$\mathrm{T}_{\mathrm{db}}=45 \mathrm{C}, \mathrm{T}_{\mathrm{wb}}=35 \mathrm{C}, \mathrm{p}_{\mathrm{atm}}=80$

mae 439/539 Spring 2012 Quiz 1

$\mathrm{p}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{wb}}\right)=5.63 \mathrm{kPa}$
$\mathrm{h}_{1}\left(\mathrm{~T}_{\mathrm{wb}}\right)=146.4 \mathrm{~kJ} / \mathrm{kg}$
An air water vapor mixture is at 45 C dry bulb temperature, 35 C wet bulb temperature and an atmospheric pressure of 80 kPa . Calculate the 5 properties specific humidity, enthalpy, relative humidity, specific volume and dew point temperature for the mixture.
$\mathrm{h}_{\mathrm{fg}}\left(\mathrm{T}_{\mathrm{wb}}\right)=2564.4-146.6=2582.3$
$\mathrm{h}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{db}}\right)=2582.3$
$\gamma_{w b}=\frac{18}{29} \frac{P_{w b}}{p_{\text {atm }}-p_{w b}}=.622 \times \frac{5.63}{80-5.63}=.047$
$\gamma=\frac{\gamma_{\mathrm{wb}} \times \mathrm{h}_{\mathrm{fg}}\left(\mathrm{T}_{\mathrm{wb}}\right)-\mathrm{c}_{\mathrm{p}} \times\left(\mathrm{T}_{\mathrm{db}}-\mathrm{T}_{\mathrm{wb}}\right)}{\mathrm{h}_{\mathrm{v}}\left(\mathrm{T}_{\mathrm{db}}\right)-\mathrm{h}_{1}\left(\mathrm{~T}_{\mathrm{wb}}\right)}=\frac{.047 \times 2417.8-1.005 \times(45-35)}{2582.3-146.4}$
Grade No
$\gamma=\frac{113.61-10.05}{2435.9}=.04251 \mathrm{~kg}$ water $/ \mathrm{kg}$ dry air 1002
$90 \quad 2$
$\mathrm{h}=\mathrm{c} \times \mathrm{T}+\mathrm{\gamma} \times \mathrm{h}(\mathrm{T})=1.005 \times 45+.04251 \times 2582.3$
$18 \mathrm{p}_{\mathrm{v}}=60 \quad 3$
$\mathrm{r}=\frac{18}{29} \times \frac{\mathrm{p}_{\mathrm{v}}}{\mathrm{p}_{\mathrm{atm}}-\mathrm{p}_{\mathrm{v}}}=.04251 \quad 50 \quad 7$
$p_{v}=5.127$
406
$\begin{array}{ll}p_{v}=5.127 & 30 \quad 7\end{array}$

$\phi=\frac{\mathrm{p}_{\mathrm{v}}}{\mathrm{p}_{\mathrm{sat}}\left(\mathrm{T}_{\mathrm{db}}\right)}=\frac{5.127}{9.59}=53.47 \% \quad 1020$	5

$\mathrm{v}=\frac{\mathrm{R}_{\mathrm{a}} \times \mathrm{T}}{\mathrm{p}_{\mathrm{a}}}=\frac{.287 \times(45+273.15)}{80-5.127}=1.215 \mathrm{~m}^{3} / \mathrm{kg}$ dry air
ave 47.2
$\mathrm{v}=\gamma \times \frac{\mathrm{R}_{\mathrm{v}} \times \mathrm{T}}{\mathrm{p}_{\mathrm{v}}}=.04251 \times \frac{.4619 \times(45+273.15)}{5.127}=1.218 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{dry}$ air
$\mathrm{T}_{\mathrm{dp}}=\mathrm{T} @ \mathrm{p}_{\mathrm{g}}=\mathrm{p}_{\mathrm{v}}=33 \mathrm{C}$

mae 439/539 Spring 2012 Quiz2

What is the local solar time on August 21 at a north latitude of 35° when the angle between a projection of the suns ray and a normal to a vertical South West facing surface is 10° and the angle between the suns ray and this surface is 60.9°.
$1=35$
$J=10$
$\mathrm{o}_{\mathrm{v}}=60.9$
$\breve{\mathrm{u}}=12.3$ August 21
$\psi=235$
$\cos \mathrm{d}_{\mathrm{v}}=\cos \mathrm{b} \times \cos \partial$

