Problem Set 9 (PS9) due Monday April. 2
 7.258 .178 .23

$T=f(D, N, V, \rho)$
$\mathrm{T}=\mathrm{f}\left(\mathrm{D}^{\mathrm{a}}, \mathrm{N}^{\mathrm{b}}, \mathrm{V}^{\mathrm{c}}, \rho^{\mathrm{d}}\right)$
unit exponents of parameters
Units $\left\{\begin{array}{lllllll} & \mathrm{T} & \mathrm{D} & \mathrm{N} & \mathrm{V} & \rho & \text { Paramete } \\ \mathrm{M} & 1 & 0 & 0 & 0 & 1 & \\ \mathrm{~L} & 1 & 1 & 0 & 1 & -3 & \text { Exponents } \\ \mathrm{T} & -2 & 0 & -1 & -1 & 0 & \text { page } 237\end{array}\right.$
a)

5 parameters - 3 units
expect 2 dimensionless parameters
solve for $\mathrm{a}, \mathrm{c}, \mathrm{d}$, in terms of b ,

$$
\sum \text { exponents }=0
$$

find : $\left.\left(\begin{array}{l}\text { first } \\ \text { dimensionless } \\ \text { number }\end{array}\right)^{\text {integer }}, \begin{array}{l}\sec \text { ond } \\ \text { dimensionless } \\ \text { number }\end{array}\right)^{b}$
M units: $1=\mathrm{d}$
L units: $1=\mathrm{a}+\mathrm{c}-3 \mathrm{~d}$
Tunits: $\quad-2=-\mathrm{b}-\mathrm{c}$
fromT, $\mathrm{c}=2-\mathrm{b}$
fromL $\quad 1=a+2-b-3$

$$
\mathrm{a}=2+\mathrm{b}
$$

b)

$$
\begin{aligned}
& \frac{T_{1}}{V_{1}^{2} D_{1}^{2} \rho_{1}}=\frac{T_{2}}{V_{2}^{2} D_{2}^{2} \rho_{2}} \\
& \left(\frac{D_{2}}{D_{1}}\right)=\left(\frac{T_{2}}{T_{1}}\right)\left(\frac{V_{1}}{V_{2}}\right)^{2} \\
& V_{1}=V_{2}, T_{1}=2 T_{2} \\
& \left(\frac{D_{2}}{D_{1}}\right)^{2}=\left(\frac{T_{2}}{2 T_{2}}\right)\left(\frac{V_{2}}{V_{2}}\right)^{2} \\
& D_{2}=D_{1} / \sqrt{2} \\
& \frac{N_{1} D_{1}}{V_{1}}=\frac{N_{2} D_{2}}{V_{2}} \\
& \frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}}=\frac{V_{2}}{V_{1}} \frac{D_{1}}{D_{2}} \\
& \frac{N_{2}}{N_{1}}=1 \times \sqrt{2} \\
& N_{2}=N_{1} \sqrt{2}
\end{aligned}
$$

c) Power $=$ thrust \times velocity
$=\mathrm{T}_{1} \times \mathrm{V}_{1}=2 \mathrm{~T}_{2} \times \mathrm{V}_{2}$

BY INSPECTION

density is the only other source of M

$$
\begin{array}{ll}
\frac{T}{\rho} & \frac{M L}{T^{2}} \frac{L^{3}}{M}=\frac{L^{2}}{T^{2}} \Rightarrow \text { divide by } \mathrm{V}^{2} \\
\frac{\mathrm{~T}}{\rho \mathrm{~V}^{2}} & \frac{\mathrm{ML}}{\mathrm{~T}^{2}} \frac{L^{3}}{M} \frac{\mathrm{~T}^{2}}{\mathrm{~L}^{2}}=\mathrm{L}^{2} \Rightarrow \text { multiply by } \mathrm{D}^{2} \\
\frac{\mathrm{~T}}{\rho \mathrm{~V}^{2} \mathrm{D}^{2}} & \frac{\mathrm{ML}}{\mathrm{~T}^{2}} \frac{L^{3}}{M} \frac{\mathrm{~T}^{2}}{L^{2}} \frac{1}{\mathrm{~L}^{2}}=1
\end{array}
$$

$$
(a) T=f(d, N, V, \rho)
$$

Rank of matrix is 3 . Number of
$\Pi-$ product $=5-3=2$.
By inspection:
$\frac{\mathrm{T}}{\rho V^{2} d^{2}}=f\left(\frac{N d}{V}\right)$
(b)For dynamic similarity:
$\frac{\mathrm{T}_{1}}{\rho_{1} V_{1}^{2} d_{1}^{2}}=\frac{\mathrm{T}_{2}}{\rho_{2} V_{2}^{2} d_{2}^{2}}$
$V_{1}=V_{2}, \rho_{1}=\rho_{2}, \mathrm{~T}_{1}=2 T_{2}$
$\therefore\left(\frac{d_{2}}{d_{1}}\right)^{2}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)\left(\frac{V_{1}}{V_{2}}\right)^{2}=\frac{1}{2}$
$\therefore d_{2}=\frac{d_{1}}{\sqrt{2}}$
Also, we require : $\frac{N_{1} d_{1}}{V_{1}}=\frac{N_{2} d_{2}}{V_{2}}$
$\therefore N_{2}=\left(\frac{d_{1}}{d_{2}}\right)\left(\frac{V_{2}}{V_{1}}\right) N_{1}=\sqrt{2} N_{1}$
(c)Power $=$ thrust \times velocity

Power $1=\mathrm{T}_{1} \times V_{1}$
Total power $2=2 \mathrm{~T}_{2} \times V_{2}=\mathrm{T}_{1} \times V_{1}=$ Power 1

$$
(a) T=f(D, k, V, \rho, \omega)
$$

Rank of matrix is 3 . Number of

$$
\Pi-\text { product }=6-3=3 \text {. }
$$

(b)By inspection:

$$
\frac{\mathrm{L}}{\frac{1}{2} \rho V^{2} D^{2}}=f\left(\frac{h}{D}, \frac{\omega D}{V}\right)
$$

Then use data to form nondimensional groups:

The principal effects of roughness seem to be to decrease the lift coefficient at high spin rates. Note also the negative lift coefficients at low spin rates. This spin resersal is seem in experiments but it is not well understood. It seems likely to be a low Reynolds number phenomenon. We have not considered Reynolds number in plotting these data, so that these effects are not known from this data.

