SPEED OF SOUND, a AS A NONDIMENSIONALIZING PARAMETER

1 Dimensional, isentropic flow

Momentum Equation

F = pA

$$F = m a = m \frac{dV}{dt} = p A$$

$$A(p - (p + dp)) = \rho A a((a - da) - a)$$

$$A dp = \rho A a da$$

$$\frac{dp}{a} = \rho da \text{ Euler Equation for steady motion}$$

Continuity Equation $mass_1 = mass_2$ $\rho A a = A (\rho + d\rho)(a - da)$ $\rho a = \rho a + \rho da + a d\rho - d\rho da$ $\rho da = a d\rho$ 0 combining momentum and continuity,

$$a^2 = \left(\frac{dp}{d\rho}\right)_{s=conctant}$$

general result not limited to an ideal gas

Mach Number,
$$M = \frac{u}{a}$$

Interferometer image

SPEED OF SOUND IN AN IDEAL GAS

for an isentropic process

 $p v^{\gamma} = constant = \frac{p}{\rho^{\gamma}}$ $\ln p - \gamma \ln \rho = \text{constant}$ $\frac{dp}{p} = \gamma \frac{d\rho}{\rho}$ $\left(\frac{\mathrm{d}p}{\mathrm{d}\rho}\right) = \gamma \frac{p}{\rho}$ for an ideal gas $\frac{p}{r} = R T$ ρ dp $= \gamma R T = a^2$

air at 500 R

$$a = \sqrt{\gamma \text{ g R T}}$$

$$a = \sqrt{1.4 \times \frac{1545.15 \text{ ft lbf/lbmole R}}{28.97 \text{ lbm/ lbmole}} \times 32 \frac{\text{lbm ft}}{\text{lbf sec}^2} \times 500 \text{ R}}$$

$$a = 1096.4 \text{ ft/sec}$$

helium at 300 K

$$a = a = \sqrt{\gamma RT \times 1000}$$

$$a = \sqrt{1.67 \times \frac{8.314 \text{ kJ/kgmole K}}{4 \text{ kg/kgmole}} \times 1000 \frac{\text{kgm/sec}^2}{\text{kJ}} \times 300}$$

$$a = 1020.5 \text{ m/sec}$$

STAGNATION PROPERTIES AS NONDIMENSIONALIZING PARAMETERS

properties after a gas is brought to rest isentropically, s=constant properties with u=0, M=0

since the stagnation process is isentropic entropy = constant

$$\frac{s_0}{s} = 1$$
, $s = constant$

1-D ISENTROPIC FLOW OF AN IDEAL GAS

 $h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$ energy equation (only the energy equation is required) for $u_1 = 0$ $h_0 = h_2 + \frac{u_2^2}{2}$ $c_p T_0 = c_p T + \frac{u^2}{2}$ $h = c_{p}T$ $|\mathbf{p}\mathbf{v}^{\gamma} = \text{constant} \Leftrightarrow \Delta \mathbf{s} = 0|$ $\frac{T_0}{T} = 1 + \frac{u^2}{2c T}$ since for isentropic flow, $pv^{\gamma} = constant$ $\frac{T_2}{T} = \left(\frac{p_2}{p}\right)^{\frac{1}{\gamma}} = \left(\frac{\rho_2}{p}\right)^{\gamma-1}$ (12.26) since $c_p = \frac{\gamma R}{\gamma - 1}$ $[c_p = constant]$ $\frac{T_0}{T} = 1 + \frac{(\gamma - 1) u^2}{2 \gamma R T}$ $\frac{p_{O}}{p} = \left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{\frac{1}{\gamma - 1}} \text{Table C.10, (12.28)}$ $\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} M^2$ Table C.10, (12.25) $\frac{\rho_{\rm O}}{\rho} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{1}{\gamma - 1}} \text{Table C.10, (12.27)}$ $a = \sqrt{\gamma RT}, M = u/a$

TABLE C.10Isentropic Flow Functions(One-Dimensional, Ideal Gas, $\gamma = 1.4$)

