Dielectric behavior

Topic 9

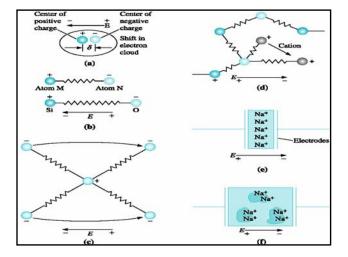
Reading assignment

- Askeland and Phule, The Science and Engineering of Materials, 4th Ed., Sec. 18-8, 18-9 and 18-10.
- Shackelford, Materials Science for Engineering, Sec. 15.4.
- Chung, Composite Materials, Ch. 7.

Insulators and dielectric properties

- Materials used to insulate an electric field from its surroundings are required in a large number of electrical and electronic applications.
- Electrical insulators obviously must have a very low conductivity, or high resistivity, to prevent the flow of current.
- Porcelain, alumina, cordierite, mica, and some glasses and plastics are used as insulators.

Dielectric strength


- Maximum electric field that an insulator can withstand before it loses its insulating behavior
- Lower for ceramics than polymers
- Dielectric breakdown avalanche breakdown or carrier multiplication

Polarization in dielectrics

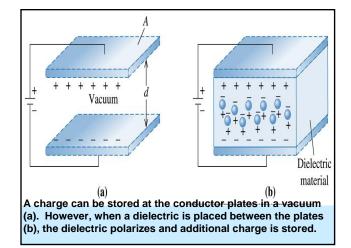
Capacitor – An electronic device, constructed from alternating layers of a dielectric and a conductor, that is capable of storing a charge. These can be single layer or multi-layer devices.

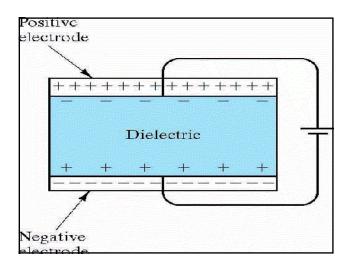
- **Permittivity** The ability of a material to polarize and store a charge within it.
- Linear dielectrics Materials in which the dielectric polarization is linearly related to the electric field; the dielectric constant is not dependent on the electric field.

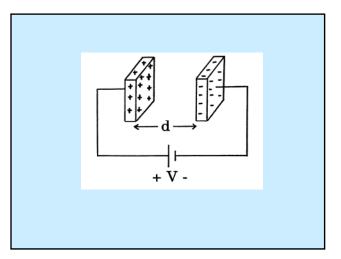
Dielectric strength - The maximum electric field that can be maintained between two conductor plates without causing a breakdown.

Polarization mechanisms in materials:

(a) electronic,

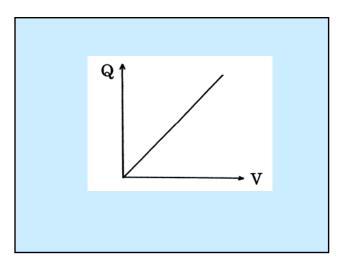

(b) atomic or ionic,

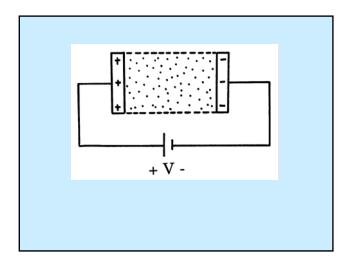

(c) high-frequency dipolar or orientation (present in ferroelectrics),


(d) low-frequency dipolar (present in linear dielectrics and glasses),

(e) interfacial-space charge at electrodes, and

(f) interfacial-space charge at heterogeneities such as grain boundaries.




$$D_{o} = \frac{Q}{A} ,$$

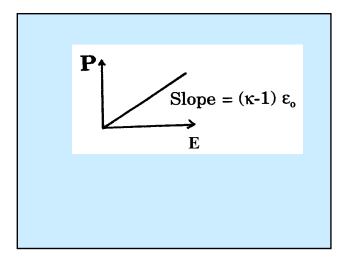
$$\Sigma = \frac{V}{d} ,$$

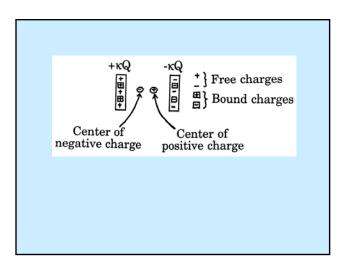
$$D_{o} = \varepsilon_{o} \Sigma$$

$$\varepsilon_{o} = 8.85 \text{ x } 10^{-12} \text{ C/(V.m)}$$

Slope = $C_{o} = \frac{Q}{V} = \frac{\varepsilon_{o} \Sigma A}{\Sigma d} = \frac{\varepsilon_{o} A}{d} ,$