ALTERNATE

$$
360-\gamma-\varphi=\text { ŭ Grade No }
$$

$$
\varphi=? \quad 100 \quad 4
$$

$$
\operatorname{cosű}=\frac{\sin \breve{ } \times \cos 1-\cos \breve{\mathrm{u}} \times \sin 1 \times \cosh }{90} 1
$$

$$
\operatorname{cosű}=\frac{\sin \mathrm{u} \times \cos 1-\cos \mathrm{u} \times \sin 1 \times \cos \mathrm{h}}{\cos \overline{\mathrm{~L}}} \quad \begin{array}{lll}
90 & 1 \\
80 & 5
\end{array}
$$

$$
\cosh =\quad 70 \quad 5
$$

$$
\mathrm{h}=\quad 60 \quad 4
$$

$$
\cos 反=\cos d_{v} / \cos \nu
$$

$$
\mathrm{hrs}=\mathrm{h} / 15 \quad 50 \quad 4
$$

$$
\cos \mathrm{W}=\cos 60.9 / \cos 10
$$

$$
\mathrm{LST}=12+\mathrm{hrs} \quad 40 \quad 1
$$

$$
\cos \bar{\sigma}=.4863 / .9848=.4938
$$

$$
30 \quad 5
$$

$$
\begin{equation*}
\beta=60.4 \tag{20}
\end{equation*}
$$

\sin 反 $=\frac{\cos 1 \times \cos \mathrm{h} \times \cos \mathrm{u}+\sin 1 \times \sin \text { ŭ }}{\cos \mathrm{\sigma}}$
102
$0 \quad 4$
$\sin 60.4=\frac{\cos 35 \times \cos \mathrm{h} \times \cos 12.3+\sin 35 \times \sin 12.3 \times}{\cos 60.4}$
cosh $=.9298$
$\mathrm{h}=21.6^{\circ}$
$\mathrm{hr}=21.6 / 15=1.22 \mathrm{hrs}, 1: 26$
LST $=13: 26 \mathrm{pm}$

mae 439/539 HVAC Spring 2012 Quiz 3

On May 21, at a location in the morning, β, the angle between the suns ray and the horizontal, is 57.62° and ϕ, the angle between a projection of the sunôs ray and the North, is 118.69°. At this time and location calculate for a horizontal surface the direct and diffuse radiation in Btu/hr ft^{2} and calculate for a North facing surface inclined at 45° to the horizontal the direct, diffuse and reflected radiation in Btu/ $\mathrm{hr} \mathrm{ft}^{2}$. Assume a reflectivity of .2 and $\mathrm{C}_{\mathrm{N}}=1$.

$$
\begin{aligned}
& \text { May } 21 \\
& \mathrm{~A}=350.6, \mathrm{~B}=.177, \mathrm{C}=.13 \\
& \nu=|\gamma-\phi|=|0-118.89|=118.89 \\
& \cos _{\mathrm{A}}=\cos \mathrm{\sigma} \times \cos \times \supset \sin \text { Ŭ }+\sin \mathrm{\sigma} \times \cos \alpha \\
& \operatorname{cosd}_{\mathrm{A}}=.5355 \times-.483 \times .707+.8445 \times .707 \\
& \cos _{\mathrm{A}}=.414 \\
& \mathrm{~d}_{\mathrm{A}}=65.63 \\
& \cos d_{H}=\sin \mathrm{b} \\
& \mathrm{o}_{\mathrm{H}}=32.38 \\
& \mathrm{G}_{\mathrm{ND}}=\mathrm{A} / \exp \left(\frac{\mathrm{B}}{\sin Б}\right)=350.6 / \exp (.177 / .8446) \\
& \mathrm{G}_{\mathrm{ND}}=284.35 \mathrm{But} / \mathrm{hrft}^{2} \\
& \mathrm{G}_{\mathrm{DH}}=\mathrm{C}_{\mathrm{N}} \times \mathrm{G}_{\mathrm{ND}} \times \cos \mathrm{d}_{\mathrm{H}}=284.35 \times .8445 \\
& \mathrm{G}_{\mathrm{DH}}=240.1 \mathrm{But} / \mathrm{hr} \mathrm{ft}^{2} \\
& \mathrm{G}_{\mathrm{DA}}=\mathrm{C}_{\mathrm{N}} \times \mathrm{G}_{\mathrm{ND}} \times \cos \mathrm{d}_{\mathrm{A}} \\
& \mathrm{G}_{\mathrm{DA}}=284.35 \times .4142=117.78 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2} \\
& \mathrm{~F}_{\mathrm{ws}}=(1+\cos \breve{\mathrm{U}}) / 2=1.707 / 2=.8535 \\
& \mathrm{G}_{\mathrm{dA}}=\mathrm{C}_{\mathrm{N}} \times \mathrm{C} \times \mathrm{G}_{\mathrm{ND}} \times \mathrm{F}_{\mathrm{ws}} \\
& \mathrm{G}_{\mathrm{dA}}=.13 \times 284.35 \times .8535=31.55 \\
& \mathrm{~F}_{\mathrm{wg}}=(1-\cos \text { Ŭ }) / 2=.1465 \\
& G_{R A}=\left(G_{D H}+G_{d H}\right) \times \overline{\mathrm{D}} \times \mathrm{F}_{\mathrm{wg}} \\
& 1006 \\
& \begin{array}{lll}
G_{R A} & =(240.1+36.97) \times .2 \times .1465 & 80 \\
G_{w g} & 5
\end{array} \\
& \mathrm{G}_{\mathrm{RA}}=8.11 \mathrm{Btu} / \mathrm{hr} \mathrm{ft}^{2} \\
& 70 \quad 4 \\
& 603 \\
& 506 \\
& 40 \quad 4 \\
& \mathrm{G}_{\mathrm{dH}}=\mathrm{C}_{\mathrm{N}} \times \mathrm{C} \times \mathrm{G}_{\mathrm{ND}}=284.35 \times .13 \\
& \mathrm{G}_{\mathrm{dH}}=36.97
\end{aligned}
$$

