MAE334 - Introduction to Instrumentation and Computers

Midterm Examination

October 29, 2008

The terms *lab 1, lab 2*, and *lab 3* refer to: Lab 1 Static and Dynamic Calibration of Thermocouples and Lab 2 Basics of A to D Conversion and Lab 3 Transient Thermal Behavior with Work and Heat Loss.

All multiple choice questions are worth 2 points.

All short answer questions are worth 5 points.

Total 25x2 + 6x5 = (80 points) midterm + Quizzes (20 points)

1.	The value of the integral of the delta function over the interval from t = $-\infty$ to -1, $A = \int_{-1}^{-1} \delta(t) dt$, is								
	(a) 0 c. ∞ b. 1 d. None of the above								
2.	The discrete Fourier transform of a signal sampled once every hundredth of a second ($\delta t = 1/100$ sec) for 5 seconds would have a maximum frequency of a. 100 Hz d. 1/10 Hz e. None of the above $\begin{cases} \frac{1}{5} & \frac{1}{5} $								
3.	What is the equation relating the confidence interval that a single temperature measurement, T_i , is within 5% of the mean if the data set contains 36 points and has a standard deviation of 1 °C?								
	a. $T_i = \overline{T} \pm t_{35,5\%} 1$ c. $T_i = T' \pm t_{35,5\%} 1 \sqrt{36}$ e. None of the above								
	b. $T_i = \overline{T} \pm t_{35,95\%} 1$ d. $T_i = T' \pm t_{35,95\%} 1 / \sqrt{36}$								
4.	A 4 bit ADC with an input range of 16 volts and an input signal gain of 4 has a quantization step size of								
	a. 1 volt (c.)0.25 volts (b.) 0.5 volts (c.)0.25 v								
5.	A very small, very sensitive thermocouple will reach a steady state value sooner for a small step input than a large step input. a. True (b) False								
6.	An instrument's precision is a measure of the random fluctuations in output for repeated applications of the same input. (a.) True b. False								
7.	The settling time in seconds of the second order system response (a) plotted in Figure 1 is approximately a. 0.25								
8.	Of the two second order system responses plotted in Figure 1 which system has the largest damping ratio, ζ. a. response (a) (b) response (b)								
9.	. The damped natural frequency, ω _d , of response (a) is higher than that of response (b) of the second order systems plotted in Figure 1. (a.) True b. False								
10. The ADC architecture normally associated with the highest precision and slowest conversion rate									
	a. Flash c. Successive Approximation b. Pipelined d. Sigma-Delta								

11	extrar	omization is used to neous (i.e. uncontro , True			rference fro	m eithe	r conti	nuou	s or c	liscrete	€
12	a. b.	crete Fourier transfo 4 Hz 2 Hz 1 Hz	orm of the da	nta plotted in Fig d) 0.25 Hz e. None of the	ure 1 would above △ি	have a $\frac{1}{T} = \frac{1}{2}$	freque	ency	spaci	ing, df, 1 ₇	of
13.	order a. b.	sampling rate woul system response fu 1 Hz 2 Hz 4 Hz			epresent th	e wave least highe	form s	hape Im	e of th	e seco asto	ond CHAN
	equati a.	oss to the laborator ion, $Q = H(T_{calorim})$ True b. False	$e^{ter}-T_{lab}$)	ngs from the cal	orimeter use	ed in lab	3 was				
15.	The fu	ndamental frequen	cy of the Foເ	irier series $y(t)$ =	$=\sum_{n=0}^{\infty}\frac{3n}{2}\sin n$	$t + \frac{5n}{3}$ co	s <i>nt</i> is				
	a. (b)	1 Hz 1 rad/sec 3/2 Hz	d. 3/2	rad/sec ne of the above	n=1 4	J					
	8 bit n a. b. c. d.	is the twos compler umber? 00001000 11110111 11111000 11111001 none of the above	·	•	f-8 as an 8-7 1'Scorp- Add 1 5 UMP-	> 1 1		24	0 1	$ \begin{array}{c ccc} 2^2 & 2^1 \\ $	2° U I I U
	conver a. b. c.	are the units of the rt the ADC output to Volts/C° milliVolts/C° C°/microVolts O°/Volts none of the above	temperatur ADC	•	in Volt		in the	first I	ab us	ed to	
	tempe	modeling the dynai rature only the initia True	al temperatui		constant are	used.				***	
19.		ne constant of the t 2 seconds. 5 seconds.	hermocouple	e plotted in Figu c. 10 seconds d. 12 seconds	re 2 is appr	oximate	ly		eg.		
	deviati a	portion of the repea ons of the data set' 95.5% 99.7%			_	nal are v			standa	ard	

hort Answer Section Name:

21. What is the appro								
Figure 3?	d. 4 e. 6	h . /	,	M-7	Vanance		V , 72	-1
a. 1	(d. ∤	30=6	11	0 -6	Agilloures	~ V	~ b	7
b. 2	e .6	-						
2								

22. The frequency bandwidth of a first order instrument is defined as the frequency below which $M(\omega)=0.707$, or output/input power is -3 dB.

b. False ∕a.∖ True 23. The smallest quantization step size, as plotted in Figure 4, of the ADC used in the lab is?

(a) 24.4 micro-Volts d. 2.44 x 10⁻⁴ Volts e. None of the above b. 2.44 milli-Volts

c. 4.88 x 10⁻⁵ Volts

24. The polynomial equation, $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, fit to a data set with 25 points has how 4 unknowns : 1=25-4=21 many degrees of freedom?

(a)) 21 b. 22

e. None of the above

25. It can be determined from the probability density function plotted in Figure 3 that the maximum allowable gain used by the ADC in the lab to collect this data would be? c. 20 ADC range is ±10 Vdts, data range is ±6

(a) 1 b. 2

26. What is ADC quantization step size as defined in terms of the input range, E_{FSR} , Gain and the number of ADC bits, M, for the ADC hardware in the lab with the maximum gain

Q = Erse/Gan/m = 20 Volts/200/212

27. What is the equation used to find the standard deviation of a data set?

Sx = [+ 2 (x, -x) 2 2

28. Given a data set with 20 points what is the equation used to find the confidence interval within which 95% of the data is expected to lie?

19 = R + tygse, Sx or CI = +tyggs Sx

29. What is the 90% confidence interval of a linear fit $y = a_0 + a_1 x \pm CI$ to a 15 point data set?

30. What is the equation for the error function, $\Gamma(t)$, used in lab 3 to linearize the cooling data to determine the calorimeter time constant?

[(E] = In [To-TO] = - the

31. What is the equation used to calculate the damped or ringing frequency, ω_{d} , of an under damped second order sensor like the one plotted in Figure 1 in terms of natural frequency, ω_n , and the damping ratio, ζ? Wy=Wn/1-32

in

Figure 1. Second order system response to a 2 unit step input function.

Figure 2. Thermocouple response to a 6 degree C step input temperature change.

Figure 3. Probability density function of a normally distributed data set.

Figure 4. Sample data collected during lab 2 with simulated data superimposed on plot.