$$D_{m} = \kappa D_{o} = \frac{\kappa Q}{A} ,$$


$$D_{m} = \kappa \varepsilon_{o} \Sigma = \varepsilon \Sigma$$


$$C_{m} = \frac{\kappa Q}{V} = \frac{\kappa \varepsilon_{o} \Sigma A}{\Sigma d} = \frac{\kappa \varepsilon_{o} A}{d} = \kappa C_{o} ,$$

$$P = D_{m} - D_{o}$$

$$= \kappa \varepsilon_{o} \Sigma - \varepsilon_{o} \Sigma$$

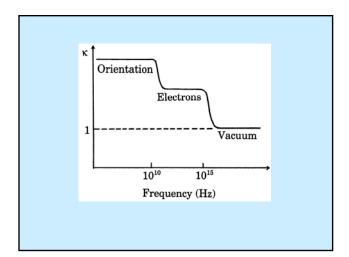
$$= (\kappa - 1) \varepsilon_{o} \Sigma$$

$$\frac{\kappa Q - Q}{Q} = \kappa - 1 ,$$

$$\chi = \kappa - 1 = \frac{P}{\varepsilon_0 \Sigma} ,$$

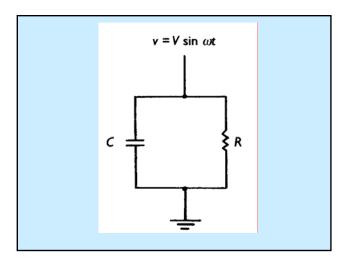
(bound charge)d = (\kappa - 1) Qd

$$\frac{\text{Dipole moment}}{\text{Volume}} = \frac{(\kappa - 1)Qd}{Ad} = \frac{(\kappa - 1)Q}{A} = P ,$$


$$V = \frac{\kappa Q}{C_m}$$

$$\kappa Q = D_m A = \varepsilon \Sigma A$$

$$C_m = \frac{\kappa \varepsilon_0 A}{x} = \frac{\varepsilon A}{x}$$


$$V = \frac{\varepsilon \Sigma A}{\frac{\varepsilon \Sigma A}{x}} = \Sigma x$$

Material	Dielectric constant, ^a <i>k</i>	Dielectric strength (kV/mm)		
Al ₂ O ₃ (99.9%)	10.1	9.1 ^b		
Al_2O_3 (99.5%)	9.8	9.5 ^b		
BeO (99.5%)	6.7	10.2 ^b		
Cordierite	4.1-5.3	2.4-7.9 ^b		
Nylon 66-reinforced with 33% glass fibers (dry-as-molded)	3.7	20.5		
Nylon 66-reinforced with 33% glass fibers (50% relative humidity)	7.8	17.3		
Acetal (50% relative humidity)	3.7	19.7		
Polyester	3.6	21.7		
Source: Data from Ceramic Source '86, American Ceramic Society, Columbus, OH, 1985, and Design Handbook for Du Pont Engineering Plastics. "At 10 ⁵ Hz. ^b Average root-mean-square (RMS) values at 60 Hz.				

Table 7.6 Values of the relative dielectric constant κ of various dielectric materials at 1 kHz (Data from Ceramic Source '86, American Ceramic		
Society, Columbus, Ohio, 1985, and Design Handbook for DuPont Engineering Plastics).		
Material	<u>K</u>	
Al ₂ O ₃ (99.5%)	9.8	
BeO (99.5%) 6.7		
Cordierite 4.1-5.3		
Nylon-66 reinforced with glass fibers 3.7		
Polyester	3.6	
	·	