mae 439/539 Spring 2012 Quiz 4

The pressure drop in a duct duct system has been measured at 1.5 in water at a flow rate of2000 cfm. If a fan with the following performance, which can be expressed by the equation, pressure drop=.8$\left(6.255 \times 10^{-6}\right) \times Q^{1.5}$, is installed with this duct system what will be the flow rate ?

Q, cfm	100	300	500	700	900	1100	1300	1500	1700	1900
Pressure drop, in H2O	.794	.767	.730	.684	.631	.572	.507	.437	.362	.282

mae 439/539 Spring 2012 Quiz 4

The pressure drop in a duct duct system has been measured at 1.5 in water at a flow rate of2000 cfm. If a fan with the following performance, which can be expressed by the equation, pressure drop=.8$\left(6.255 \times 10^{-6}\right) \times Q^{1.5}$, is installed with this duct system what will be the flow rate ?

Q, cfm	100	300	500	700	900	1100	1300	1500	1700	1900
Pressure drop, in H 2 O	.794	.767	.730	.684	.631	.572	.507	.437	.362	.282

$\mathrm{qP}_{\text {duct }}=\mathrm{C} \times \mathrm{Q}^{2}$
1.5 in $\mathrm{H} 2 \mathrm{O}=\mathrm{C} \times 1200^{2}$
$\mathrm{C}=1.5 / 1200^{2}=3.75 \times 10^{-7}$
$\mathrm{OP}_{\text {duct }}=1.5 \times\left(\frac{\mathrm{Q}_{\text {duct }}}{1200}\right)^{2}=3.75 \times 10^{-7} \times \mathrm{Q}_{\text {duct }}^{2}$
the system will operate where $\mathrm{Q}_{\text {fan }}=\mathrm{Q}_{\text {duct }}$ and $\mathrm{OP}_{\mathrm{fan}}=\mathrm{Q} \Phi_{\text {duct }}$

Q	$\mathrm{qP}_{\text {duct }}$	$\mathrm{qP}_{\text {fan }}$
900	.304	.6311
1100	.454	.5718
1200	.54	.54
1300	.634	.5068

mae 439/539 Spring 2012 Quiz 5

Pt	T,F	Quality	h,Btu/lb
1	40	1	
2			112.9
3			111.5
4			117.8
5	95	0	
6	60	1	
7		0	

With the cycle shown operating at the tabulated conditions what is the HP/ton? Sketch a pressure enthalpy diagram for the cycle.

For the cycle shown operating at the tabulated conditions what is the HP/ton? Sketch a pressure enthalpy diagram for the cycle.

Pt	T, F	Quality	$\mathrm{h}, \mathrm{Btu} / \mathrm{lb}$
1	40	1	108.71
2			112.9
3			111.5
4			117.8
5	95	0	43.179
6	60	1	111.38
7		0	31.239

mtop $\times \mathrm{h}_{5}=($ mtop - mbottom $) \times \mathrm{h}_{6}+$ mbottom $\times \mathrm{h} 7$
mtop $\times 43.179=($ mtop -2.58$) \times 111.376+2.58 \times 31.239$ Ave 41
mtop $\times 43.179=$ mtop $\times 111.376-287.35+80.6$
$206.75=68.197 \mathrm{mtop}$
$\mathrm{mtop}=3.031 \mathrm{lb} / \mathrm{min} / \mathrm{ton}$

CompressorEnergyBalance
Wtop $=\operatorname{mtop} \times\left(\mathrm{h}_{4}-\mathrm{h}_{3}\right)=3.031 \times(117.8-111.5)=19.1 \mathrm{Btu} / \mathrm{min} /$ ton
Wbottom $=$ mbottom $\times\left(h_{2}-h_{1}\right)=2.58 \times(112.9-108.7)=10.386 \mathrm{Btu} / \mathrm{min} /$ ton
$\mathrm{HP} /$ Ton $=($ Wtop + Wtop $) / 42.41 \mathrm{Btu} / \mathrm{min} / \mathrm{HP}=.695 \mathrm{Hp} /$ ton

