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3 Dynamic Behavior of Measurement Systems 

Order of a Dynamic Measurement System 

Every measurement system responds to inputs in a unique way. For 

example, your ability to hear high frequency sounds will probably degrade 

as you age and will never be as keen as most dogs hearing. Sound 

pressure waves are a dynamic signal and the sensing of these pressure 

waves by a flexible membrane (like your ear drum) can be mathematically 

modeled and therefore simulated. 

Our goal in this section is to apply our understanding of the physics 

involved in sensing a signal and build a mathematical model that could be 

used to describe the response of the measurement system to a dynamic 

signal. In prior sections we described the response of a measurement 

system to a static signal and built a mathematical model which described 

that response. The process of characterizing that response is referred to 

as a static calibration and the resulting mathematical model is called the 

static calibration curve. 

In the first lab you will perform both a static and dynamic calibration of a 

temperature sensor and determine the corresponding static and dynamic 

models which describe the sensor response. In the case of a signal that is 

changing with time (dynamic) a sensor that can keep up, or is fast 

enough, is needed to accurately detect the change. In the case of the 

temperature sensors used in the first lab both the sensor and the 

environment being sensed must be at the same temperature to make an 

accurate measurement. If the sensor is initially at a different temperature 

then some amount of time is required for the sensor and the environment 

to become the same temperature. There has been a dynamic change in 

the sensor temperature in response to a dynamic change in the input 

temperature signal. 

In this example we understand that heat must be transferred from the 

environment to the sensor. The physics of that heat transfer might be 

modeled based on our understanding of conduction, convection, radiation 

or possibly some combination thereof. In general we could reason that 

the temperature sensor performs some mathematical operation on the 

input signal and outputs the result. 

In fact most measurement systems can be modeled using a differential 

equation that describes the relationship between the input signal and the 

output signal. In the first lab you will find the linear equation that describes 

the response to a static input (a static calibration) and the first order 

differential equation that describes the conductive heat transfer to and 

from the sensor (a dynamic calibration). 
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Figure 3.2 Measurement system operation on an input signal, F(t), provides the 

output signal, y(t). 

Measurement System Model 

If the measurement system operation performed on the input signal, F(t), 

in figure 3.2 is an nth-order linear differential equation then the output 

signal, y(t), can be represented with the equation: 
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where the coefficients, a0, a1, a2, …, an represent the physical system 

parameters whose properties and values will depend on the 

measurement system itself. The forcing function, F(t), can also be 

generalized into an mth-order equation of the form: 

1

1 1 01
( )       

m m

m mm m

d x d x dx
F t b b b b x m n

dt dt dt
  

where b0, b1,…, bm also represent physical system parameters. The 

nature of these equations should reflect the governing equations of the 

pertinent fundamental physical laws of nature that are relevant to the 

measurement system. 

Zero-Order System 

If all the derivatives in Equation 3.1 are zero then the most basic model of 

a measurement system is obtained, the zero-order differential equation: 

 
0 ( )a y F t  

From this equation it is easy to see that any input, F(t), is instantly 

reflected in the output y with only a factor, a0, modification. If the input is a 

dynamically varying signal b0x then y = b0/a0x or y = Kx. The factor K is 



MAE 334 - INTRODUCTION TO COMPUTERS AND INSTRUMENTATION 

MeasurementSystemBehaviorNotes.docx 3 of 12 9/11/2009 
Scott H Woodward 

often times referred to as the static sensitivity found during a static 

calibration. 

First-Order System 

A linear time-invariant (LTI) first-order system contains a single mode of 

energy storage. A simple Resister-Capacitor circuit is a first order system. 

 

Here the underlying physics is described by the equation 

out
out in

dV
RC V V

dt
 

This circuit is called a single pole low-pass RC filter and will be discussed 

in greater detail in subsequent sections on signal conditioning and filters. 

Systems with thermal capacity like a bulb thermometer or thermocouple 

require heat transfer, Q, from their environment to effect a sensor 

temperature change. The change in energy, E, with respect to time is 

described by the first-order equation. 

