
MAE 552 – Heuristic Optimization

Lecture 23

March 18, 2002

Topic: Tabu Search

http://unisci.com/stories/20021/0315023.htm

Tabu Search

• The Tabu search begins by marching to a local
minima.To avoid retracing the steps used, the
method records recent moves in one or more Tabu
lists.

• The role of the memory can change as the algorithm
proceeds.

– At initialization the goal is make a coarse
examination of the solution space, known as
'diversification’.

– As candidate locations are identified the search is
more focused to produce local optimal solutions
in a process of 'intensification'.

Tabu Search

• In many cases the differences between the various
implementations of the Tabu method have to do with
the size, variability, and adaptability of the Tabu
memory to a particular problem domain .

• The Tabu search has traditionally been used on
combinatorial optimization problems.

• The technique is straightforwardly applied to
continuous functions by choosing a discrete
encoding of the problem.

• Many of the applications in the literature involve
integer programming problems, scheduling, routing,
traveling salesman and related problems.

Tabu Search –Basic Ingredients

• Many solution approaches are characterized by
identifying a neighborhood of a given solution
which contains other so-called transformed solutions
that can be reached in a single iteration.

• A transition from a feasible solution to a transformed
feasible solution is referred to as a move.

• A starting point for Tabu search is to note that such a
move may be described by a set of one or more
attributes (or elements).

• These attributes (properly chosen) can become the
foundation for creating an attribute based memory.

Tabu Search

• Following a steepest descent / mildest ascent
approach, a move may either result in a best possible
improvement or a least possible deterioration of the
objective function value.

• Without additional control, however, such a process
can cause a locally optimal solution to be re-visited
immediately after moving to a neighbor, or in a
future stage of the search process, respectively.

• To prevent the search from endlessly cycling
between the same solutions, a tabu list is created
which operates like a short term memory.

Tabu Search –

• Attributes of all explored moves are stored in a list
named a running list representing the trajectory of
solutions encountered.

• Then, related to a sublist of the running list a so-
called tabu list may be introduced.

• The tabu list implicitly keeps track of moves (or
more precisely, salient features of these moves) by
recording attributes complementary to those of the
running list.

Tabu Search –

• These attributes will be forbidden from being
embodied in moves selected in at least one
subsequent iteration because their inclusion might
lead back to a previously visited solution.

• Thus, the tabu list restricts the search to a subset of
admissible moves (consisting of admissible attributes
or combinations of attributes).

• The goal is to permit "good" moves in each iteration
without re-visiting solutions already encountered.

Tabu Search – Pseudo-Code
Given a feasible solution x* with objective function value z*:

Let x := x* with z(x) = z*.

Iteration:

while stopping criterion is not fulfilled do

begin

(1) select best admissible move that transforms x into x' with objective function value

z(x') and add its attributes to the running list

(2) perform tabu list management: compute moves (or attributes) to be set tabu, i.e.,

update the tabu list

(3) perform exchanges:

x = x', z(x) = z(x');

if z(x) < z* then

z* = z(x), x* = x

endif

endwhile

Result: x* is the best of all determined solutions, with objective function value z*.

Tabu Search – Example 1: SAT Problem

•Suppose we are solving an SAT problem with n=8 variables.

•For a given logical formula F we are looking for the a truth
assignment for all 8 variables such that F is TRUE.

The initial truth assignment for x=(x1…….x8)

x=(0,1,1,1,0,0,0,1)

•The evaluation function is to maximize a weighted sum of the
number of satisfied clauses.

F(xinitial)=27

Tabu Search – Example 1: SAT Problem

•Step 1: Examine the neighborhood of xinitial

The neighborhood consists of all the solutions made by
flipping a single bit of x.

xinitial=(0,1,1,1,0,0,0,1)

N1= (1,1,1,1,0,0,0,1) N5= (0,1,1,1,1,0,0,1)

N2= (0,0,1,1,0,0,0,1) N6= (0,1,1,1,0,1,0,1)

N3= (0,1,0,1,0,0,0,1) N7= (0,1,1,1,0,0,1,1)

N4= (0,1,1,0,0,0,0,1) N8= (0,1,1,1,0,0,0,0)

Evaluate all of N(x) and choose the best solution. At this
stage it is very similar to the hill-climbing procedure.

