Second-Order Systems

The denominator of a second-order transfer function with { < 1 can be expressed as
form 4, Table 4.3. If { = 1, the denominator can be written as the product of two first-
order factors like form 3. A special case of a second-order system that does not fit into

the previous cases occurs when { = oo. The form is

T(s)=—— — (4.5-37)

s(ts+ 1)
An example is a mass with a damper but no spring (k = 0). The three building blocks
are K, s, and 7s + 1. Because it is in the denominator, the s term shifts the composite m
curve upward for w < 1 and shifts it down for w > 1. The composite m curve follows
that of the s term until @ = 1/, when the (s + 1) term begins to have an effect. For
> 1/7, the composite slope is —40 db/decade. The s term contributes a constant
—90° to the ¢ curve. The result is to shift the first-order lag curve (Figure 4.115) down
by 90°. The results are shown in Figure 4.18.
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FIGURE 4.18 Frequency response plots for

T(s) =
© =+
with K =1 and 7 =0.2.



TABLE 4.3 Factors Commonly Found in Transfer Functions of the Form:
N($)N,(s) ...
Tis) = KON -

D (s)D,(s) ...

Factor N;(s) or D;(s)

1. Constant, K
2. 5"

31s+1

22
4, 32+2Cw,,s+w§=[<—;—) +—£s+1:|wf, (<t

An Overdamped System
Consider the second-order model

mx + cx + kx = du(t)
Its transfer function is

d

4 (4.5-38)
ms®+ces+k

T(s)

If the system is overdamped, both roots are real and distinct, and we can write T(s) as

T =—3N dfk (4.5-39)
m, c (tis+ (15 + 1)
—st+-s5+1
k k
where t, and 1, are the time constants of the roots.
Returning to (4.5-22) and (4.5-23), we see that
d
m(w) = 20 log | T(iw)| =20 log %| —20log |t i+ 1]
—20log |t,wi + 1] (4.5-40)
d
dlw)= A - A(toi+1)— A(t,0i+ 1) (4.5-41)

where K =d/k, D,(iw) =t,wi + 1 and D,(iw) = 1,wi + 1. Thus, the magnitude ratio
plot in db consists of a constant term, 20 log |d/k|, minus the sum of the plots for two
first-order lead terms. Assume that 7, > 1,. Then for 1/7; < @ < 1/1,, the slope is
approximately —20 db/decade. For @ > 1/7,, the contribution of the term (r,wi + 1)
is significant. This causes the slope to decrease by an additional 20 db/decade, to
produce a net slope of —40 db/decade for w > 1/7,. The rest of the plot can be
sketched as before. The result is shown in Figure 4.194 for d > k. The phase angle plot
shown in Figure 4.19b is produced in a similar manner by using (4.5-41). Note that if
d/k>0, A(d/k)=0°
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FIGURE 4.19 Frequency response plots for the overdamped system
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An Underdamped System

If the transfer function given by (4.5-38) has complex conjugate roots, it can be
expressed as form 4 in Table 4.3.

T(s) = a/k = ( 5 a/k (4.5-42)

%s2+£s+1



We have seen that the constant term d/k merely shifts the magnitude ratio plot up or
down by a fixed amount and adds either 0° or —180° to the phase angle plot.
Therefore, for now, let us take d/k =1 and consider the following quadratic factor,
obtained from (4.5-42) by replacing s with iw.
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T(io) = (4.5-43)

The magnitude ratio is

m{w) =20 log
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The asymptotic approximations are as follows. For w < w,,

mw)= —20log1 =0
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Thus, for low frequencies, the curve is horizontal at m = 0, while for high frequencies, it
has a slope of —40 db/decade, just as in the overdamped case. The high-frequency and
low-frequency asymptotes intersect at the corner frequency w = w,.

The underdamped case differs from the overdamped case in the vicinity of the
corner frequency. To see this, examine M(w).

Miw) = 1 (4.5-45)

2\2 2
w 2w
wn wn
This has a maximum value when the denominator has a minimum. Setting the
derivative of the denominator with respect to w equal to zero shows that the
maximum M (w) occurs at w = w,/1 —2¢2. This frequency is the resonant frequency

,. The peak of M(w) exists only when the term under the radical is positive; that is,
when { <0.707. Thus,




w,=w, /122 0<¢<0.707 (4.5-46)
The value of the peak M, is found by substituting w, into M(w). This gives

M,=M(w,) = 0<(<0.707 (4.5-47)

1
20 /1 =02
If {>0.707, no peak exists, and the maximum value of M occurs at o =0 where
M = 1. Note that as { -0, o, > ®,, and M ,— co. For an undamped system, the reso-
nant frequency is the natural frequency w,.
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FIGURE 4.20 Frequency response plots for the underdamped system
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A plot of m(w) versus log w is shown in Figure 4.20a for several values of {. Note
that the correction to the asymptotic approximations in the vicinity of the corner
frequency depends on the value of {. The peak value in decibels is

m,=m(w,) = —201log (2L /1 —{?) (4.5-48)

Ato=ow,
m(w,) = —20 log 2{ (4.5-49)

The curve can be sketched more accurately by repeated evaluation of (4.5-44) for
values of w near w,.

The phase angle plot is obtained in a similar manner. From the additive property
for angles (4.5-23), we see that for (4.5-43),

w1 (2) 2]
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tan ¢(w) = — —%_2 (4.5-50)
-(2)

@y

Thus

where ¢(w) is in the 3rd or 4th quadrant. For w < w,,
dw)= —tan Q0 =0°
For v » w,,
o(w) = —180°
At the corner frequency,
d(w,) = —tan 10 = —90°
This result is independent of {. The curve is skew-symmetric about the inflection point

at ¢ = —90° for all values of {. The rest of the plot can be sketched by evaluating
(4.5-50) at various values of w. The plot is shown for several values of { in Figure 4.20b.

At the resonant frequency.
Y7
$e,) = _tan_l___\/l{% (45-51)

For our applications, the quadratic factor given by form 4 in Table 4.3 almost
always occurs in the denominator; therefore, we have developed the results assuming
this will be the case. If a quadratic factor is found in the numerator, its values of m(w)
and ¢(w) are the negative of those given by (4.5-44) and (4.5-50).



