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Multi-Objective Optimization
Last time, we talked about multi-criteria optimization.

We discussed the most common method of solution 
being a linear convex combination of objectives 
using weights.

We also discussed many of the drawbacks 
associated with this approach.

Today, we will look at some other techniques.



Multi-Objective Optimization
Let us briefly describe what we would like to see in 
a Pareto frontier.

1 – Even or uniform sampling.
2 – Wide expanse.
3 – Distinctness of points.  That is, 2 points are not 

distinct if they are so close to one another that 
the designer does not care to distinguish 
between them.



Multi-Objective Optimization
Let’s first restate the optimization problem:
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Multi-Objective Optimization
Normal Boundary Intersection method (Dennis 

and Das):

Properties:
1. Extendable to any number of objective functions.
2. Produces an even spread of Pareto Points.
3. Requires first minimizing each function individually.
4. Requires repeated solution of the NBI subproblem.



Multi-Objective Optimization
General Implementation:  Consider the following 

Animation for a 2D example:

Feasible

Space (C)
f2

f1

Convex Hull of 
Individual Minima 
(CHIM)

Use the NBI 
subproblem to 
find the 
intersections of 
each normal 
vector and the 
efficient frontier.



Multi-Objective Optimization
General Implementation:  Consider the following 

Animation for a 2D example:
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The vector 
parameter β in 
the subproblem
defines the take-
off points.



Multi-Objective Optimization
General Implementation:  Consider the following 

Animation for a 2D example:

Feasible

Space (C)
f2

f1

Convex Hull of 
Individual Minima 
(CHIM)

This approach 
has the 
advantage that an 
even spread of 
β’s produces an 
even spread of 
points on the 
CHIM which in 
turn corresponds 
to an even spread 
of Pareto points.



Multi-Objective Optimization
The subproblem is defined as follows:
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Multi-Objective Optimization

*
if

C we showed as the feasible space.
is the optimal design configuration for objective i.
is the optimum value of objective i ( =          ).

F* is the vector of individual objective optimums
(denotes the utopia point).

Φ is n x n payoff matrix such that each column is 
given by:

So Φ shifts the axes in the performance space such 
that the utopia point is at the origin.
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Multi-Objective Optimization
So anyway, NBI works very well for the case of 2 

objectives but may potentially be unable to find 
certain points in 3 or more dimensions termed 
“peripheral points”.

For more information, see:
• I. Das and J. E. Dennis. Normal-Boundary 

Intersection: An Alternate Approach for Generating 
Pareto-optimal Points in Multicriteria Optimization 
Problems. ICASE-NASA Tech. Report 96-62. 
Submitted to SIAM J. on Optimization, July 1996.



Multi-Objective Optimization
Goal Programming:

Properties:
1. Extendable to any number of objective functions.
2. Not useful for populating the Pareto frontier.
3. Requires relatively intimate knowledge of desired 

values for various objectives.



Multi-Objective Optimization
Essentially, for each objective, the user must set 

one of the following:

A maximum allowable value,
A minimum allowable value,
A desired range for the value.

The job is then to minimize the deviation of each 
objective from its goal.



Multi-Objective Optimization
So if all objectives are minimization,  the goal 

approach limits the value to some ceiling an 
allows it to be less than that ceiling.

So this method is not guaranteed to find a Pareto 
solution.

Nor is it useful to populate the Pareto frontier.

It is useful to find the design parameters that will 
satisfy a given set of performance values.



Multi-Objective Optimization
There are some other less interesting but common 

approaches to multi-criteria optimization.  You 
can read about some of them on the reference 
web pages.

Does anyone know which of the methods we 
discussed this semester might be well suited to 
solution of this type of problem?

(Recall that we are seeking a group of solutions).



Multi-Objective Optimization
Recently, much attention has been paid to the 

usefulness of Genetic programming for solution 
to these problems.

How might we adapt our genetic algorithm to deal 
with multiple objectives?



Multi-Objective Optimization
Recall the progression of our algorithm as follows:

Initialize Population.
Evaluate Population.
t = 0
while(not converged)

t = t + 1;
Variation of P(t)
Evaluation of P(t)
Select P(t) from P(t-1)

end



Multi-Objective Optimization
So what phase of this algorithm must be adjusted to 

accommodate multiple objectives?

Clearly, the evaluation phase must take into 
account Pareto optimality.  

There are a number of ways to account for Pareto 
optimality in a GA.  Some of which involve using 
a fitness parameter and some of which do not.



Multi-Objective Optimization
One method using a fitness parameter is to assign 

the fitness of a design as the number of designs 
in the current population that it dominates.

A method that does not use a fitness parameter 
would be conditional entry.  It goes as follows:

Generate children as you normally would from a 
population.  Then, on an individual basis, do the 
following:



Multi-Objective Optimization
Find a member in the population that the child 

dominates.  If such a design exists, replace it 
with the child.

If such a design does not exist, do the following:

Find a member of the population that dominates 
the child.  If such a design exists, discard the 
child.  Otherwise, grow the population and add 
the child in.



Multi-Objective Optimization
So clearly, this is not a steady state type GA but it 

helps to allow as many efficient points as 
possible participate in the evolution.

So how then do we account for constraints in such 
a case?  Clearly we are not using some penalty 
function in our assessment of fitness.



Multi-Objective Optimization
There are a couple of options that we can choose 

from.

The first of which is to treat each constraint as an 
implicit objective.  That is, consider that the 
presence of each constraint implies the 
existence of an objective.  

That objective is satisfaction of this constraint.



Multi-Objective Optimization
We have now converted our n-objective problem 

into one of n + num_of_cons which is a 
drawback.

Another drawback is that we lose all information 
that tells us just how much better 1 design is 
over another.

So we have alleviated one of the drawbacks of the 
previous approach.



Multi-Objective Optimization
Another way to do it is to add a single additional 

objective to our problem whereby that objective 
is satisfaction of all constraints.

So we could pool all of our constraint violations into 
a term like a penalty term and use a seek 0 
(which is minimize by our standard penalty 
formulations) approach to optimizing it as 
though it were an objective.



Multi-Objective Optimization
Consider the following example of a problem that I 

solved using a MOGA.

b

L d1 d2 d3

Vibrating 
Motor



Multi-Objective Optimization
The objectives are to minimize the material cost 

and to maximize the fundamental frequency of 
the beam.

There are a number of constraints for geometry, 
material selections, and mass.

The following figure shows two curves.  The blue 
curve is the data generated here and the pink 
curve is data generated by the I-SHOT method.



Multi-Objective Optimization
Resulting Pareto Set
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Multi-Objective Optimization
The I-SHOT method of Azarm, Reynolds, and 

Narayanan is in brief a repeated application of a 
single-objective GA using special combinatorial 
rules for the objectives.  It can be read about in:

Azarm, S., Reynolds, B. J., and Narayanan, S., 
1999, “Comparison of Two Multiobjective
Optimization Techniques with and within 
Genetic Algorithms,” ASME Design 
Engineering Technical Conferences, 
DETC99/DAC-8584.



Multi-Objective Optimization
A comparison of the results is as follows:

Azarm et. Al.:
- 1 Pareto point for every 7,909 points visited.
- 53,963 total points visited.
- Frequency ranged from ~ 220 – 400 Hz.
- Cost ranged from ~ $100 - $180.

These Results:
- 1 Pareto point for every 195 points visited.
- 33,076 total points visited.
- Frequency ranged from ~ 88 – 380 Hz.
- Cost ranged from ~ $75 - $185.
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