( ) ( )v s s

dE dT
Q mC hA T t T t

dt dt

 
where m is the sensor’s mass, Cv is the sensor’s specific heat, h is the 

convective heat transfer coefficient, As is the surface area of the sensor, 

T  is the temperature of the surrounding material and Ts is the 

temperature of the sensor. This can be rearranged as 
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This can obviously be represented as a first-order differential equation in 

the form of equation 3.1 as 
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To help clarify the underlying physics the equation can be recast by 

dividing through by a0 and setting y dy dt . 
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 ( )y y KF t  

where 
1 0a a . The parameter  is called the time constant of the 

system. Reflecting back it is easy to see that the time constant of a 

single-pole low-pass RC filter is 1/RC and that of a temperature sensor is 

based on the mass, specific heat, heat transfer coefficient, and the 

surface area of the sensor, 
v smC hA . 

It is essential that you grasp the insight that the time constant of 

such systems (LTI) or sensors is based on properties that do not 

change (under normal operating conditions). I.e. a bulb 

thermometer does not change in mass when subjected to a 

temperature change nor does its specific heat, surface area or heat 

transfer coefficient change therefore its time constant remains 

constant. 

Dynamic Calibration of a First-Order System 

Like a static calibration, the sensor is subjected to a known input and 

the resulting sensor output is recorded. For a dynamic calibration a 

dynamic input is needed and the ability to measure a time varying 

signal is required. Being engineers is makes sense that we would 

start with equations that model the physics and find a simple solution 

to them. If the input function, F(t), is a unit step function, U(t), then 

( )y y KF t  can be recast as, y + y = y  which has the solution: 

0[ ] -t /y = + y yy e
 

Recall that the unit step function, U(t), is zero for all time prior to t0 

and 1 for all time thereafter. In practice U(t) usually has an 

amplitude, A, other than 1. The difference between the input and 

the output is often referred to as the error. With a simple 

rearrangement of terms that error is clearly shown to be an 

exponential function 

0[ ]
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y y

e
y y  

When t the error function is e
-1

 = 0.368 or y = 0.632(KA - y0). 

By taking the natural log of the error function or when plotted in 

semi-log coordinates the equation assumes a linear form. 
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Figure 3.8. The error function plotted in semi-log coordinates. 

The slope of the linearized error function is -1/ . Finding the slope of a 

line is less sensitive to errors than finding a point on a curve (at a 

value of y = 0.632(KA - y0).) 

Dynamic Calibration of Thermocouple 

In the first lab you will be performing a dynamic calibration of a 

thermocouple by subjecting it to a sudden change in temperature (i.e. 

moving it from cold water to warm water). 

The governing equation from above ( ) ( )v s s s

dT
mC hA T t hA F t

dt
 can 

easily be recast in the more familiar form  

( ) ( )v
s

s

mC dT
T t F t

hA dt  

where the time constant is defined by the physical constants v

s

mC

hA
. Here 

the natural log of the error function is plotted in linear coordinates and a 

line is fit to a portion of the data from 5 to 15 seconds. The slope of that 

line, -0.208, is -1/time constant or  = 4.8 seconds. 
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An example data set using the same thermocouple containing 

considerable noise and quantization error is plotted below. Of note is the 

difficulty with which ~2/3 of the step response could be determined. In 

contrast the time constant determined from the linearized error function is 

relatively insensitive to the noise and quantization errors. 

 

 

The line above is fit to only the first 2 seconds (~3 to 5 seconds) of the 

linearized error function of the step input response and yields a  = 4.8 s. 
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Frequency Response of a First-Order System 

The determination of the static sensitivity and time constant of a first-

order system transforms the black box “Measurement system operation” 

in figure 3.2 into a known function. That implies that for any given output 

which is correctly recorded the input that produced it could be 

ascertained. This is possible because the differential equation describing 

the physics of the measurement system is known and is solvable with 

relative ease. 