Dielect		c Constant	Dielectric Strength	tan ð (at 10 ⁶ Hz)	Resistivity (ohm · cm)
Material (at 60 Hz)	(at 10 ⁶ Hz)	(10 ⁶ V/m)			
Polyethylene	2.3	2.3	20	0.00010	>10 ^B
leflon	2.1	2.1	20	0.00007	101
Polystyrene	2.5	2.5	20	0.00020	101
PVC	3.5	3.2	40	0.05000	101
Vylon	4.0	3.6	20	0.04000	101
Rubber	4.0	3.2	24		
Phenolic	7.0	4.9	12	0.05000	101
Ероху	4.0	3.6	18		10 ¹
Paraffin wax		2.3	10		1013-101
Fused silica	3.8	3.8	10	0.00004	1011-101
Soda-lime glass	7.0	7.0	10	0.00900	101
N2O3	9.0	6.5	6	0.00100	1011-101
TiO ₂		14-110	8	0.00020	1013-101
Vica		7.0	40		101
BaTiO ₃		2000-5000	12	~ 0.0001	10 ⁸ -10 ¹
Nater		78.3			101

$$\Sigma = \hat{\Sigma} e^{i\omega t} = \hat{\Sigma} (\cos \omega t + i \sin \omega t),$$

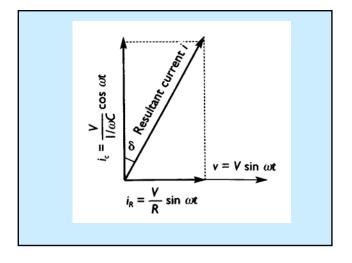
$$D_{m} = \hat{D}_{m} e^{i(\omega t - \delta)} = \hat{D}_{m} [\cos(\omega t - \delta) + i \sin(\omega t - \delta)],$$

$$\hat{D}_{m} e^{i(\omega t - \delta)} = \varepsilon \hat{\Sigma} e^{i\omega t},$$

$$\varepsilon = \frac{\hat{D}_{m}}{\hat{\Sigma}} e^{-i\delta} = \frac{\hat{D}_{m}}{\hat{\Sigma}} (\cos \delta - i \sin \delta),$$

$$\tan \delta = -\frac{\text{Imaginary part of } \kappa}{\text{Real part of } \kappa},$$

$$i_{c} = \frac{dQ}{dt} = C \frac{dv}{dt} ,$$


$$v = V \sin \omega t$$

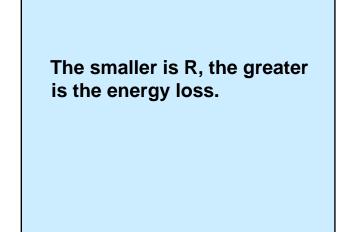
$$\omega = 2\pi f = \frac{2\pi}{T} ,$$

$$i_{c} = C \frac{dv}{dt} = \omega CV \cos \omega t ,$$

$$= \frac{V}{1/\omega C} \cos \omega t$$

$$\sin\left(\omega t + \frac{\pi}{2}\right)$$

= $\sin \omega t \cos \frac{\pi}{2} + \cos \omega t \sin \frac{\pi}{2}$
= $\cos \omega t$,
 $i_c = \frac{V}{1/\omega C} \sin\left(\omega t + \frac{\pi}{2}\right)$,
 $i_R = \frac{\nu}{R} = \frac{V}{R} \sin \omega t$,


$$i_{c} = \frac{V}{1/\omega C} \sin\left(\omega t + \frac{\pi}{2}\right) ,$$
$$i_{R} = \frac{V}{R} = \frac{V}{R} \sin \omega t ,$$
$$\tan \delta = \frac{V/R}{V\omega C} = \frac{1}{\omega CR} ,$$

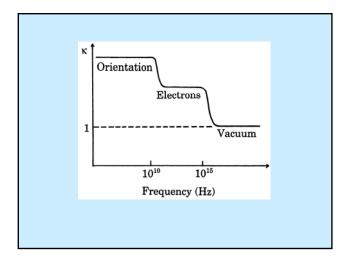
Energy stored =
$$\int_{0}^{\tau} \dot{w_{c}} dt ,$$

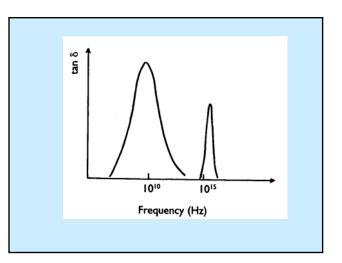
=
$$\int_{0}^{\tau} \nabla^{2} \omega C \sin \omega t \cos \omega t dt ,$$