м	<i>T/ T</i> ₀	p/p ₀	ρ/ρ_0	
0.00	1.0000	1.0000	1.0000	
0.02	0.9999	0.9997	0.9998	
0.04	0.9997	0.9989	0.9992	
0.06	0.9993	0.9975	0.9982	1
0.08	0.9987	0.9955	0.9968	
0.10	0.9980	0.9930	0.9950	
0.12	0.9971	0.9900	0.9928	
0.14	0.9961	0.9864	0.9903	
0.16	0.9949	0.9823	0.9873	
0.18	0.9936	0.9777	0.9840	
0.20	0.9921	0.9725	0.9803	
0.22	0.9904	0.9669	0.9762	
0.24	0.9886	0.9607	0.9718	
0.26	0.9867	0.9541	0.9670	
0.28	0.9846	0.9470	0.9619	
0.30	0.9823	0.9395	0.9564	

REAL GAS AND IDEAL GAS PROPERTY MODELS

$h_{O} = h_1 + \frac{u^2}{2}$	Energy Equation	
Ideal Gas	Real Gas	Property Module
		T, p, ρ, s, h, u
M = u / a	M = u / a	
$a = \sqrt{\gamma RT} = f(1 \text{ property})$	$a = \left(\frac{\partial p}{\partial \rho}\right)_{s=constant}$	a = f(any 2 properties)
$h = c_p T = f(1 \text{ property})$	$h = \int c_p(T) dT$	h = f(any 2 properties)
isentropic process $\Delta s = 0$	$\Delta s = 0$	
$pv^{\gamma} = constant$		
$\Delta s = c_p ln \left(\frac{T_2}{T_1}\right) - R ln \left(\frac{p_2}{p_1}\right)$	$s = \int (du + pv)dT$	s = f(any 2 properties)
$c_{p} = \frac{R\gamma}{\gamma - 1}$		

Example

At a point in a 1 – D isentropic flow, p = 5psi, T = 530 R and $p_0 = 150$. What is the Mach Number, and stagnation temperture ? Since the flow is isentropic, $p_0 = constant$ (T_0 is also constant)

$$\frac{p_{0}}{p} = \frac{150}{5} = 30 = \left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{\frac{\gamma}{\gamma - 1}}$$
$$M^{2} = \left(30^{\frac{\gamma - 1}{\gamma}} - 1\right) / \left(\frac{\gamma - 1}{2}\right)$$
$$M = 2.866$$
$$T_{0} = \left(1 - \frac{\gamma - 1}{2}\right) = 20^{2857} - 2^{-1}$$

$$\frac{T_0}{T} = \left(1 + \frac{T}{2}M^2\right) = 30^{.2857} = 2.642$$
$$T_0 = 530 \times 2.642 = 1400 \text{ R}$$

Table C.10 Solution (table uses
$$\frac{p}{p_0}$$
,
text equaton is $\frac{p_0}{p}$)
 $\frac{p}{p_0} = \frac{5}{150} = .0333$
Table C.10 @, $\frac{p}{p_0} = .0333$, M = 2.86
 $\frac{T_0}{T} = 2.624$
Non isentropic flow :

- flow with friction
- flow with heat transfer
- flow across shocks

SONIC STATE AS A NONDIMENSIONALIZING PARAMETER

M has the disadvantages of being:

- a function of varablesother than velocity
- becoming large at large Mach numbers

The properties where the Mach number is 1, designated*, the sonic flow condition, can be used as a nondimensionalizing parameter. Characteristic Mach Number