Tabu Search – Example 1: SAT Problem

•Suppose that N3 provides the best solution, F=31 so this is the
new best solution.

•Now we introduce the idea of memory.

•Step 2: Create a memory structure for bookkeeping.

M=

•One element of an array for each design variable

Tabu Search – Example 1: SAT Problem

•The design specifies how long an element should remain in memory

•For this problem we decide that a move should remain ‘Tabu’ for 5
iterations. Then the memory after one iterations would be:

0 0 4 0 0 5 0M2=

•This implies that bit 3 is unavailable for flipping for 5 iterations

•After each iteration the elements in the memory are decreased by 1

•During the second iteration bit 7 is flipped

0 0 5 0 0 0 0M1= 0

0

Tabu Search – Example 1: SAT Problem

•Let us say that after 3 additional iterations of selecting the
best neighbor - which is not necessarily better than the current
point- the memory looks like:

3 0 1 5 0 4 2M5= 0
•F=33

•Bits 2,5, and 8 are available to be flipped any time.

•Bit 1 is not available for the next 3 iterations

•Bit 3 is not available for the next iteration

•Bit 4 is not available for the next 5

•Bit 6 is not available for the next 4

•Bit 7 is not available for the next 2.

Tabu Search – Example 1: SAT Problem

•Exercise: Based on the current Tabu list what were the last
moves made and what does the current solution look like?

•Known initial solution: xinitial=(0,1,1,1,0,0,0,1)

3 0 1 5 0 4 2M5= 0

x1

x2

x3

x4

x5

Tabu Search – Example 1: SAT Problem
• Since our current memory looks like

3 0 1 5 0 4 2M5= 0

We can choose from which remaining solutions?

•What is M6???????

•M6=

Tabu Search – Modifications

• What happens if we come upon a very good solution
and pass it by because it is Tabu?

• Perhaps we should incorporate more flexibility into
the search.

• Maybe one of the Tabu neighbors, x6 for instance
provides an excellent evaluation score, much better
than any of the solutions previously visited.

• In order to make the search more flexible, Tabu
search evaluates the ‘whole’ neighborhood, and
under normal circumstances selects a non-tabu
move.

• But if circumstances are not normal i.e. one of the
tabu solutions is outstanding, then take the tabu point
as the solution.

Tabu Search –

• Overriding the Tabu classification occurs when the
‘aspiration criteria’ is met.

• There are other possibilities for increasing the
flexibility of the Tabu Search.

1. Use a probabilistic strategy for selecting from the
candidate solutions. Better solutions have a higher
probability of being chosen.

2. The memory horizon could change during the search
process.

3. The memory could be connected to the size of the
problem (e.g. remembering the last n1/2 moves)
where n is the number of design variables in the
problem.

Tabu Search –

4. Incorporate a ‘long-term’ memory in addition to the
short term memory that we have already introduced.

• The memory that we are using can be called a
recency-based memory because it records some
actions of the last few iterations.

• We might introduce a frequency-based memory that
operation on a much longer horizon. For example a
vector H might be introduced as a long term
memory structure.

Tabu Search – Example 1: SAT Problem cont.

• The vector H is initialized to zero and at each stage
of the search the entry

H(i)=j
is interpreted as ‘during the last h iterations of the
algorithm the i-th bit was flipped j times.’

• Usually the value of h is set quite high in comparison
to the length of the short-term memory.

• For example after 100 iterations with h =50 the long
term memory H might have the following values
displayed. H:

5 7 11 3 9 8 1 6

Tabu Search –
• H shows the distribution of moves during the last 50

iterations.How can we use this information?
• This could be used to diversify the search.
• For example H provides information as to which

flips have been underrepresented or not represented
at all, and we can diversify the search by exploring
these possibilities.

• The use of long term memory is usually reserved for
special cases.

• For example we could encounter a situation where
are non-tabu solutions lead to worse solutions. To
make a meaningful decision, the contents of the long
term memory can be considered.