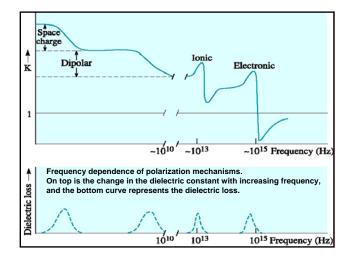
=
$$\int_{0}^{\tau} \frac{\nabla^{2} \omega C}{2} \sin 2\omega t dt ,$$

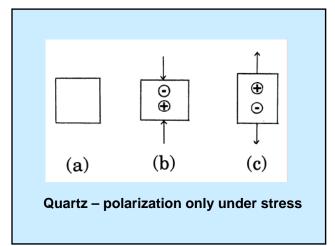
=
$$-\frac{\nabla^{2} \omega C}{4\omega} [\cos 2\omega t]_{0}^{\tau} ,$$

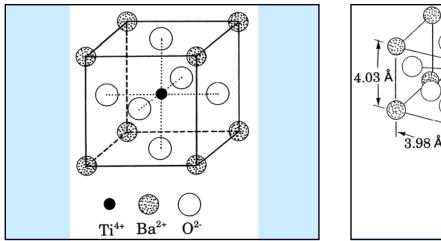
=
$$-\frac{1}{4} C \nabla^{2} (\cos 2\omega \tau - 1) ,$$

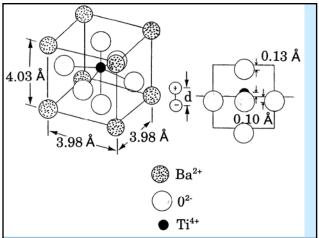

Maximum energy stored = $\frac{1}{2}$ CV² This occurs when $\cos 2\omega t = -1$

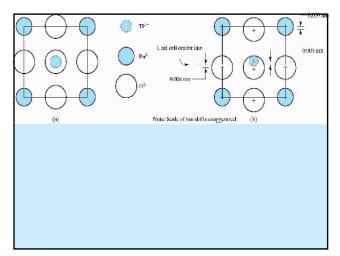

Energy loss per cycle due to conduction through the resistor R

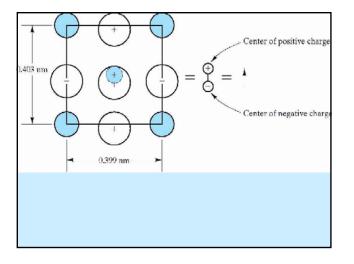

Energy loss
$$= \frac{V^2}{R} \int_{0}^{2\pi/\omega} \sin \omega t \sin \omega t \, dt$$
$$= \frac{V^2}{\omega R} \int_{0}^{2\pi} \frac{1}{2} (1 - \cos 2\omega t) \, d(\omega t)$$
$$= \frac{V^2}{\omega R} \left[\frac{1}{2} \left(\omega t - \frac{1}{2} \sin 2\omega t \right) \right]_{0}^{2\pi}$$
$$= \frac{V^2}{\omega R} \left[\frac{1}{2} (2\pi - 0 - 0 + 0) \right]$$
$$= \frac{V^2 \pi}{\omega R} .$$

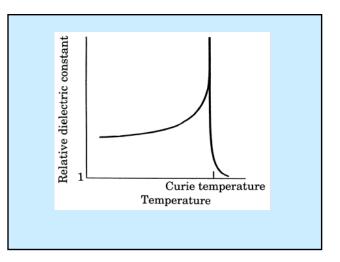


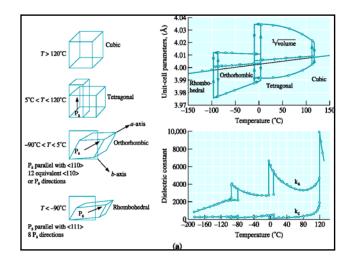

$\frac{\text{Energy lost per cycle}}{2\pi \times \text{maximum energy stored}} =$	$\frac{\mathrm{V}^2\pi/\omega\mathrm{R}}{2\pi\mathrm{C}\mathrm{V}^2/2}$
$=\frac{1}{\omega CR}=\tan \delta$	