$$M^{*2} = \frac{u^2}{a^{*2}} = \frac{u^2}{u^{*2}} = M^2 \frac{a^2}{a^{*2}}$$

enegry equation $h_1 + u_1^2 / 2 = h_2 + u_2^2 / 2$ $c_{n}T_{1} + u_{1}^{2}/2 = c_{n}T_{2} + u_{2}^{2}/2$ since, $c_p = \gamma R/(\gamma - 1)$ $\frac{\gamma R T_1}{\gamma - 1} + \frac{u_1^2}{2} = \frac{\gamma R T_2}{\gamma - 1} + \frac{u_2^2}{2}$ $\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2}$ at M = 1, $a = u = a^*$ $\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^{\ast 2}}{\gamma - 1} + \frac{a_2^{\ast 2}}{2}$ dividing by u² $\frac{(a^2/u^2)}{\gamma - 1} + \frac{1}{2} = \frac{\gamma + 1}{2(\gamma - 1)} \frac{a^{*2}}{u^2}$ $\frac{(1/M^2)}{\gamma - 1} = \frac{\gamma + 1}{2(\gamma - 1)} \frac{a^{*2}}{u^2} - \frac{1}{2} \frac{(\gamma - 1)}{(\gamma - 1)}$ $\frac{1}{M^2} = \frac{\gamma + 1}{2 M^{*2}} - \frac{(\gamma - 1)}{2}$ $M^{2} = \frac{2}{\frac{\gamma + 1}{2 M^{*2}} - \frac{(\gamma - 1)}{2}}$ (3.37)

1-D ISENTROPIC FLOW OF AN IDEAL GAS

Using sonic flow rather than sonic velocity as a dimensionless reference, $T^*, p^*, \rho^*, a^*, u^*$ are defined as the properties where M = 1.

using, $\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} M^2$ with $T = T^*$, $\frac{T^{*}}{T_{0}} = \frac{1}{1 + \frac{\gamma - 1}{2}} = \frac{2}{\gamma + 1}$ for $\gamma = 1.4$ $\frac{a^{*2}}{a_{\Omega}^{2}} = \frac{\gamma R T^{*}}{\gamma R T_{\Omega}} = \frac{2}{\gamma + 1}$ $\frac{T^*}{T_0} = .833$ $\frac{p^*}{2} = .528$ $\frac{\mathbf{p}^*}{\mathbf{p}_0} = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma+1}}$ p₀ $\frac{\rho^*}{2} = .634$ $\frac{\rho^*}{\rho_0} = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma+1}}$

SHOCK WAVE FORMATION

momentum

centrifugal

force

shadowgraph image

Figure 3.8 | Comparison between subsonic and supersonic streamlines for flow over a flat-faced cylinder or slab.

SHOCK WAVE FORMATION

NORMAL SHOCK

EQUATIONS

	continuity equation	$\rho_1 u_1 = \rho_2 u_2$		$M_{2} < M_{1}$
	omentum equation	$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$		-n > n
	energy equation	$\mathbf{h}_1 + \frac{\mathbf{u}_1^2}{2} = \mathbf{h}_2 + \frac{\mathbf{u}_1^2}{2}$		$\mathbf{p}_2 > \mathbf{p}_1$ $\mathbf{T}_2 > \mathbf{T}_2$
	6	enthalpy $h = c_p T$	1 2	$1_2 > 1_1$
	sonic velocity $a^2 = \gamma RT$,	ideal gas law $p = \rho RT$		$a_{2} > a_{1}$
RE	ESULTS : a^{*2}	= u ₁ × u ₂		$u_{2} < u_{1}$
	Μ	$\frac{1}{2} = \frac{1}{N}$		$T_{O1} = T_{O2}$
		\mathbf{N}_{1}		$p_{02} < p_{01}$
	$M_{2}^{2} = \frac{1 + \left(\frac{(\gamma - 1)}{2}N\right)}{\gamma M_{1}^{2} - \frac{(\gamma - 1)}{2}}$	(12.41) Table C.11		
	$\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)$ (12.46), $\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)$	$(12.45), \left(\frac{T_2}{T_1}\right)(12.47), \left(\frac{p_{02}}{p_{01}}\right)(12.28)$	8), Table C.11	

