MAE 552 - Heuristic Optimization

Lecture 25

March 22, 2002
Topic: Tabu Search

A Simple Illustration of Tabu Search

Simple Version of the short term memory component of thr ibu Search is illustrated in this example.
he problem is known as a minimum spanning tree problem he minimum spanning tree (MST) of a graph defines the eapest subset of edges that keeps the graph in one connected mponent.
elephone companies are particularly interested in minimum anning trees, because the minimum spanning tree of a set of es defines the wiring scheme that connects the sites using as tle wire as possible.

A Simple Illustration of Tabu Search

;al Spanning Tree

A Simple Illustration of Tabu Search

solution can be represented in terms of a vector indicating sther or not an edge appears in the solution.

This solution is $(0,1,0,1,1,0,1)$ and $\mathrm{F}=23$

A Simple Illustration of Tabu Search

dditionally there are constraints imposed on this problem.
onstraint 1: At most only one of edges 1,2 , or 6 can be usec ime time.

$$
x_{1}+x_{2}+x_{6} \leq 1
$$

onstraint 2: Edge 1 can be in the tree only if edge 3 is also i ee

$$
x_{1} \leq x_{3}
$$

o permit the evaluation of the infeasible trees a penalty of $5 C$ ided for each unit violation of a constraint. The a unit violat hen the left side of the constraint exceeds the right side by 1

A Simple Illustration of Tabu Search

define a Tabu restriction, we have decided to use the added ge to be the move attribute assigned Tabu status.
is forbids a future move from dropping the edge as long as i nains Tabu.
e length of the tabu list for this example is 2 .
move remains Tabu for two iterations and then is dropped fr : list
e aspiration criteria that we have selected is that a tabu itriction can be overridden if the resulting tree is better that a t produced so far.

A Simple Illustration of Tabu Search

r this example a move will be a standard edge swap that con emoving an edge and adding an edge to make a new legal trı e solution selected will be the admissible move with the low t including penalty costs.

A Simple Illustration of Tabu Search

tial Solution Cost $=16+100=116$

Current Best Poin Infeasible

A Simple Illustration of Tabu Search

tial Solution Cost $=16+100=116$

A Simple Illustration of Tabu Search

ration 2: Current Cost 28 Tabu List: $x_{3} \mathrm{M}=\left[\begin{array}{llllll}0 & 0 & 2 & 0 & 0 & 0\end{array}\right.$ 0)

Search neighborhood

A Simple Illustration of Tabu Search

ration 3 Current Cost 32 Tabu List: $x_{3} \mathrm{M}=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array} 02\right.$ 2 $]$

Search neighborhood

A Simple Illustration of Tabu Search

al Cost 23 Tabu List: $x_{3} M=\left[\begin{array}{lllll}0 & 2 & 0 & 0 & 0\end{array} 0\right.$

