1.)

a.)

1. By checking the final slop ($-40 \mathrm{db} / \mathrm{dec}$), we know the difference of orders (Denominator - Numerator) is 2 . Besides, no rising for phase plot but all the way through to -180°, therefore, we conclude "no zeros" and with damping ratio less than 0.707 (due to the peak on the magnitude plot).
2. The Transfer Function should have the form as: $\frac{K}{\omega_{n}{ }^{2}\left[\left(\frac{S^{2}}{\omega_{n}{ }^{2}}\right)+\left(\frac{2 \zeta S}{\omega_{n}}\right)+1\right]}$.
3. Substitute $S=i \omega$ into T.F., we have our F.R.F.
4. From 90° crossing, we know $\omega_{n} \cong 3(\mathrm{rad} / \mathrm{sec})$.
5. For $\omega \ll \omega_{n}, 20 \log (F R F) \cong 20 \log \left(\frac{K}{3^{2}}\right) \cong-4(d b)$. $\Rightarrow K \cong 5.7$
6. For $\omega=\omega_{n}, 20 \log (F R F) \cong 20 \log \left(\frac{K}{3^{2}}\right)-20 \log (2 \xi) \cong-4-20 \log (2 \xi)$

$$
\cong 4.5(d b), \Rightarrow \xi \cong 0.19
$$

7. Therefore, our T.F. is approximately: $\frac{5.7}{S^{2}+1.14 S+9}$
[Note: The Bode plot above is actually generated by T.F. $=\frac{5}{S^{2}+S+9}$]
b.) When $\omega=4$, and from plot we know that $20 \log \left(\left|\frac{\text { Output }}{\text { Input }}\right|\right) \cong-4.13(d b)$,
$\left|\frac{\text { Output }}{\text { Input }}\right|=10^{-\frac{4.13}{20}} \cong 0.6216$; hence, \mid Output $\mid=5 * 0.6216 \cong 3.1$. From the phase plot, we know the $\phi \cong-150^{\circ}$. Therefore, Output $\equiv 3.1 \sin \left(4 t-150^{\circ}\right)$. [Note: the phase angle is in "rad" for "4t" part.]
c.) Output $=$ Input \Rightarrow find $0(\mathrm{db})$. From Magnitude plot, we have $\omega \cong 2.1 \& 3.5(\mathrm{rad} / \mathrm{sec})$.
d.) From Magnitude plot, the "peak" happens at $\omega \cong 2.9(\mathrm{rad} / \mathrm{sec})$.
e.) One-tenth of the peak $\Rightarrow-20(d b)$ from the peak. From Magnitude plot, it happens at $\omega \cong 6.2(\mathrm{rad} / \mathrm{sec})$.
f.) Exactly out of phase \Rightarrow Phase angle has 180° difference. From Phase plot, it happens at $\omega \cong \geq 10(\mathrm{rad} / \mathrm{sec})$.

2a.)

a.) T.F. is given.
b.) When $\omega=4$, and from plot we know that $20 \log \left(\left|\frac{\text { Output }}{\text { Input }}\right|\right) \cong-10.5(\mathrm{db})$,
$\left|\frac{\text { Output }}{\text { Input }}\right|=10^{-\frac{10.5}{20}} \cong 0.3$; hence, \mid Output $\mid=5 * 0.3 \cong 1.5$. From the phase plot, we
know the $\phi \cong 9.9^{\circ}$. Therefore, Output $\equiv 1.5 \sin \left(4 t+9.9^{\circ}\right)$. [Note: the phase angle is in "rad" for " 4 t " part.]
c.) Output $=$ Input \Rightarrow find $0(\mathrm{db})$. From Magnitude plot, we have NONE.
d.) From Magnitude plot, the "peak" happens at $\omega \cong 4.91(\mathrm{rad} / \mathrm{sec})$.
e.) One-tenth of the peak $\Rightarrow-20(\mathrm{db})$ from the peak. From Magnitude plot, it happens at $\omega \cong 28.7(\mathrm{rad} / \mathrm{sec})$.
f.) Exactly out of phase \Rightarrow Phase angle has 180° difference. From Phase plot, we have NONE.

2b.)

a.) T.F. is given.
b.) When $\omega=4$, and from plot we know that $20 \log \left(\left|\frac{\text { Output }}{\text { Input }}\right|\right) \cong-42.4(\mathrm{db})$,
$\left|\frac{\text { Output }}{\text { Input }}\right|=10^{-\frac{42.4}{20}} \cong 0.0076$; hence, \mid Output $\mid=5 * 0.0076 \cong 0.038$. From the phase
plot, we know the $\phi \cong 8.5^{\circ}$. Therefore, Output $\equiv 0.038 \sin \left(4 t+8.5^{\circ}\right)$.
[Note: the phase angle is in "rad" for " 4 t " part.]
c.) Output $=$ Input \Rightarrow find $0(\mathrm{db})$. From Magnitude plot, we have $\omega \cong 59 \& \omega \geq 1000(\mathrm{rad} / \mathrm{sec})$.
d.) From Magnitude plot, the "peak" happens at $\omega \cong 82.7(\mathrm{rad} / \mathrm{sec})$.
e.) One-tenth of the peak $\Rightarrow-20(d b)$ from the peak. From Magnitude plot, it happens at $\omega \cong 37.8(\mathrm{rad} / \mathrm{sec})$.
f.) Exactly out of phase \Rightarrow Phase angle has 180° difference. From Phase plot, we have NONE.

2c.)

a.) T.F. is given.
b.) When $\omega=4$, and from plot we know that $20 \log \left(\left|\frac{\text { Output }}{\text { Input }}\right|\right) \cong-72.4(\mathrm{db})$,
$\left|\frac{\text { Output }}{\text { Input }}\right|=10^{-\frac{72.4}{20}} \cong 0.00024$; hence, \mid Output $\mid=5 * 0.00024 \cong 0.012$. From the
phase plot, we know the $\phi \cong 143^{\circ}$. Therefore, Output $\equiv 0.012 \sin \left(4 t+143^{\circ}\right)$.
[Note: the phase angle is in "rad" for " 4 t " part.]
c.) Output $=$ Input \Rightarrow find $0(\mathrm{db})$. From Magnitude plot, we have NONE.
d.) From Magnitude plot, the "peak" happens at $\omega \cong 84(\mathrm{rad} / \mathrm{sec})$.
e.) One-tenth of the peak $\Rightarrow-20(d b)$ from the peak. From Magnitude plot, it happens at $\omega \cong 21.1 \& \omega \cong 332(\mathrm{rad} / \mathrm{sec})$.
f.) Exactly out of phase \Rightarrow Phase angle has 180° difference. From Phase plot, we have NONE.

