$$T_{db} = 45 \,C, T_{wb} = 35 \,C, p_{atm} = 80$$

$$\begin{array}{ll} p_{v}(T_{w}) = 5.63 \, kPa & \text{An air water vapor mixture is at 45 C dry bulb temperature, 35 C we bulb temperature and an atmospheric pressure of 80 kPa. Calculate the 5 properties specific humidity, enthalpy, relative humidity, specific volume and dew point temperature for the mixture. \\ h_{tg}(T_{wb}) = 2564.4 - 146.6 = 2582.3 \\ h_{v}(T_{d}) = 2582.3 \\ w_{b} = \frac{18}{29} \frac{P_{wb}}{p_{am}} - p_{wb}} = .622 \times \frac{5.63}{80 - 5.63} = .047 \\ = \frac{w^{b} \times h_{tg}(T_{wb}) - c_{p} \times (T_{db} - T_{wb})}{h_{v}(T_{db}) - h_{1}(T_{wb})} = \frac{.047 \times 2417.8 - 1.005 \times (45 - 35)}{2582.3 - 146.4} & \text{Grade No} \\ = \frac{113.61 - 10.05}{2435.9} = .04251 \, kg \, water/kg \, dry \, air & 90 & 2 \\ \lambda = c_{p} \times T_{db} + \times h_{v}(T_{db}) = 1.005 \times 45 + .04251 \times 2582.3 = 155 \, kJ/kg \, dry \, air & 70 & 3 \\ = \frac{18}{29} \times \frac{P_{v}}{p_{am}} - p_{v} = .04251 & \frac{60}{251} \times \frac{100}{259} \times \frac{100$$

What is the local solar time on August 21 at a north latitude of 35^o when the angle between a projection of the suns ray and a normal to a vertical South West facing surface is 10^o and the angle between the suns ray and this surface is 60.9^o.

1 = 35			
=10	ALTERNATE		
- 60.0	$360\varphi =$	Grad	e No
v = 00.9	$\varphi = ?$	100	4
= 12.3August21	$\sin \times \cos 1 - \cos \times \sin 1 \times \cos h$	90	1
$\psi = 235$	$\cos = \frac{\cos \theta}{\cos \theta}$	80	5
	$\cosh =$	70	5
$\cos v = \cos \times \cos$	h =	60	4
$\cos = \cos \sqrt{\cos}$	hrs = h/15	50	4
$\cos = \cos 60.9 / \cos 10$	LST = 12 + hrs	40	1
cos = .4863/.9848 = .4938		30	5
$\beta = 60.4$		20	-
$\cos 1 \times \cos h \times \cos + \sin 1 \times \sin h$		10	2
$\sin = \frac{\cos \theta}{\cos \theta}$		0	4
$\cos 35 \times \cos h \times \cos 12 3 + \sin 35$	x sin 12 3 x	Ave :	58.8
$\sin 60.4 = \frac{\cos 55 \times \cos 12.03 + \sin 553}{\cos 60.4}$			
cosh = .9298			
$h = 21.6^{\circ}$			
hr = 21.6/15 = 1.22 hrs, 1:26			
LST = 13 : 26 pm			

On May 21, at a location in the morning, β , the angle between the suns ray and the horizontal, is 57.62 ° and ϕ , the angle between a projection of the sun α ray and the North , is 118.69 °. At this time and location calculate for a horizontal surface the direct and diffuse radiation in Btu/hr ft² and calculate for a North facing surface inclined at 45 ° to the horizontal the direct, diffuse and reflected radiation in Btu/hr ft². Assume a reflectivity of .2 and C_N=1.

May 21

The pressure drop in a duct duct system has been measured at 1.5 in water at a flow rate of 2000 cfm. If a fan with the following performance, which can be expressed by the equation, pressure drop=.8-(6.255×10^{-6}) x Q^{1.5}, is installed with this duct system what will be the flow rate ?

Q, cfm	100	300	500	700	900	1100	1300	1500	1700	1900
Pressure	.794	.767	.730	.684	.631	.572	.507	.437	.362	.282
drop, in H2O										

The pressure drop in a duct duct system has been measured at 1.5 in water at a flow rate of 2000 cfm. If a fan with the following performance, which can be expressed by the equation, pressure drop=.8- $(6.255 \times 10^{-6}) \times Q^{1.5}$, is installed with this duct system what will be the flow rate ?

Q, cfm	100	300	500	700	900	1100	1300	1500	1700	1900
Pressure	.794	.767	.730	.684	.631	.572	.507	.437	.362	.282
drop, in H2O										

$$p_{duct} = C \times Q^{2}$$
1.5 in H2O = C × 1200²
C = 1.5/1200² = 3.75 × 10⁻⁷

$$p_{duct} = 1.5 \times \left(\frac{Q_{duct}}{1200}\right)^{2} = 3.75 \times 10^{-7} \times Q_{duct}^{2}$$

the system will operate where $Q_{fan} = Q_{duct}$ and $p_{fan} = p_{duct}$

Q	\mathbf{p}_{duct}	p_{fan}
900	.304	.6311
1100	.454	.5718
1200	.54	.54
1300	.634	.5068

With the cycle shown operating at the tabulated conditions what is the HP/ton? Sketch a pressure enthalpy diagram for the cycle.

Pt	T,F	Quality	h,Btu/lb
1	40	1	
2			112.9
3			111.5
4			117.8
5	95	0	
6	60	1	
7		0	

Pt	T,F	Quality	h,Btu/lb
1	40	1	108.71
2			112.9
3			111.5
4			117.8
5	95	0	43.179
6	60	1	111.38
7		0	31.239

For the cycle shown operating at the tabulated conditions what is the HP/ton? Sketch a pressure enthalpy diagram for the cycle.

CompressorEnergyBalance

 $Wtop = mtop \times (h_4 - h_3) = 3.031 \times (117.8 - 111.5) = 19.1Btu/min/ton$ Wbottom = mbottom \times (h_2 - h_1) = 2.58 \times (112.9 - 108.7) = 10.386Btu/min/ton HP/Ton = (Wtop + Wtop)/42.41Btu/min/HP = .695Hp/ton