NORMAL SHOCK sonic velocity change across a noramal shock

continuity $\rho_1 u_1 = \rho_2 u_2$ momentum $p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2$ $h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_1^2}{2}$ energy enthalpy definition $h = c_p T$ sonic velocity $a^2 = \gamma RT$ ideal gas law $p = \rho RT$ dividing energy by continuity, $p_1 + \rho_1 u_1^2 - p_2 + \rho_2 u_2^2$ $\rho_1 u_1 \qquad \rho_2 u_2$ $\rho_1 u_1 \quad \rho_2 u_2$ $a^2 = \gamma R T = \gamma p/\rho$, $p = \frac{a^2 \rho}{\gamma}$

substituting into,

$$\frac{a_1^2}{\gamma u_1} - \frac{a_1^2}{\gamma u_1} = u_2 - u_1$$

energy equation $h_1 + \frac{u_1^2}{2} = h_2 + \frac{u_2^2}{2}$ $c_{p}T_{1} + \frac{u_{1}^{2}}{2} = c_{p}T_{2} + \frac{u_{2}^{2}}{2}$ since, $c_p = \frac{\gamma R}{\gamma - 1}$, and $a^2 = \gamma R T$ $\frac{\gamma R T_1}{\gamma - 1} + \frac{u_1^2}{2} = \frac{\gamma R T_2}{\gamma - 1} + \frac{u_2^2}{2}$ $\frac{a_1^2}{\gamma - 1} + \frac{u_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{u_2^2}{2}$ multiplying by $(\gamma - 1)$, and letting 2 be sonic, $u_2 = u^* = a^*, a = a^*$ $\frac{a^2}{\gamma - 1} + \frac{u^2}{2} = \frac{a^{*2}}{\gamma - 1} + \frac{a^{*2}}{2} = \frac{\gamma + 1}{2(\gamma - 1)}a^{*2}$ $a^{2} = \frac{\gamma + 1}{2}a^{*2} - \frac{\gamma + 1}{2}u^{2}$ $a_1^2 = \frac{\gamma + 1}{2} a_1^{*2} - \frac{\gamma + 1}{2} u_1^2$ $a_2^2 = \frac{\gamma + 1}{2} a_2^{*2} - \frac{\gamma + 1}{2} u_2^2$

NORMAL SHOCK Mach Number change across a normal shock

 $\left(\frac{\gamma+1}{2\gamma u_1}a_1^{*2} - \frac{\gamma-1}{2\gamma}u_1\right) - \left(\frac{\gamma+1}{2\gamma u_2}a_2^{*2} - \frac{\gamma-1}{2\gamma}u_2\right) = u_2 - u_1$ multiplying 1 terms by $\frac{u_1}{u_1}$ and 2 terms by $\frac{u_2}{u_2}$ $\frac{\gamma + 1}{2 \gamma u_1 u_2} (u_2 - u_1) a^{*2} + \frac{\gamma - 1}{2 \gamma} (u_2 - u_1) = u_2 - u_1$ $\frac{\gamma + 1}{2 \gamma \mu} a^{*2} + \frac{\gamma - 1}{2 \gamma} = 1$ $a^{*2} + \frac{\gamma - 1}{2\gamma} \frac{2\gamma u_1 u_2}{\gamma + 1} = \frac{2\gamma u_1 u_2}{\gamma + 1}$ $a^{*2} = \frac{2 \gamma u_1 u_2}{\gamma \pm 1} \left(1 - \frac{\gamma - 1}{2 \gamma} \right)$ $a^{*2} = \frac{2\gamma u_1 u_2}{\gamma + 1} \left(\frac{2\gamma - \gamma - 1}{2\gamma} \right) = u_1 u_2$

 $a^* = u_1 u_2$ $1 = \frac{u_1}{a^*} \frac{u_2}{a^*} = M_1^* M_2^*$ $M_2^* = \frac{1}{M^*}$ substituting $M^{*2} = \frac{(\gamma + 1)M^2}{2 + (\gamma - 1)M^2} (3.37)$ for M_1^* and M_2^* $M_{2}^{2} = \frac{1 + \left(\frac{(\gamma - 1)}{2} M_{1}^{2}\right)}{\gamma M_{1}^{2} - \frac{(\gamma - 1)}{2}}$ (12.41) or Table C.11

