EE 631: Estimation and Detection Part 7

Dr. Mehrdad Soumekh

Linear MMSE estimation

Consider an unknown message $m(t)$ which is estimated from the measured signal $r(t)$. Let the estimator be a linear system given by $h(t, u))$. The output of the estimator is given by:

$$
\hat{m}(t)=\int_{T} h(t, u) r(u) d u
$$

Estimator error is given by:

$$
e(t)=m(t)-\hat{m}(t)
$$

Our aim is to design an optimum filter that minimizes

$$
\xi_{I}=\int_{T} e^{2}(t) d t
$$

and satisfies the orthogonality condition

$$
E\left[e(t) \cdot r^{*}(u)\right]=0 \quad \forall t, u \in[0, T]
$$

Estimator equation
Substitute for the error in the orthogonality condition via:

$$
\begin{aligned}
e(t) & =m(t)-\hat{m}(t) \\
& =m(t)-\int h(t, \lambda) r(\lambda) d \lambda
\end{aligned}
$$

This yields:

$$
\begin{aligned}
& E\left[\left[m(t)-\int_{T} h(t, \lambda) r(\lambda) d \lambda\right] r^{*}(u)\right]=0 \\
& \Rightarrow E[m(t) r(u)]=\int_{T} h(t, \lambda) E\left[r(\lambda) r^{*}(u)\right] d \lambda \\
& \Rightarrow R_{m r}(t, u)=\int_{T} h(t, \lambda) R_{r}(\lambda, u) d \lambda
\end{aligned}
$$

The construction of the filter is based on solving for $h(t, u)$ from the above using the knowledge of $R_{m r}(.,$.$) and$ $R_{r}(.,$.$) .$
$\underline{\text { Special case: }}$

$$
r(t)=m(t)+n(t)
$$

where $m(t)$ and $n(t)$ are orthogonal to each other. In this case:

$$
\begin{aligned}
R_{m r}(t, u) & =E\left[m(t) r^{*}(u)\right] \\
& =E\left[m(t)\left[m^{*}(u)+n^{*}(u)\right]\right] \\
& =R_{m}(t, u)
\end{aligned}
$$

Also

$$
R_{r}(t, u)=R_{m}(t, u)+R_{n}(t, u)
$$

Therefore, the estimator equation becomes:

$$
R_{m}(t, u)=\int_{T} h(t, \lambda)\left[R_{m}(\lambda, u)+R_{n}(\lambda, u)\right] d \lambda
$$

Spectral solution via KL representation

Model:

$$
r(t)=m(t)+n(t)
$$

where $m(t)$ and $n(t)$ are general non-stationary signals that are orthogonal and uncorrelated to each other. Suppose the autocorrelation of both signals possess a common set of eigenfunctions that are denoted by:

$$
\Phi=\left\{\phi_{i}(t) ; \quad ; i=1,2, \cdots\right\}
$$

Thus,

$$
\begin{aligned}
R_{m}(t, u) & =\sum_{i} \lambda_{m i} \phi_{i}(t) \phi_{i}^{*}(u) \\
R_{n}(t, u) & =\sum_{i} \lambda_{n i} \phi_{i}(t) \phi_{i}^{*}(u)
\end{aligned}
$$

We consider the following decomposition for the optimal filter:

$$
h(t, u)=\sum_{i} h i \phi_{i}(t) \phi_{i}^{*}(u)
$$

Also, we have:

$$
\begin{aligned}
R_{r}(t, u) & =\sum_{i} \lambda_{r i} \phi_{i}(t) \phi_{i}^{*}(u) \\
& =\sum_{i}\left(\lambda_{m i}+\lambda_{n i}\right) \phi_{i}(t) \phi_{i}^{*}(u)
\end{aligned}
$$

We now use the spectral representations in the estimator equation:

$$
\begin{aligned}
R_{m}(t, u) & =\int_{T} h(t, \lambda) R_{r}(\lambda, u) d \lambda \\
\sum \lambda_{m i} \phi_{i}(t) \phi_{i}^{*}(u) & =\int_{T} \sum_{i} h_{i} \phi_{i}(t) \phi_{i}^{*}(\lambda) \sum_{j}\left(\lambda_{m j}+\lambda n j\right) \phi_{j}(\lambda) \phi_{j}^{*}(u) d \lambda \\
& =\sum_{i} \sum_{j} h_{i}\left(\lambda_{m j}+\lambda_{n j}\right) \phi_{i}(t) \phi_{j}^{*}(u) \underbrace{\left[\int_{T} \phi_{i}^{*}(\lambda) \phi_{j}(\lambda) d \lambda\right]}_{\delta_{i j}}
\end{aligned}
$$

$$
\therefore \sum_{i} \lambda_{m i} \phi_{i}(t) \phi_{i}^{*}(u)=\sum_{i} h_{i}\left(\lambda_{m i}+\lambda_{n i}\right) \phi_{i}(t) \phi_{i}^{*}(u)
$$

