THE DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING UNIVERSITY AT BUFFALO

MAE 340: Systems Analysis, Spring 2003

Homework 3

Put each of the following problems into State Space Form.

- **7.1.** The source in the circuit shown in Figure P7.1 undergoes a step change so that e_s suddenly changes from 0 to 10 V at t = 0. Before the step change occurs, all variables are constant—i.e., e_s has been zero for a long time.
 - (a) Find $e_{32}(0^-)$ and $e_{32}(0^+)$.
 - **(b)** Find $e_{1g}(0^-)$ and $e_{1g}(0^+)$.

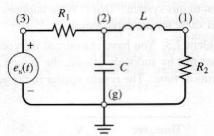


Figure P7.1

- **7.2.** The circuit shown in Figure P7.2 is subjected to a step change in e_s from 5.0 to 7.0 V at t = 0. Before the step change occurs, all variables are constant—i.e., e_s has been 5.0 V for a very long time.
 - (a) Find $i_L(0^-)$, $i_L(0^+)$, and $i_L(\infty)$.
 - **(b)** Find $e_{3g}(0^-)$, $e_{3g}(0^+)$, and $e_{3g}(\infty)$.
 - (c) Find $e_{2g}(0^-)$, $e_{2g}(0^+)$, and $e_{2g}(\infty)$.

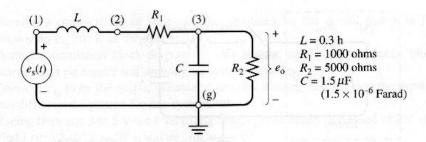


Figure P7.2

- **9.1.** (a) Develop the system differential equation relating P_{2r} to P_{s} for the first-order low-pass hydraulic filter shown in Figure P9.1a.
 - (b) Write the expression for the system time constant, and sketch the response, $P_{2t}(t)$ versus t, for a step change ΔP_s from an initial value $P_s(0)$, which has been constant for a very long time. (Figure P9.1b)
- **9.2.** (a) Develop the system differential equation relating P_{3r} to P_{s} for the second-order low-pass hydraulic filter shown in Figure P9.2a.
 - (b) Find expressions for the natural frequency ω_n and damping ratio ζ , and sketch the response versus time for a step change ΔP_s from an initial value $P_s(0)$, which has been constant for a very long period of time, assuming that $\zeta=0.3$. Show clearly the period of the oscillation, the per-cycle decay ratio, and the final steady-state value of P_{3r} in Figure P9.2b.

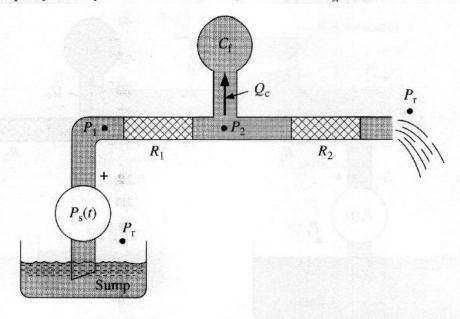


Figure P9.1a First-order low-pass hydraulic filter.

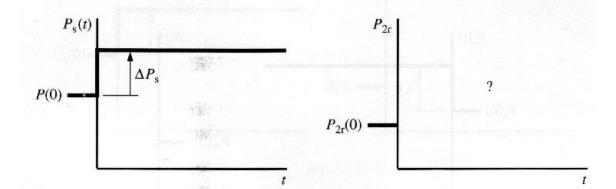


Figure P9.1b Input and output graphs.