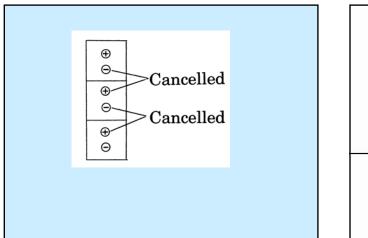


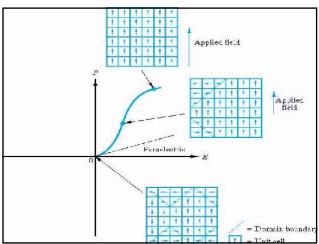


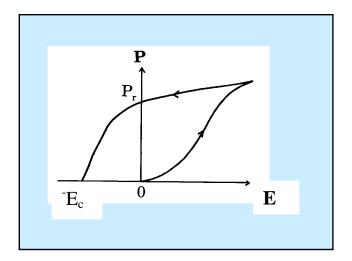


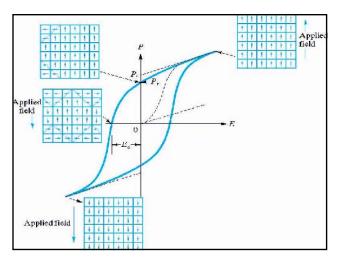


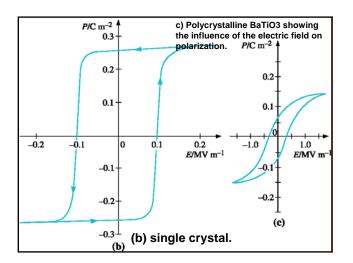


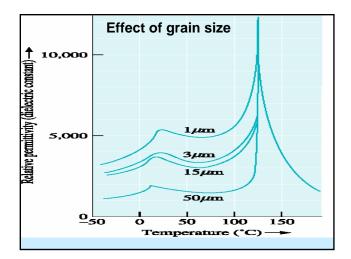


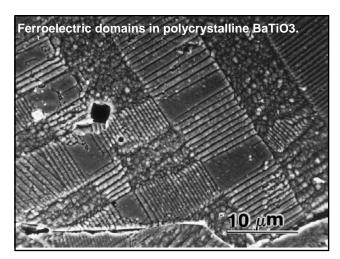

Different polymorphs of BaTiO₃ and accompanying changes in lattice constants and dielectric constants.

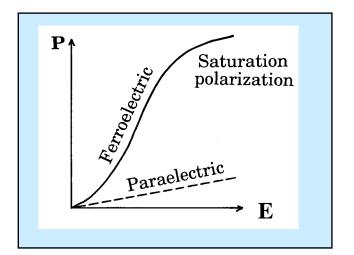


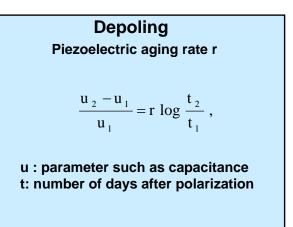

Table 7.3 Contribution to dipole moment of a $BaTiO_3$ unit cell by each type of ion.					
Ion	Charge (C)	Displacement	Dipole moment		
		(m)	(C.m)		
Ba ²⁺	(+2)(1.6 x 10 ⁻¹⁹)	0	0		
Ti ⁴⁺	(+4)(1.6 x 10 ⁻¹⁹)	$+0.10(10^{-10})$	6.4 x 10 ⁻³⁰		
2O ²⁻ (side of cell)	2(-2)(1.6 x 10 ⁻¹⁹)	-0.10(10-10)	6.4 x 10 ⁻³⁰		
O ²⁻ (top and	(-2)(1.6 x 10 ⁻¹⁹)	-0.13(10-10)	4.2 x 10 ⁻³⁰		
bottom of cell)					
$Total = 17 \ge 10^{-30}$					


P =	$\frac{17 \times 10^{-30} \text{C.m}}{4.03 \times 3.98^2 \times 10^{-30} \text{m}^3}$
	$= 0.27 \text{ C.m}^{-2}$

