Problem set 6 (PS6) Due Monday February 27

PS6-1 Calculate the heat gain through one square foot of the wall structure specified in the Chicago Design Project Building for an outside temperature of 100 F and an inside temperature of 72 F. Assume still ambient air.

PS6-2

Calculate the heat gain through one square foot of the ceiling structure specified in the Chicago Design Project Building for an outside temperature of 100 F and an inside temperature of 72 F. Assume still ambient air.

- PS6-3 Calculate the heat gain through one of the office windows specified in the Chicago Design Project Building for an outside temperature of 100 F and an inside temperature of 72 F. Assume still ambient air.
- PS6-4 Calculate the heat loss through the slab specified in the Chicago Design Project Building for an outside temperature of -6 F and inside temperature of 72 F.

PS6-1	WALL	t	k	R				
	outside			.68	Figure 5 - 2a			
	4 in face brick	4.	6.	.66	7			
	1in air gap			.91				
	8 in concrete block	8.	.96	6 8.33	33			
	1 in air gap			.91				
	vapor barrier	.009	2.4	0.				
	4 in insulation	4.	.3	13.33	3			
	gypsum	.75	1.08	.685	5			
	inside			.68	Figure 5 - 2a			
	∑Resistance			26.19	98			
	$U(andC_w) = \frac{1}{\sum Res}$	1 istanc	ce	.038	32			
	$Q = U \times A \times (T_o - T_i) = .0382 \times (100 - 72) = 1.07 \text{ Btu/hr}$							

	ROOF t		k	R					
	outside			.61					
PS6-2	.5 in stone chips	.5	9.96	.05					
	.4 in membrane	.4	.3	1.333					
	5 in insulation	5.	.3	16.667					
	2 in concrete	2.	12.	.167					
	.08 in steel pan	.08	312.	.0					
	inside			.61					
	∑Ressistance			20.057					
	$C_{roof} = \frac{1}{\sum Resistant}$	nce		.050					
	CEILING	t	k	R					
	outside			.92					
	.75 acoustical tile	er .75	5.48	1.563					
	inside			.92					
	Σ Ressistance			3.403					
	$C_{ceiling} = \frac{1}{\sum Resistant}$	ance		.294					
	$A_{wall} = (2 \times 235 + 2 \times 114) \times 2 = 1396.$								
	$A_{roof} = 235 \times 114 = 26,790$								
	$\mathbf{R'} = \frac{1}{\frac{A_{wall}}{R_{wall}} + \frac{A_{roof}}{R_{roof}}} + \frac{1}{\frac{A_{ceiling}}{R_{wall}}} = \frac{1}{\frac{1396}{26.212} + \frac{26790}{20.57}} + \frac{1}{\frac{26790}{3.403}} = .000854$								
	$U = \frac{1}{R' \times R_{ceiling}} = \frac{1}{.000854 \times 26.790.} = .04371$								
	$Q = U \times A \times (T_o - T_i) = .04371 \times (100 - 72) = 1.224$ Btu/hr								

WINDOW

PS6-3 5 ft x 7 ft Double pane .25 in. glass with .25 in argon between Aluminum frame with thermal breaks Table 5 - 5a,

> U = .62 $Q = U \times A \times (T_o - T_i) = .62 \times 5 \times 7 \times (100 - 72) = 607.6$ Btu/hr

