in the newly introduced phase, mass transfer will occur and the solute will transfer into the new material
- Because the new material is a different phase from the original material it will naturally separate from the original mixture
- This results in the removal of the solute from the original mixture

Single Stage Absorption Analysis

Initial state

- i is solute
- A is air
- W is water
- Water is introduced to gas mixture of solute and air

Complete Case

- Some water evaporates into air
- Some air dissolves into the water
- Solute is distributed between the two phases
- Relative size of the symbols indicates general order of magnitude
- Experience shows that the air dissolving into the water is not a large enough mole fraction to affect the calculations
- Note that it is likely that the water already had air dissolved in it to begin with

Single Stage Absorption Analysis, continued

"Rigorous" Case

- Ignores dissolution of air into the water
- Does consider the evaporation of water into air
- Of course, the distribution of the solute is included
- Air, water, and solute will be in vapor phase
- Water and solute in liquid phase

"Usual Assumptions" Case

- Ignores evaporation of water into air
- Ignores dissolution of air into water
- Of course, the distribution of the solute is included
- Air and solute in the vapor phase
- Water and solute in the liquid phase

Single Stage Absorption Analysis, continued

- Which model is "best"?
- See Notes titled "Single Stage Absorption" for mathematical analysis of "Rigorous" versus "Usual Assumptions" cases
- The analysis shows that the simpler "Usual Assumptions" case does an excellent job of predicting the mole fraction of solute in both phases
- The simpler "Usual Assumptions" case does an extraordinarily bad job of predicting the mole fraction of water in the vapor phase
 - We are seldom concerned with knowing the water content of the vapor leaving the tower...

Equilibrium Relationships

 Used to calculate mole fractions of distributed components (i.e. components that are being transferred from one phase to another)

Raoult's Law

$$y_i P = x_i P_i^{sat}(T)$$

- $P_i^{sat}(T)$ is the vapor pressure of the solute. It is **STRONGLY** dependent on temperature
- Note that interactions between the solute and solvents is ignored

Equilibrium Relationships, continued

Generalized Equilibrium Relationship

$$y_i P = x_i \gamma_i P_i^{sat}(T)$$

- γ_i is the Activity Coefficient, which accounts for interactions between the solvent and the solute
 - It is STRONGLY dependent on the composition of the mixture and the temperature
- Gas phase is still considered ideal (molecules are separated by great distances)

Equilibrium Relationships, continued

- Henry's Law
- For cases where x_i << 1 (say 0.01 or lower)

$$y_i P = x_i \gamma_i^{\infty} P_i^{sat}(T)$$

 γ_i^{∞} is Infinite Dilution activity coefficient and is considered to be relatively constant in the very dilute range for a given temperature

- $k_i(T) = \gamma_i^{\infty} P_i^{sat}(T)$
- $k_i(T)$ is Henry's Law coefficient and is temperature dependent
- Henry's Law acknowledges that the ideality assumed in Raoult's Law is not accurate, but assumes that in the case of a dilute solution the dependence on composition can be ignored