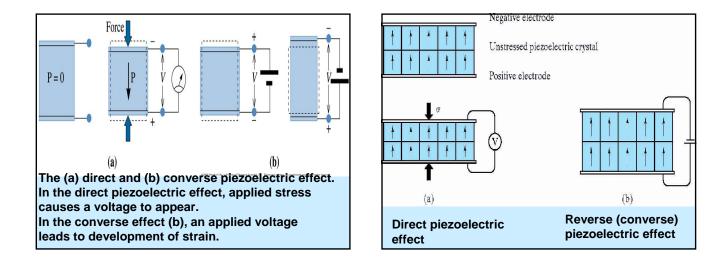


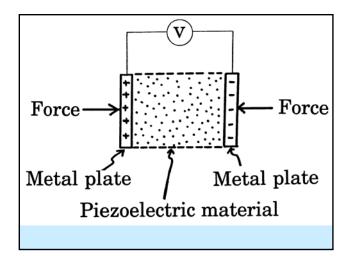


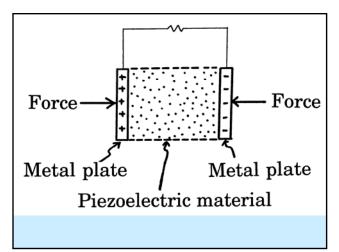


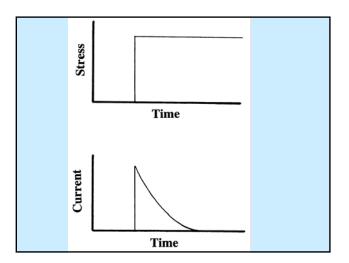


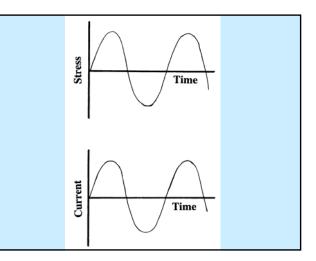
The effect of temperature and grain size on the dielectric constant of barium titanate. Above the Curie temperature, the spontaneous polarization is lost due to a change in crystal structure and barium titanate is in the paraelectric state. The grain size dependence shows that similar to yield-strength dielectric constant is a microstructure sensitive property.

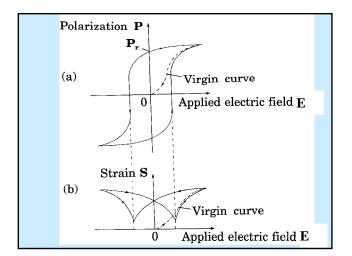


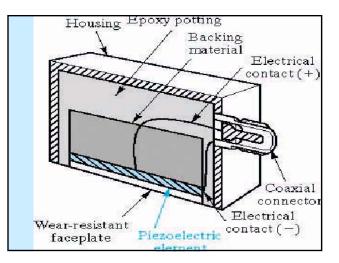







Ferroelectric - A material that shows spontaneous and reversible dielectric polarization. **Piezoelectric** – A material that develops voltage upon the application of a stress and develops strain when an electric field is applied.





Material (C/N = m/V) Quartz 2.3×10^{-12} BaTiO ₃ 100×10^{-12} PbZrTiO ₆ 250×10^{-12} PbNb ₂ O ₆ 80×10^{-12}		Piezoelectric constant d
BaTiO ₃ 100 x 10 ⁻¹² PbZrTiO ₆ 250 x 10 ⁻¹²	Material	(C/N = m/V)
PbZrTiO ₆ 250×10^{-12}	Quartz	2.3 x 10 ⁻¹²
0	BaTiO ₃	100 x 10 ⁻¹²
PbNb ₂ O ₆ 80 x 10 ⁻¹²	PbZrTiO ₆	250 x 10 ⁻¹²

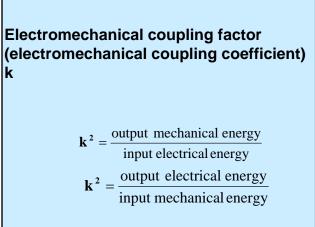
$$P = D_{m} - D_{o} \qquad \partial \Sigma = \frac{\partial P}{\varepsilon_{o} (\kappa - 1)}$$
$$= \kappa \varepsilon_{o} \Sigma - \varepsilon_{o} \Sigma \qquad \partial \Sigma = \frac{d \partial \sigma}{\varepsilon_{o} (\kappa - 1)}$$
$$= (\kappa - 1) \varepsilon_{o} \Sigma \qquad \partial \mathbf{V} = \ell \partial \Sigma,$$
$$\partial \mathbf{V} = \frac{\ell d \partial \sigma}{\varepsilon_{o} (\kappa - 1)}$$