An intuitive description of the relationship between a system input and 

output requires an understanding of the user, their intent as well as the 

measurement system. Most users of thermometers are not interested in 

dynamic temperature measurement. It is fair to say that few have the 

training needed to relate the math to the physics and then apply this 

knowledge to understand a dynamic phenomenon or solve a problem. 

To facilitate an understanding of a system’s dynamic response we will 

start by finding a solution to a simple sine wave input. 

sin( )
dy

+ y = KA t
dt  

We already know that the complementary equation, 0dy
dt + y = has a 

decaying exponential solution of the form 
/( ) ty t Ce . By applying 

appropriate initial conditions a particular solution at a single frequency, 

1, can be found in the form of 
1 1 1sin[ ( )]y(t)= B  t+ . 
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For an input A1 sin( 1t) the output 
1 1 1sin[ ( )]B  t+ is produced. There 

is an amplitude reduction from A1 to B1 and a delay in time, 1, reflected 

in the phase shift of 
1( ) . 

The complete solution is 

/( ) ( )sin[ ( )] ty t = B t+ +Ce

 
where 

1
22( ) / 1 ( )B KA  and 1( ) tan ( ) . This solution 

depends only on the static sensitivity, K, and the time constant, . The 

time constant is the only system characteristic that affects the frequency 

response. This solution provides a relationship between the input and 

output for all frequencies. The ratio of output/input magnitude would 

therefore be ( ( /) )M B KA . Figure 3.12 is plot of the magnitude ratio 

versus the normalized frequency . Note that at  the magnitude is 

0.707 which can be derived from 
1

22)( ) 1/ 1 ( 1/ 2M . 

 

Figure 3.12 is plotted with the magnitude ratio expressed in decibels 

below. A decibel, dB, is unit of power defined as 20 log10(M( )). 

The frequency response of a first-order sensor is defined based on the 

time constant as  . This can be stated in terms of the magnitude 

ratio as the -3 dB point or the point when the magnitude ratio is 0.707. 

This definition also carries over to other non-first-order systems even 

though they are based on a different mathematical model (physics). 
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A first-order system can be thought of as a low pass filter. They attenuate 

higher frequencies and pass lower frequencies with little attenuation. 

A first-order system always delays the input signal in time. That delay 

results in a phase shift as evidenced by the ( ) term in the complete 

solution. The time delay, , in figure 3.11 above can be solved for as 

1
1

1

1

1

1

t( ) an ( )

 

By removing the particular frequency, , from the above equation a plot 

similar to the magnitude ratio can be generated for all frequencies. 
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Example 

Suppose I want to measure a temperature which fluctuates with a 
frequency of 0.1 Hz with a minimum of 98% amplitude reduction.  

ASSUMPTIONS: basic first-order temperature sensor like a thermocouple 

FIND: Magnitude ratio of at least 0.98 

( 0.98, or dB 20log 0.98 0.175)M  = =  

1
22

1
( )

1 ( )

B
M

KA
 

rearranging gives 

1/2
21/ ( ) 1

so for ( 98%,  0.2

or, 0.2 / 0.2 2 0.2 2 3.142 0

)

.1

0.31sec

  = M

  M

  = / f = /

   

Problem 3.7 

A thermocouple has a time constant of 20 ms. Determine its 90% rise 

time. 
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Example 3.3 

Suppose a bulb thermometer originally 

indicating 20ºC is suddenly exposed to 

a fluid temperature of 37 ºC. Develop 

a simple model to simulate the 

thermometer output response. 

KNOWN: 

T0 = 20ºC 

T∞ = 37ºC 

F(t) = [T∞ - T0]U(t) 

ASSUMPTIONS: 

Normal first-order response 

FIND: T(t) 

SOLUTION: 

The rate at which energy is exchanged 

between the sensor and the environment through convection, , must be 

balanced by the storage of energy within the thermometer, dE/dt.  

 

For a constant mass temperature sensor, 

 

 

This can be written in the form 

 

dividing by hAs  

 

Therefore: 

,    

The thermometer response is therefore: 

 

 [ºC] 