ENTROPY CHANGE ACROSS A NORMAL SHOCK

$$\Delta s = s_2 - s_1 = s_{02} - s_{01}$$

$$\Delta s = c_p \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{p_2}{p_1}\right)$$

$$\Delta s = c_p \ln\left(\frac{T_{02}}{T_{01}}\right) - R \ln\left(\frac{p_{02}}{p_{01}}\right)$$

$$T_0 = \text{constant}$$

$$\Delta s = -R \ln\left(\frac{p_{02}}{p_{01}}\right)$$
although $p_2 > p_0$

$$p_{02} < p_{01} \Rightarrow \Delta s = +$$

TABLE C.11	Normal	Shock Fl	ow Function	5
(One-Dimensi	onal, Ide	al Gas, y	= 1.4)	

M 1	<i>M</i> ₂	p ₀₂ / p ₀₁	T ₂ / T ₁	p_2/p_1	ρ_2/ρ_1
1.00	1.000	1.000	1.000	1.000	1.000
1.02	0.9805	1.000	1.013	1.047	1.033
1.04	0.9620	0.9999	1.026	1.095	1.067
1.06	0.9444	0.9998	1.039	1.144	1.101
1.08	0.9277	0.9994	1.052	1.194	1.135
1.10	0.9118	0.9989	1.065	1.245	1.169
1.12	0.8966	0.9982	1.078	1.297	1.203
1.14	0.8820	0.9973	1.090	1.350	1.238
1.16	0.8682	0.9961	1.103	1.403	1.272
1.18	0.8549	0.9946	1.115	1.458	1.307
1.20	0.8422	0.9928	1.128	1.513	1.342
1.22	0.8300	0.9907	1.141	1.570	1.376
1.24	0.8183	0.9884	1.153	1.627	1.411
1.26	0.8071	0.9857	1.166	1.686	1.446
1.28	0.7963	0.9827	1.178	1.745	1.481
1.30	0.7860	0.9794	1.191	1.805	1.516

Example

Before a normal shock in a duct, M = 2.5, $p_0 = 100$ psi, $T_0 = 800$ R. Find T, P and M after the shock. What is the entropy change and stagnation pressure change across the shock?

Т \mathbf{p}_{01} before the shock, Table C.10, Isentropic Flow (a) $M_1 = 2.5$, Table C.10, $\frac{p_1}{p_0} = .0585$, $\frac{T_1}{T_0} = .4444$ isentropic equations normal $p_1 = 100 \times .0585 = 5.85 \text{ psi}, \quad T_1 = 800 \times .4444 = 355.5 \text{ R}$ Table A.1 shock equations Table C.11 after the shock, Table C.11, Normal Shock (a) $M_1 = 2.5$, TableC.10, $\frac{p_2}{p_1} = 7.125$, $\frac{T_2}{T_1} = 2.137$, $\frac{p_{02}}{p_{01}} = .499$ S $p_2 = 7.125 \times 5.85 = 41.68 \text{ psi}, T_2 = 2.137 \times 355.5 = 769.7 \text{ R}, p_{O2} = .499 \times 100 = 49.5 \text{ psi}$ $\Delta s = c_p \ln \left(\frac{T_2}{T_c}\right) - R \ln \left(\frac{p_2}{n}\right)$ $\Delta s = -R \ln \left(\frac{p_{O2}}{n} \right)$ $\Delta s = .24 \times \ln(2.137) - \frac{1545.15}{28.97 \times 778} \ln(7.125) \qquad \Delta s = -\frac{1545.15}{28.97 \times 778} \ln(.499)$ $\Delta s = .1822 - .1347 = + .0475 Btu/lbm R$ $\Delta s = .0477 Btu/lbm R$

 P_{02}

 T_{O2}

 T_{O1}

REAL SHOCK BOUNDARY LAYER INTERACTION

Actual deceleration in a duct occurs through a series of oblique and normal shocks with thickening upstream laminar or turbulent boundary layers which can separate from the duct walls before, during or after the shock process.

