Problem Set 4 (PS 4) Due Tuesday February 14

Ps 4.1 The Shuttle space craft begins to enter the atmosphere at $\mathrm{M}=25$. Calculate, assuming an ideal gas and 1.4 specific heat ratio, the temperature at the stagnation point of the vehicle and the free stream velocity over the space craft at a location in the reentry path where $\mathrm{M}=20$ and $\mathrm{T}=200 \mathrm{~K}$. Are these estimates accurate? If not why and are they high or low? Where in the trajectory path would you expect the highest stagnation point temperature?

PS 4.2 A normal shock is located at the inlet to a duct. The air approaches the duct at $\mathrm{M}=3,400 \mathrm{R}$ and .9 atm . The duct is 2 ft long and 1 ft in diameter and has a friction factor of .005 . What is the pressure, the temperature and the velocity at the end of the duct?

PS 4.3 The conditions of air at the exit of a duct which is .03 m diameter, 50 m long and has a friction factor of .005 , are $\mathrm{M}=.4,1 \mathrm{~atm}$, and 270 K . Assuming 1D flow and an ideal gas with a specific heat ratio of 1.4 calculate the mach number, temperature and pressure at the duct inlet.
4.1 assume a normal shock in front of the space craft

M	estimated T_{1}	Table A. $2 \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}$	$\mathrm{~T}_{2}$
25	20 K	122.65	2453 K
10	230 K	20.39	4690 K
		Table A.1	
.5	290 K	1.050	305 K

The $\mathrm{M}=25$ point is not the highest temperature. The highest temperature occurs at some lower elevation on the reentry path. A 1 D shock assumes an ideal gas model. The gas around the space craft at high temperature is a plasma and its properties are not well predicted by the ideal gas model.

Table A. 2 @ $\mathrm{M}_{1}=3$,
$\mathrm{M}_{2}=.4752, \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}=10.33, \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=2.679$
$\left(\frac{4 \mathrm{fL}}{\mathrm{D}}\right)_{\text {duct }}=\frac{4 \times .005 \times 2}{1}=.04$
Table A. $4 @ \mathrm{M}_{2}=.4752$
$\left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{2}=.1295, \frac{\mathrm{p}_{2}}{\mathrm{p}^{*}}=2.255, \frac{\mathrm{~T}_{2}}{\mathrm{~T}^{*}}=1.1512$
$\left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{3}=\left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{2}-\left(\frac{4 \mathrm{fL}}{\mathrm{D}}\right)_{\text {duct }}$
$\left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{3}=.1295-.01=.0895$
Table A.4@ $\left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{3}=.0895$

Table A. $4 @ \mathrm{M}_{2}=.4$
4.3

$$
\begin{aligned}
& \left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{2}=2.308, \frac{\mathrm{p}_{2}}{\mathrm{p}^{*}}=2.696, \frac{\mathrm{~T}_{2}}{\mathrm{~T}^{*}}=1.163 \\
& \left(\frac{4 \mathrm{fL}}{\mathrm{D}}\right)_{\text {duct }}=\frac{4 \times .005 \times 50}{.03}=33.33 \\
& \left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{1}=\left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{2}+\left(\frac{4 \mathrm{fL}}{\mathrm{D}}\right)_{\text {duct }} \\
& \left(\frac{4 \mathrm{fL}^{*}}{\mathrm{D}}\right)_{1}=2.308+33.33=35.64 \\
& \text { Table A.4 @ }\left(\frac{4 \mathrm{fL}}{\mathrm{D}}\right)_{1}^{*}=35.64 \\
& \mathrm{M}_{1}=.135, \frac{\mathrm{p}_{1}}{\mathrm{p}^{*}}=8.1266, \frac{\mathrm{~T}_{1}}{\mathrm{~T}^{*}}=1.1955 \\
& \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}^{*}} \frac{\mathrm{~T}^{*}}{\mathrm{~T}_{2}} \\
& \mathrm{~T}_{1}=\mathrm{T}_{2}\left(1.1955 \times \frac{1}{1.163}\right)=277.5 \mathrm{~K} \\
& \mathrm{p}_{1}=\mathrm{p}_{2} \times\left(8.1266 \times \frac{1}{2.696}\right)=3.014 \mathrm{~atm}
\end{aligned}
$$