Tabu Search –

• The most common way to incorporate long term memory
into the Tabu search is to make moves that have occurred
frequently less attractive. Thus a penalty is added based on
the frequency that a move has occurred.

F(x) = Eval(x)+P(Frequency of Move)

Tabu Search –Long Term Memory

• To illustrate the use of the long term memory assume
that the value of the current solution x for the SAT
problem is 35. All non-tabu flips, say of bits 2,3,
and 7 provide values of 30, 3, and 31.

• None of the tabu moves provides a value greater than
37 (the highest value so far), so we cannot apply the
aspiration criteria.

• In this case we look to the long term memory to help
us decide which move to take.

• A penalty is subtracted from F(x) based on the
frequency information in the long term memory.

• Penalty=0.7 * H(i) is a possible penalty function.

Tabu Search – Long Term Memory

• The new scores for the three possible solutions are:

5 7 11 3 9 8 1 6H=

Solution 1 (bit 2) = 30 -0.7*7=25.1

Solution 2 (bit 3) = 33-0.7*11 =25.3

Solution 3 (bit 7) = 31-0.7*1 =30.3

•The 3rd solution is selected

Tabu Search –Other Ways of Diversifying the Search

• Diversifying the search by penalizing the high frequency
moves is only one possibility.

• Other possibilities if we have to select a Tabu move:

o Select the oldest.

o Select the move that previously resulted in the
greatest improvement.

o Select the move that had the greatest influence on the
solution – resulted in the greatest change in F(x)

Tabu Search –TSP Example

• Consider a TSP with eight cities:

• Recall that a solution can be represented by a vector
indicating the order the cities are visited

• Example: (2, 4, 7, 5, 1, 8, 3, 6)
• Let us consider moves that swap any two cities :

(2, 4, 7, 5, 1, 8, 3, 6) à(4, 2, 7, 5, 1, 8, 3, 6)---swap cities 1
and 2

• Each solution has 28 neighbors that can be swapped.

Tabu Search –TSP Example
The main memory component (short term memory) can be stored
in a matrix where the swap of cities i and j is recorded in the i-th
row and j-th column

2 3 4 5 6 7 8

1

2

3

4

5

6

7

Tabu Search –TSP Example

•We will maintain in the Tabu list the number of remaining
iterations that given swap stays on the Tabu list (5 is the Max).

•We will also maintain a long term memory component H
containing the frequency information for the last 50 swaps.

•After 500 iterations the current solution is:

(7,3,5,6,1,2,4,8) and F(x)=173

•The current best solution encountered in the 500 iterations is 171

Tabu Search – TSP Example

0 0 1 0 0 0 0

0 0 0 5 0 0

0 0 0 04

3 0 0 0

0 0 2

0 0

0

2 3 4 5 6 7 8

1

2

3

4

5

6

7

Short Term Memory (M) after 500 iterations
Most
Recent
Swap

Tabu Search – TSP Example

0 2 3 3 0 1 1

2 1 3 1 1 0

2 3 3 04

1 1 2 1

4 2 1

3 1

6

2 3 4 5 6 7 8

1

2

3

4

5

6

7

Long Term Memory (H) last 50 iterations

Tabu Search –TSP Example

•The neighborhood of this tour was selected to be a swap
operation of two cities on the tour.

•This is not the best choice for Tabu Search.

•Many researchers have selected larger neighborhoods
which work better.

•A two interchange move for the TSP is defined by
changing 2 non-adjacent edges.

Tabu Search –TSP Example

2-Interchange Move

•For a 2-interchange move a
tour is Tabu if both added
edges are on the Tabu list.

Tabu Search –Summary

• Tabu Search works by redirecting the search towards
unexplored regions of the design space.

• There are a number of parameters whose values are
decided by the designer:

1. What characteristics of the solution to store in the Tabu list

2. The aspiration criteria – what criteria will be used to override
the Tabu restrictions.

3. How long to keep a move on the Tabu list.

4. Whether to use long-term memory (H) and what to base it on
(frequency, search direction, etc.).