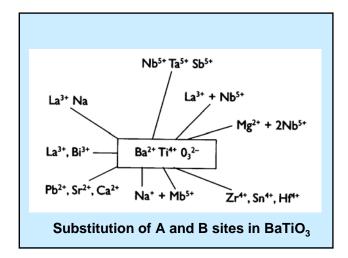
$$\partial \mathbf{V} = \frac{\ell \mathbf{d} \partial \sigma}{\varepsilon_{o}(\kappa - 1)}$$
$$\mathbf{g} = \frac{\mathbf{d}}{(\kappa - 1)\varepsilon_{o}}$$
$$\partial \mathbf{V} = \ell \mathbf{g} \partial \sigma$$
g: piezoelectric voltage coefficient

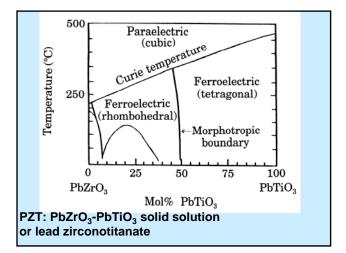
Material	d Coefficient (pC/N)	g Coefficient (mV/N)
Quartz (SiO ₂)	2.3	50×10^{-3}
BaTiO3*	190	12×10^{-3}
PZT*	268 to 480	$12 imes 10^{-3}$ to $35 imes 10^{-3}$
PbNb206*	80	
PbTiO ₃	47	
LiNbO ₃	6	
LiTaO ₃	5.7	

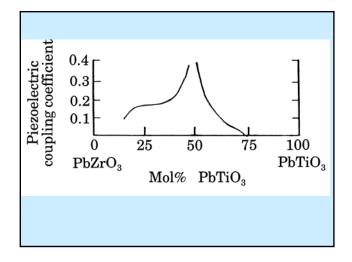
Reverse piezoelectric effect
$\mathbf{S} = \mathbf{d}\Sigma$
$\partial \mathbf{S} = \mathbf{d} \partial \Sigma$
$\frac{\Sigma}{\sigma} = \frac{\mathbf{S}}{\mathbf{P}}$
σ P
$\frac{\partial \Sigma}{\partial \sigma} = \frac{\partial \mathbf{S}}{\partial \mathbf{P}}$
$\overline{\partial \sigma}^{-}\overline{\partial \mathbf{P}}$

Reverse piezoelectric effect
$\frac{\Sigma}{\sigma} = \frac{\mathbf{S}}{(\kappa - 1)\varepsilon_{o}\Sigma}$
$\frac{\partial \Sigma}{\partial \sigma} = \frac{\partial \mathbf{S}}{(\kappa - 1)\varepsilon_{o}\partial \Sigma}$


$$\mathbf{S} = \mathbf{d}\Sigma$$
$$\frac{\Sigma}{\sigma} = \frac{\mathbf{S}}{(\kappa - 1)\varepsilon_{o}\Sigma} \qquad \frac{\Sigma}{\sigma} = \frac{\mathbf{d}}{(\kappa - 1)\varepsilon_{o}}$$
$$\frac{\partial\Sigma}{\partial\sigma} = \frac{\mathbf{d}}{(\kappa - 1)\varepsilon_{o}}$$


$$\frac{\Sigma}{\sigma} = \frac{\mathbf{d}}{(\kappa - 1)\varepsilon_{o}}$$
$$\mathbf{g} = \frac{\mathbf{d}}{(\kappa - 1)\varepsilon_{o}}$$
$$\Sigma = \mathbf{g}\sigma$$
$$\partial \Sigma = \mathbf{g}\partial \sigma$$