Due to the uniqueness of the spectral coefficients,

$$
\begin{gathered}
\lambda_{m i}=h_{i}\left(\lambda_{m i}+\lambda_{n i}\right) \quad \forall i=1,2, \ldots \\
\Rightarrow h_{i}=\frac{\lambda_{m i}}{\lambda_{m i}+\lambda_{n i}}
\end{gathered}
$$

which is known as the general Weiner filter. The stationary equivalent of the above is given by:

$$
H(\omega)=\frac{S_{m}(\omega)}{S_{m}(\omega)+S_{n}(\omega)}
$$

Note that:
a) $\lambda_{m i} \gg \lambda_{n i} \Rightarrow h_{i} \approx 1$
b) $\lambda_{m i} \ll \lambda_{n i} \Rightarrow h_{i} \approx 0$

The estimate:
The estimate is constructed via the following:

$$
\hat{m}(t)=\int_{T} h(t, u) r(u) d u
$$

We consider the spectral decomposition for the measurement:

$$
\begin{aligned}
m(t) & =\sum_{i} m_{i} \phi_{i}(t) \\
n(t) & =\sum_{i} n_{i} \phi_{i}(t) \\
\Rightarrow r(t) & =\sum_{i} r_{i} \phi_{i}(t) \quad ; r_{i}=m_{i}+n_{i}
\end{aligned}
$$

Using this and the spectral representation of for $h(t, u)$ in $\hat{m}(t)$, we get:

$$
\begin{aligned}
\hat{m}(t) & =\int_{T} \sum_{i} h_{i} \phi_{i}(t) \phi_{i}^{*}(u) \sum_{j} r_{j} \phi_{j}(u) d u \\
& =\sum_{i} \sum_{j} h_{i} r_{j} \phi_{i}(t) \underbrace{\left[\int_{T} \phi_{i}^{*}(u) \phi_{j}(u) d u\right]}_{\delta_{i j}} \\
& =\sum_{i} h_{i} r_{i} \phi_{i}(t) \\
\rightarrow \hat{m}(t) & =\sum_{i} \hat{m}_{i} \phi_{i}(t)
\end{aligned}
$$

where $\hat{m}_{i}=h_{i} r_{i}=\frac{\lambda_{m i} r_{i}}{\lambda_{m i}+\lambda_{n i}}$
Estimator error energy:
Point error:

$$
\begin{aligned}
\xi_{p}(t) & =E\left[[m(t)-\hat{m}(t)]\left[m^{*}(t)-\hat{m}^{*}(t)\right]\right] \\
& =E\left[e(t)\left[m^{*}(t)-\int_{T} h(t, u) r^{*}(u)\right] d u\right] \\
& =E\left[e(t) m^{*}(t)\right]-\int_{T} h(t, u) \underbrace{E\left[e(t) r^{*}(u)\right]}_{=0 \text { due to orthogonality }} d u \\
\Rightarrow \xi_{p}(t) & =E\left[e(t) m^{*}(t)\right] \\
& =E\left[[m(t)-\hat{m}(t)] m^{*}(t)\right] \\
& =R_{m}(t, t)-E\left[\int_{T} h(t, u) r(u) d u m^{*}(t)\right] \\
& =R_{m}(t, t)-\int_{T} h(t, u) \underbrace{E\left[r(u) m^{*}(t)\right]}_{=R_{m}(u, t)} d u \\
& =R_{m}(t, t)-\int_{T} h(t, u) R_{m}(u, t) d u \\
& =R_{m}(t, t)-\int_{T} \sum_{i} h_{i} \phi_{i}(t) \phi_{i}^{*}(u) \sum_{j} \lambda_{m j} \phi_{j}(u) \phi_{j}^{*}(t) d u \\
& =R_{m}(t, t)-\sum_{i} \sum_{j} h_{i} \lambda_{m j} \phi_{i}(t) \phi_{j}^{*}(t) \underbrace{\left[\int_{T} \phi_{i}^{*}(u) \phi_{j}(u) d u\right]}_{\delta_{i j}}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \xi_{p}(t) & =\sum_{i} \lambda_{m i} \phi_{i}(t) \phi_{i}^{*}(t)-\sum_{i} h_{i} \lambda_{m i} \phi_{i}(t) \phi_{i}^{*}(t) \\
& =\sum_{i}\left(\lambda_{m i}-\frac{\lambda_{m i}}{\lambda_{m i}+\lambda_{n i}} \lambda_{m i}\right) \phi_{i}(t) \phi_{i}^{*}(t) \\
& =\sum_{i}\left(\frac{\lambda_{m i} \lambda_{n i}}{\lambda_{m i}+\lambda_{n i}}\right)\left|\phi_{i}(t)\right|^{2}
\end{aligned}
$$