SUBSONIC - SUPERSONIC FLOW WITH AREA CHANGE

Quasi 1 Dimensional, Isentropic Flow energy equation $h + \frac{u^2}{2} = constant$ differentiating, dh + u du = constantdh = -u du (1) 1 st and 2nd law, T ds = dh $-\frac{dp}{dr}$ ds = 0 since the flow is isentropic $dh = \frac{dp}{\rho}$ combining with (1) $-udu = \frac{dp}{\rho}$ $du = -\frac{dp}{du}(2)$

pressure decreases in accelerating flow pressure increases in decelerating flow

continuity $\rho A u = constant$ $d(\rho A u) = 0$ $d(\ln \rho A u) = 0$ $\frac{d\rho}{\rho} + \frac{dA}{A} + \frac{du}{u} = 0$ substituting (2) for du $\frac{d\rho}{\rho}\frac{dp}{dp} + \frac{dA}{A} - \frac{dp}{u^2\rho}$ $\frac{dA}{A} = \frac{dp}{\rho} \left(\frac{1}{u^2} - \frac{d\rho}{dp} \right)$ $\frac{dA}{A} = \frac{dp}{ou^2} \left(1 - \frac{u^2}{c^2} \right)$ $\frac{dA}{A} = \frac{\left(1 - M^2\right)}{\rho u^2} dp$ $\frac{\mathrm{dA}}{\mathrm{dp}} = \mathrm{A}\frac{\left(1 - \mathrm{M}^2\right)}{\mathrm{ou}^2}$

SUBSONIC - SUPERSONIC FLOW

General conclusion. Not limited to an ideal gas.

AREA CHANGE IN ISENTROPIC QUASI-1D FLOW OF AN IDEAL GAS

Continuity Equation $\rho^* u^* A^* = \rho u A$

$$\frac{A}{A^{*}} = \frac{\rho^{*}}{\rho} \frac{a^{*}}{u} = \frac{\rho^{*}}{\rho_{O}} \frac{\rho_{O}}{\rho} \frac{a^{*}}{u} \qquad (a)$$

since the flow is isentropic

the stagnation properies are constant, from the Energy Equation using (12.27) at M = 1,

$$\frac{\rho_{0}}{\rho} = \left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{\frac{1}{\gamma - 1}}$$
$$\frac{\rho_{0}}{\rho^{*}} = \frac{\rho_{0}}{\rho} \text{ with } M = 1$$
$$\frac{\rho_{0}}{\rho^{*}} = \left(\frac{\gamma + 1}{2}\right)^{\frac{1}{\gamma - 1}}$$
$$\left(\frac{u}{a^{*}}\right)^{2} = M^{*2} = \frac{\frac{\gamma + 1}{2}M^{2}}{1 + \frac{\gamma - 1}{2}M^{2}}$$

squaring (a) and subsitiuting,

$$\left(\frac{A}{A^{*}}\right)^{2} = \left(\frac{\rho^{*}}{\rho_{0}}\right)^{2} \left(\frac{\rho_{0}}{\rho}\right)^{2} \left(\frac{a^{*}}{u}\right)^{2} = \left(\frac{\rho^{*}}{\rho_{0}}\right)^{2} \left(\frac{\rho_{0}}{\rho}\right)^{2} \left(\frac{1}{M^{*2}}\right)^{2}$$
$$\left(\frac{A}{A^{*}}\right)^{2} = \left(\frac{2}{\gamma+1}\right)^{\frac{2}{\gamma-1}} \left(1 + \frac{\gamma+1}{2}M^{2}\right)^{\frac{1}{\gamma-1}} \left(\frac{1 + \frac{\gamma-1}{2}M^{2}}{\frac{\gamma+1}{2}M^{2}}\right)^{\frac{1}{\gamma-1}}$$

$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left(\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2}M^2\right)\right)^{\frac{\gamma+1}{\gamma-1}} (12.33)$$

Table C.10 Isentropic Flow

TABLE C.10 Isentropic Flow Functions (One-Dimensional, Ideal Gas, $\gamma = 1.4$)