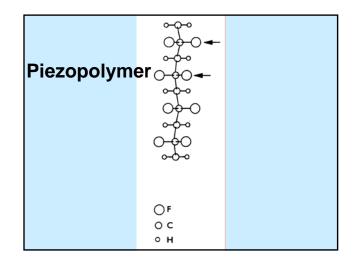

Hooke's law

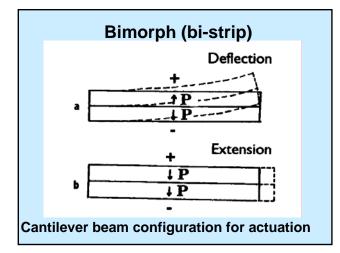

$$\sigma = \mathbf{ES}$$

 $\Sigma = \mathbf{g}\sigma$
 $\Sigma = \mathbf{g}\mathbf{ES}$

S = d
$$\Sigma$$

S = $\frac{\Sigma}{gE}$
d = $\frac{1}{gE}$
E = $\frac{1}{gd}$





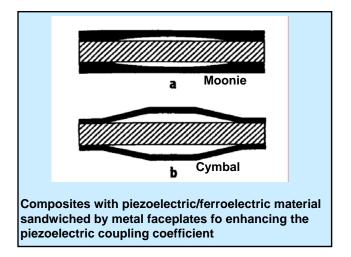
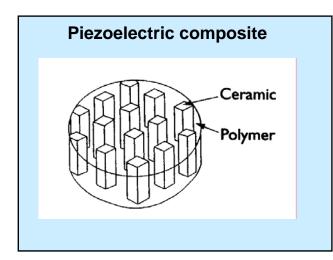


Table 7.4 Properties of commercial PZT ceramics			
	PZT-5H	PZT4	
Property	(soft)	(hard)	
Permittivity (κ at 1 kHz)	3400	1300	
Dielectric loss (tan δ at 1 kHz)	0.02	0.004	
Curie temperature $(T_c, °C)$	193	328	
Piezoelectric coefficients (10 ⁻¹² m/V)			
d ₃₃	593	289	
d ₃₁	-274	-123	
d ₁₅	741	496	
Piezoelectric coupling factors			
k ₃₃	0.752	0.70	
k ₃₁	-0.388	-0.334	
k ₁₅	0.675	0.71	

Table 7.2 Measured longitudinal piezoelectric coupling coefficient d, measured relative dielectric constant κ , calculated piezoelectric voltage coefficient g and calculated voltage change resulting from a stress change of 1 kPa for a specimen thickness of 1 cm in the direction of polarization.				
Material	<u>d (10⁻¹³ m/V)*</u>	<u>κ</u> †	<u>g (10⁻⁴ m²/C)[†]</u>	Voltage <u>change (mV)[†]</u>
Cement paste (plain)	0.659 ± 0.031	35	2.2	2.2
Cement paste with steel fibers and PVA	208 ± 16	2700	8.7	8.7
Cement paste with carbon fibers	3.62 ± 0.40	49	8.5	8.5
PZT	136	1024	15	15
			-	

Pyroelectric - The ability of a material to spontaneously polarize and produce a voltage due to changes in temperature.


$$p = \frac{dP}{dT} = \varepsilon_o \Sigma \frac{d\kappa}{dT},$$

$$p = pyroelectirc \ coefficient$$

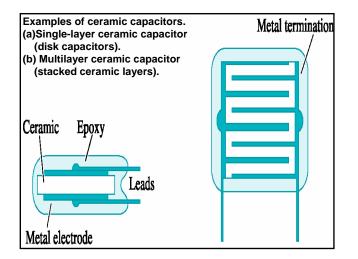

$$P = polarization$$

Table 7.5 P	yroelectric coe	20	0 ⁻⁰ C/m².K)
	BaTiO ₃	20	
	PZT	380	
	PVDF	27	
	Cement paste	0.002	
		1	1

$V = \frac{Px}{(\kappa - 1) \varepsilon_{o}}$						
Voltage sensitivity						
dV_	Р	dx _	х	dP		
$d\sigma$	$\overline{(\kappa-1)} \mathcal{E}_{0}$	$d\sigma$	$\overline{(\kappa-1)} \mathcal{E}_{o}$	$d\sigma$		
Compliance		Piezoelectric coupling coefficient d				

- When any material undergoes polarization (due to an applied electric field), its ions and electronic clouds are displaced, causing the development of a mechanical strain in the material. polarization.
- This phenomenon is known as the electrostriction.