Interval error:

$$
\begin{aligned}
\xi_{I} & =\int_{T} \xi_{p}(t) d t \\
& =\int_{T} \sum_{i}\left(\frac{\lambda_{m i} \lambda_{n i}}{\lambda_{m i}+\lambda_{n i}}\right)\left|\phi_{i}(t)\right|^{2} d t \\
& =\sum_{i}\left(\frac{\lambda_{m i} \lambda_{n i}}{\lambda_{m i}+\lambda_{n i}}\right) \underbrace{\int_{T}\left|\phi_{i}(t)\right|^{2} d t}_{=1} \\
\Rightarrow \xi_{I} & =\sum_{i}\left(\frac{\lambda_{m i} \lambda_{n i}}{\lambda_{m i}+\lambda_{n i}}\right)
\end{aligned}
$$

Detection in additive white Gaussian noise

Under the m th hypothesis, the received signal is :

$$
H_{m}: \quad r(t)=s_{m}(t)+n(t)
$$

where $n(t)$ is the white Gaussian noise and the transmitted signals are:

$$
\vec{S} \triangleq\left\{s_{m}(t) ; \quad m=0,1, \cdots, M-1\right\}
$$

The linear signal subspace can be represented by (e.g using the Gram Schmidt procedure) by $N \leq M$ orthonormal basis functions given by:

$$
\vec{S}=\vec{\Phi}=\left\{\phi_{i}(t) ; \quad i=1, \cdots, N \leq M\right\}
$$

Irrelevant data:
The finite signal subspace $\vec{S}=\vec{\Phi}$ cannot be a CON set. Therefore, we identify the set:

$$
\vec{S}^{c} \triangleq\left\{\phi_{i}(t) ; \quad i=N+1, \cdots, \infty\right\}
$$

such that $\left[\vec{S}, \vec{S}^{c}\right]$ forms a CON set.
Once this signal set is identified, we can construct:

1. Projection of $S_{m}(t)$ into \vec{S} :

$$
\overrightarrow{S_{m}}=\left[\begin{array}{c}
S_{m 1} \\
S_{m 2} \\
\vdots \\
S_{m N}
\end{array}\right]
$$

where $S_{m i}=<S_{m}, \phi_{i}>\quad \forall i=1,2, \cdots, N$.
Clearly, $\left\langle S_{m}, \phi_{i}\right\rangle=0 \quad \forall i=N+1, \cdots, \infty$
2. Projection of $r(t)$ into \vec{S} :

$$
\overrightarrow{R_{1}}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{N}
\end{array}\right]
$$

$$
\text { where } r_{i}=<R, \phi_{i}>\quad \forall i=1,2, \cdots, N .
$$

Under $H_{m}: \quad r_{i}=S_{m i}+n_{i} \quad ; i=1,2, \ldots N$,
where $n_{i}=<n, \phi_{i}>$.
Furthermore, $\forall i=N+1, \cdots, \infty$, we also have $r_{i}=n_{i}$, i.e. no signal component.

$$
\overrightarrow{R_{2}}=\left[\begin{array}{c}
r_{N+1} \\
r_{N+2} \\
\vdots \\
r_{\infty}
\end{array}\right]
$$

Therefore, the total measurement vector is given by:

$$
\vec{R}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{N} \\
\hline r_{N+1} \\
r_{N+2} \\
\vdots \\
r_{\infty}
\end{array}\right]=\left[\begin{array}{c}
R_{1} \\
R_{2}
\end{array}\right]
$$

Under H_{m} :

$$
\vec{R}=\left[\begin{array}{c}
s_{m 1}+n_{1} \\
s_{m 2}+n_{2} \\
\vdots \\
s_{m N}+n_{N} \\
n_{N+1} \\
n_{N+2} \\
\vdots \\
n_{\infty}
\end{array}\right]
$$

Since R_{2} has only noise components, it is called redundant data. Noise variance:

$$
\begin{aligned}
E\left[\left|n_{i}\right|^{2}\right] & =\frac{N_{0}}{2} \\
E\left[n_{i} n_{j}^{*}\right] & =0 \quad ; i \neq j
\end{aligned}
$$

$\Rightarrow n_{i}$'s are i.i.d. $\sim N\left(0, \frac{N_{0}}{2}\right) . R_{1}$ and R_{2} are independent of each other. i.e.

$$
p\left(\vec{R} \mid H_{m}\right)=p\left(\overrightarrow{R_{1}} \mid H_{m}\right) p\left(\overrightarrow{R_{2}} \mid H_{m}\right)
$$

Since, R_{2} does not depend on H_{m},

$$
p\left(\overrightarrow{R_{2}} \mid H_{m}\right)=p\left(R_{2}\right)
$$

The likelihood ratio test:

$$
\Lambda_{m}(\vec{R})=\frac{p\left(\vec{R} \mid H_{m}\right)}{p\left(\vec{R} \mid H_{0}\right)}=\frac{p\left(\overrightarrow{R_{1}} \mid H_{m}\right)}{p\left(\overrightarrow{R_{1}} \mid H_{0}\right)}
$$

i.e. \vec{R}_{1} is sufficient statistic. R_{2} on the other hand is irrelevant data and does not influence decision. Statistic on R_{1} :
R_{1} is multivariate normal. Under H_{m}, its mean is S_{m} and its covariance matrix is $\frac{N_{0}}{2} \times \vec{I}_{N \times N}$.