м	<i>T/ T</i> ₀	p/p ₀	ρ/ρ_0	A/.	A*
0.00	1.0000	1.0000	1.0000	a	5
0.02	0.9999	0.9997	0.9998	28.9	94
0.04	0.9997	0.9989	0.9992	14.4	18
0.06	0.9993	0.9975	0.9982	/ 9.6	666
0.08	0.9987	0.9955	0.9968	7.2	262
0.10	0.9980	0.9930	0.9950	5.8	22
0.12	0.9971	0.9900	0.9928	4.8	364
0.14	0.9961	0.9864	0.9903	4.1	82
0.16	0.9949	0.9823	0.9873	3.6	573
0.18	0.9936	0.9777	0.9840	3.2	78
0.20	0.9921	0.9725	0.9803	2.9	64
0.22	0.9904	0.9669	0.9762	2.7	08
0.24	0.9886	0.9607	0.9718	2.4	96
0.26	0.9867	0.9541	0.9670	2.3	17
0.28	0.9846	0.9470	0.9619	2.1	66
0.30	0.9823	0.9395	0.9564	2.0	35

TABLE C.11Normal Shock Flow Functions(One-Dimensional, Ideal Gas, $\gamma = 1.4$)

M 1	<i>M</i> ₂	p_{0_2}/p_{0_1}	T ₂ /T ₁	p_2/p_1	ρ_2/ρ_1
1.00	1.000	1.000	1.000	1.000	1.000
1.02	0.9805	1.000	1.013	1.047	1.033
1.04	0.9620	0.9999	1.026	1.095	1.067
1.06	0.9444	0.9998	1.039	1.144	1.101
1.08	0.9277	0.9994	1.052	1.194	1.135
1.10	0.9118	0.9989	1.065	1.245	1.169
1.12	0.8966	0.9982	1.078	1.297	1.203
1.14	0.8820	0.9973	1.090	1.350	1.238
1.16	0.8682	0.9961	1.103	1.403	1.272
1.18	0.8549	0.9946	1.115	1.458	1.307
1.20	0.8422	0.9928	1.128	1.513	1.342
1.22	0.8300	0.9907	1.141	1.570	1.376
1.24	0.8183	0.9884	1.153	1.627	1.411
1.26	0.8071	0.9857	1.166	1.686	1.446
1.28	0.7963	0.9827	1.178	1.745	1.481
1.30	0.7860	0.9794	1.191	1.805	1.516

CONVERGING-DIVERGING NOZZLE – Flow Regimes

distance

UNDER EXPANDED

p_{exit} > p_{back} pressure
flow expands in to exit region
adjustment in a Prandtl - Meyer
expansion

OVER EXPANDED

 $p_{exit} > p_{back}$

flow compresses into exit region adjustment in a Oblique Shock

NEUTRAL

Nozzle exhausting directly to the atmosphere.

Isentropic C.10 @ M = 3; $\frac{p_e}{p_0} = .02722$ $p_0 = 36.73 \times 1 \text{ atm} = 36.73$

Normal Shock C.11@ $M_1 = 3$; $\frac{p_2}{p_1} = 10.33$ $p_0 = \frac{p_0}{p_1} \times \frac{p_1}{p_2} \times p_2$ $p_0 = \frac{36.73}{10.33} \times 1 = 3.56$ atm

 $p_o = 3.55 \text{ atm}$ $p_e = 0.097 \text{ atm}$ $p_e = 0.097 \text{ atm}$ $p_e = 0.097 \text{ atm}$

Nozzle with a normal shock at the exit, exhausting to the atmosphere.

Normal Shock C.11 (a) $M_1 = 3$;

$$\frac{p_2}{p_1} = 10.33, M_2 = .4752$$

$$p_1 = p_2 \times \frac{p_1}{p_2} = .855 \times \frac{1}{10.33} = .083 \text{ atm}$$
Isentropic C.10 @ M₂ = .4752;
$$\frac{p_2}{p_0} = .854$$

$$p_2 = 1 \text{ atm} \times .854 = .854 \text{ atm}$$

Isentropic @M = 3;

$$\frac{p_1}{p_0} = .02722$$

 $p_0 = p_1 \times \frac{p_0}{p_1} = .083 \times 36.73 = 3.049$ atm